TRASFORMAZIONI GEOMETRICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TRASFORMAZIONI GEOMETRICHE"

Transcript

1 TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano stesso e viceversa. P' = T (P) è detto trasformato o immagine di P. P è detto controimmagine di P'. Def. Si dice trasformazione identica o identità la trasformazione che associa ad ogni punto P il punto stesso: T (P) = P. Def. Si dice involutoria una trasformazione che composta con se stessa, (ovvero applicata due volte), dà l'identità. Le affinità Def. Un affinità è una trasformazione fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo. Un affinità è descritta da un sistema di equazioni lineari del tipo: x' ax by c con ae bd y' dx ey f a d b e prende il nome di matrice dell affinità. Def. Un affinità che conserva l orientamento degli angoli viene detta affinità diretta, un affinità che inverte l orientamento degli angoli viene detta affinità inversa. se ae bd >, l affinità è diretta; se ae bd <, l affinità è inversa.. Si può dimostrare che un'affinità gode delle seguenti proprietà: trasforma rette in rette; se tre punti P, Q, R sono allineati, i loro corrispondenti in un'affinità P', Q', R' sono anch'essi allineati; a rette parallele corrispondono rette parallele e a rette incidenti corrispondono rette incidenti; conserva il rapporto fra segmenti paralleli (in particolare al punto medio di un segmento corrisponde il punto medio del segmento trasformato); se la figura F' è l'immagine corrispondente di una figura F, allora: dove det ae bd. Area(F') Area(F) det A In generale un'affinità: non conserva la forma delle figure. Infatti l'immagine di un rettangolo è in generale un parallelogramma, così come l'immagine di una circonferenza è un'ellisse.

2 non conserva gli angoli, per esempio rette perpendicolari non necessariamente vengono trasformate in rette perpendicolari. Le isometrie Def. Le isometrie sono affinità che conservano le distanze. Dati due punti A, B l'isometria fa ad essi corrispondere due punti A' e B' tali che AB A'B'. a b Un affinità di matrice è un isometria se e solo se sono verificate le seguenti condizioni: d e ab + de = ; a 2 + d 2 = b 2 + e 2 =. Sono isometrie: la traslazione, la simmetria centrale, la simmetria assiale e la rotazione. Traslazione Def. Traslazione di vettore v (a; b) è una trasformazione che ad ogni punto P del piano associa un punto P' tale che il vettore PP ' è uguale al vettore v. Una traslazione è descritta da un sistema di equazioni lineari del tipo: x' x a y' y b, det una traslazione diversa dall identità non ha punti uniti; le rette parallele al vettore traslazione sono rette unite; qualunque retta viene trasformata in una retta ad essa parallela; una traslazione trasforma una figura geometrica in una figura congruente a quella data, ma traslata. Simmetria centrale Def. La simmetria centrale di centro C è una trasformazione che ad ogni punto P del piano associa un punto P' tale che C è il punto medio del segmento PP '. Una simmetria centrale è descritta da un sistema di equazioni lineari del tipo: x' 2x x con C(x ; y ), det y' 2y y x 2x x' Le equazioni della trasformazione inversa sono: y 2y y' Com'è evidente la trasformazione e la sua inversa sono formalmente identiche salvo lo scambio apice non apice, trattandosi di una trasformazione involutoria. Si può dimostrare che una simmetria centrale gode delle seguenti proprietà: La simmetria centrale ha un solo punto unito: il centro C. Tutte le rette passanti per C sono unite. La simmetria centrale è un isometria. La simmetria centrale è un isometria diretta. La simmetria centrale è involutoria. Rette che si corrispondono in una simmetria centrale sono parallele. 2

3 Simmetria assiale Def. La simmetria assiale di asse: ax + by + c = è una trasformazione che ad ogni punto P del piano associa un punto P' tale che il segmento PP' è perpendicolare all'asse e il punto medio M di PP' appartiene all'asse. Esprimendo le condizioni imposte dalla definizione nei termini delle coordinate, si possono dedurre immediatamente le equazioni della trasformazione: Per scrivere le equazioni della trasformazione in forma esplicita si dovrà risolvere il sistema rispetto a x' e y'. Per il calcolo dei casi più semplici si consiglia di utilizzare il metodo di sostituzione, altrimenti è preferibile il metodo di Cramer. Dal punto di vista analitico le equazioni di una simmetria assiale sono del tipo: In particolare se l'asse passa per l'origine i termini noti si annullano. Si può dimostrare che una simmetria assiale gode delle seguenti proprietà: Tutti i punti dell'asse di simmetria sono uniti: l'asse è quindi una retta unita luogo di punti uniti. Tutte le rette perpendicolari all'asse sono unite, ma non costituite da punti uniti. La simmetria assiale è involutoria, pertanto le equazioni della trasformazione e quelle della sua inversa sono formalmente identiche salvo lo scambio apice non apice (valgono le stesse considerazioni fatte per la simmetria centrale) La simmetria assiale è un isometria. La simmetria assiale è un isometria inversa. La simmetria assiale, come tutte le isometrie, conserva le relazioni di perpendicolarità e parallelismo. Si può dimostrare che componendo due simmetrie assiali rispetto ad assi perpendicolari si ottiene una simmetria centrale, con centro nel punto d'intersezione tra i due assi. Simmetrie rispetto ad assi particolari Nel caso di assi di simmetria particolari (assi cartesiani, rette parallele agli assi cartesiani o bisettrici dei quadranti) non è necessario ricorrere alla definizione per ottenere le equazioni della simmetria assiale, ma è sufficiente visualizzare graficamente la situazione per ottenere i risultati seguenti: x' x Simmetria rispetto alla retta y = y : y' 2y x' 2x Simmetria rispetto alla retta x = x : y' y y x Simmetria rispetto all asse delle ascisse ( y =): x' x y' y, det -, det - Simmetria rispetto all asse delle ordinate ( x = ): x' x y' y Simmetria rispetto alla bisettrice I, III ( y = x ): x' y y' x Simmetria Rispetto alla bisettrice II, IV ( y = x ): x' y y' x 3

4 Rotazione Def. La rotazione di centro C(x ; y ) e angolo α è la trasformazione che ad ogni punto P del piano associa un punto P' tale che PC P' C e l'angolo P ĈP'. Le equazioni analitiche di una rotazione di angolo α in senso antiorario sono: x' (x x y' (x x )cos (y y )sin (y y )sin x )cos y cos sin sin cos, det A=. Se il centro della rotazione coincide con l origine degli assi cartesiani, le equazioni analitiche della rotazione sono: x' x cos ysin y' x sin ycos Si può dimostrare che per una rotazione valgono le seguenti proprietà: l'origine è l'unico punto unito; una rotazione trasforma una figura geometrica in una figura congruente a quella data. Le similitudini Def. Le similitudini sono affinità che conservano il rapporto tra segmenti corrispondenti, cioè se: AB, A B e CD, C D sono due coppie qualsiasi di segmenti corrispondenti, risulta: A' B' AB C' D' k CD La matrice di una similitudine ha sempre la forma: a b a b se è diretta, b a se è inversa. b a Le sue equazioni generali sono della forma: x' ax by m x' ax by m oppure y' bx ay n y' bx ay n k x' ax by c Una affinità: 2 2 a b rapporto di similitudine. ab de è una similitudine se: y' dx ey f a d b e Def. Sia C un punto del piano e k un numero reale non nullo. Si definisce omotetia di centro C(x ; y ) e rapporto k la corrispondenza biunivoca tra i punti del piano che a ogni punto P fa corrispondere in modo unico il punto P tale che: Le sue equazioni generali sono della forma: CP' kcp x' k(x x y' k(y y ) x ) y k k, det k 2. 4

5 Se il centro dell omotetia coincide con l origine degli assi cartesiani, le equazioni analitiche dell omotetia sono: x' kx y' ky Casi particolari: se k > l'omotetia si dice diretta. P e P' si trovano dalla stessa parte rispetto ad O; se k < l'omotetia si dice inversa. P e P' si trovano da parti opposte rispetto ad O; se k si ha una dilatazione della figura; se k si ha una contrazione della figura; se k = si ha l'identità; se k = si ha la simmetria rispetto all'origine.. Si può dimostrare che un'omotetia gode delle seguenti proprietà: l'omotetia trasforma una retta in una retta parallela alla retta data; le rette che passano per il centro di omotetia sono rette unite; l'omotetia è una similitudine; se k il centro di omotetia è l'unico punto unito; l'omotetia trasforma una figura geometrica in una figura simile a quella data; Area(F') se la figura F ' è l'immagine corrispondente di una figura F, allora Area(F) Dilatazioni Def. Si definisce dilatazione di centro C(x ; y ) e rapporti h e k con h e k, la trasformazione che ad ogni punto P(x; y) del piano fa corrispondere un punto P (x ; y ) in modo che valgano le equazioni: 2 k x' k(x x y' h(y y ) x ) y ovvero x' kx p y' hy q Osservazione. Se C(; ) le equazioni diventano: x' kx y' hy 5

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si

Dettagli

Trasformazioni geometriche

Trasformazioni geometriche Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto

Dettagli

Trasformazioni geometriche nel piano

Trasformazioni geometriche nel piano Trasformazioni geometriche nel piano Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

TRASFORMAZIONI GEOMETRICHE E FUNZIONI

TRASFORMAZIONI GEOMETRICHE E FUNZIONI TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone

Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone Affinità arte seconda agina 8 di 5 easy matematica di Adolfo Scimone Omotetia Definizione 1 - Si chiama omotetia di centro x ( 0, y0 ) ogni trasformazione biunivoca del iano in se in cui due unti corrisondenti

Dettagli

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 Introduzione Prima di analizzare le isometrie è necessario fare una breve introduzione. Bisogna innanzitutto ricordare che due

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003 Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design Lezione 6 maggio Trasformazioni - II F. Caliò Classificazione delle trasformazioni in R (TITOLO) Rotazioni in R (TITOLO) Rotazione

Dettagli

17 LE TRASFORMAZIONI GEOMETRICHE

17 LE TRASFORMAZIONI GEOMETRICHE 17 L TRSFORMZIONI GOMTRIH TST I FIN PITOLO 1 Nella trasformazione di equazioni: x' x y 1 y' x y al punto corrisponde: ; 0 ' 3; 4. ' 3;. ' ; 3. ' 1; 4. ' 4; 1. Quale delle seguenti affermazioni è falsa?

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto CAPITOLO 7 LE AFFINITA 7. Richiami di teoria Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto che questi due tipi di trasformazioni hanno alcune proprietà

Dettagli

PP ', stessa direzione e stesso verso.

PP ', stessa direzione e stesso verso. 1 ISOMETRIE Trasformazione geometrica: corrispondenza biunivoca che ad ogni punto P del piano associa un altro punto P' dello stesso piano. Se il punto trafformato P' (immagine del punto P) coincide con

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le 3. Isometrie di R. In questo paragrafo studiamo le isometrie del piano R. Ricordiamo che le isometrie sono delle trasformazioni che conservano le distanze fra coppie di punti, ossia delle applicazioni

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi

Dettagli

CONOSCENZE e COMPETENZE per MATEMATICA

CONOSCENZE e COMPETENZE per MATEMATICA e COMPETENZE per MATEMATICA LA MISURA DELLE GRANDEZZE GEOMETRICHE E LE GRANDEZZE PROPORZIONALI definizione di classe di grandezze geometriche; conoscere le classi geometriche: lunghezze, ampiezze, aree;

Dettagli

GEOMETRIA ANALITICA orizzontale verticale ORIGINE

GEOMETRIA ANALITICA orizzontale verticale ORIGINE GEOMETRIA ANALITICA Def: Il piano cartesiano è un sistema di ASSI CARTESIANI (uno orizzontale e uno verticale) orientati che si incontrano in un punto detto ORIGINE. ASSE DELLE ASCISSE o ASSE DELLE x (orizzontale)

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

2. Se i punti appartengono ad una retta di coefficiente angolare m noto (fig. 2):

2. Se i punti appartengono ad una retta di coefficiente angolare m noto (fig. 2): Geometria Analitica La geometria analitica studia le figure e le curve geometriche utilizzando sistemi di coordinate e metodi propri dell algebra. E nota anche come geometria cartesiana. teoria Punto e

Dettagli

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane

Dettagli

Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether).

Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether). Simmetrie Ad ogni simmetria delle Natura corrisponde una quantità conservata (Emmy Noether). Simmetria centrale DEF. Sia P( x, y ) un punto del piano cartesiano e sia C( x, y ) il centro di simmetria.

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

RETTA NEL PIANO CARTESIANO

RETTA NEL PIANO CARTESIANO RETTA NEL PIANO CARTESIANO Def: una funzione matematica del tipo rappresenta nel piano cartesiano una RETTA. Quindi l EQUAZIONE DI UNA RETTA in forma generica è sempre della forma: COEFFICIENTE ANGOLARE:

Dettagli

IL PIANO CARTESIANO E LA RETTA

IL PIANO CARTESIANO E LA RETTA IL PIANO CARTESIANO E LA RETTA ESERCIZI 1. Le coordinate di un punto su un piano 1 A Scrivi le coordinate dei punti indicati in figura. 1 B Scrivi le coordinate dei punti indicati in figura. Rappresenta

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

4^C - Esercitazione recupero n 6

4^C - Esercitazione recupero n 6 4^C - Esercitazione recupero n 6 1 Sono assegnate le parabole p' e p'' di equazioni rispettivamente: y=x e x= y y a Forniscine la rappresentazione grafica dopo aver determinato, tra l'altro, i loro punti

Dettagli

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa 3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1 GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

Isometrie. Tipi di isometrie

Isometrie. Tipi di isometrie Isoetrie Una Isoetria è una corrispondenza biunivoca del piano in sé che conserva le distanze. : 1) Una retta viene trasforata in una retta, un segento in un segento congruente, un cerchio in un cerchio

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI II PARTE: FUNZIONI ELEMENTARI E GEOMETRIA ANALITICA FUNZIONI Tracciare per punti i grafici delle seguenti funzioni. f(). ( ) 7 f +. f() 7 4. f ( ) 4. f ( )

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Simmetria assiale. Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v).

Simmetria assiale. Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v). Simmetria assiale Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v). Definizione La simmetria assiale di asse a e direzione v è la funzione: σ a : { A2 (R)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GEOMETRIA ANALITICA NEL PIANO Dr. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema

Dettagli

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI

LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI LE TRASFORMAZIONI GEOMETRICHE E I GRAFICI DELLE FUNZIONI 1. LE EQUAZIONI DI UNA TRASFORMAZIONE GEOMETRICA DEFINIZIONE Una trasformazione geometrica

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Un trasformazione geometrica t è una corrispondenza biunivoca che fa corrispondere ad un punto P del piano un altro punto P, ad una figura F una figura F. Il punto P si dice il trasformato di P secondo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Affinità. Isometrie. Simmetria assiale

Affinità. Isometrie. Simmetria assiale Si definisce sietria assiale rispetto ad una retta r l affinità Sr che lascia uniti i punti P di r e che trasfora ogni punto P appartenente ad r nel punto P tale che r sia l asse del segento PP'. Oltre

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI Corso di Geometria, a.a. 009-010 Ing. Informatica e Automatica Esercizi VI 5 novembre 009 Leggere i Capitoli 1-18, 0-4 del libro di testo. Tralasciare il Capitolo 19 (Sottospazi affini). 1 Geometria del

Dettagli

1 Introduzione alla geometria analitica

1 Introduzione alla geometria analitica 1.1 Il piano cartesiano 1 Introduzione alla geometria analitica Se R è l'insieme di tutti i numeri reali (rappresentabile su una retta), allora R R = R rappresenta il piano euclideo; infatti ciascun punto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si

Dettagli

Trasformazioni geometriche. Esercizi esame di stato

Trasformazioni geometriche. Esercizi esame di stato Trasformazioni geometriche Esercizi esame di stato 4^C PNI 2012 2013 Liceo Scientifico G Marconi Quesito n 3 PNI 2010 Sia G il grafico di una funzione x f x con x R Illustra in che modo è possibile stabilire

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano Lezione3 Informatica Grafica Lezione del 17 Marzo 2010 Dipartimento di Ingegneria Meccanica Politecnico di Milano michele.antolini@mail.polimi.it 3.1 La geometria dell antichità si divide in due per quanto

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali

risoluzione di problemi da risolvere tramite la risoluzione di sistemi ed equazioni di 1^ grado. 5 R ed i Radicali ORD. MODULO MODULO ARGOMENTO 1 Disequazioni disequazioni di 1^ grado disequazioni fratte disequazioni di grado superiore da risolvere con la scomposizione in fattori sistemi di disequazioni 2 Geometria

Dettagli

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica?

Classe 3Cmm Esercizi di Matematica 8 Novembre Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? Classe 3Cmm Esercizi di Matematica 8 Novembre 2016 1. Si dia una definizione di vettore. 2. Cosa si intende per trasformazione geometrica? 3. Consideriamo il vettore p ( 2, 3) associato alla traslazione

Dettagli

1 SIGNIFICATO DEL DETERMINANTE

1 SIGNIFICATO DEL DETERMINANTE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà di Farmacia e Medicina - Corso di Laurea in CTF 1 SIGNIFICATO DEL DETERMINANTE Consideriamo il seguente problema: trovare l area del parallelogramma

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito.

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. Omologia e CABRI Definizioni Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. I punti all infinito del piano proiettivo si dicono punti impropri, la retta

Dettagli

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI

CLASSE II A LICEO LINGUISTICO A.S. 2015/2016. Prof.ssa ANNA CARLONI CLASSE II A LICEO LINGUISTICO A.S. 2015/2016 Prof.ssa ANNA CARLONI OBIETTIVI la scomposizione dei polinomi le frazioni algebriche X X X scomposizione in fattori dei Scomporre a fattor comune polinomi Calcolare

Dettagli

Geometria. Geometria euclidea e geometrie non euclidee

Geometria. Geometria euclidea e geometrie non euclidee Geometria Paolo Montanari Appunti di Matematica Geometria 1 Geometria euclidea e geometrie non euclidee La geometria euclidea è un sistema matematico attribuito al matematico alessandrino Euclide, che

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli