Formulario di Geometria Analitica a.a
|
|
|
- Tommaso Virgilio Leoni
- 8 anni fa
- Visualizzazioni
Transcript
1 Formulario di Geometria Analitica a.a Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore Indice 1 Geometria Analitica Il piano cartesiano La retta La circonferenza La parabola L ellisse L iperbole L iperbole equilatera i
2 1 Geometria Analitica 1.1 Il piano cartesiano x1 + Punto medio di un segmento M ; y ) 1 + y x 1 ; y 1 ), ; y 2 ) coordinate estremi Distanza tra due punti x2 x 1 ) 2 + y 2 y 1 ) 2 x 1 ; y 1 ), ; y 2 ) coordinate punti 1.2 La retta Definizione: nessuna perché è un ente primitivo. Forma implicita ax + by + c = 0 tutte le rette x = c a = k retta verticale b = 0) y = c b = h retta orizzontale a = 0) Forma esplicita y = mx + q non comprende rette verticali perché m = b a, q = c a sono espressioni valide solo se a 0 Date due rette ax + by + c = 0 e a x + b y + c = 0 si ha: a a b b a a = b b c c a a = b b = c c rette incidenti una intersezione) rette parallele nessuna intersezione) rette coincidenti infinite intersezioni) Date due rette m = m 1 x + q 1 e y = m 2 x + q 2 si ha: m 1 = m 2 rette parallele m 1 m 2 = 1 m 1 = 1 m 2 rette perpendicolari Retta per un punto y y 0 = mx x 0 ) x 0 ; y 0 ) coordinate del punto Retta per due punti y y 1 y 2 y 1 = x x 1 x 1 x 1 ; y 1 ) e ; y 2 ) coordinate dei punti Distanza punto retta d = ax 0 + by 0 + c a 2 + b 2 Nota: retta in forma implicita 1
3 1.3 La circonferenza Definizione: luogo geometrico dei punti del piano per i quali la distanza da un punto fisso detto centro è costante e congruente ad un segmento detto raggio. Equazione noti centro Cx 0 ; y 0 ) e raggio r x x 0 ) 2 + y y 0 ) 2 = r 2 Equazione canonica + y 2 + αx + βy + γ = 0 C α ) 2 ; β 2 r = α ) 2 + β ) 2 γ La parabola Definizione: luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. La figura così ottenuta ha un asse di simmetria. Il punto di intersezione tra l asse di simmetria e la figura stessa è detto vertice. Asse parallelo all asse delle ordinate y = a + bx + c Posto = b 2 c, si ha V F b ; ) b ; 1 ) x = b y = 1 + a > 0, a < 0 Vertice Fuoco Asse di simmetria Direttrice Asse parallelo all asse delle ascisse x = ay 2 + by + c a > 0, a < 0 ) V F ; b ) 1 ; b ) Vertice Fuoco y = b x = 1 + Asse di simmetria Direttrice 2
4 1.5 L ellisse Definizione: luogo geometrico dei punti del piano per i quali è costante la somma delle distanze da due punti fissi detti fuochi. La figura così ottenuta ha due assi di simmetria o più semplicemente assi), il maggiore dei quali è detto asse maggiore su di esso si trovano i fuochi) e l altro asse minore. Il punto di intersezione degli assi è detto centro, i punti di intersezione tra gli assi e la figura stessa sono detti vertici. Riferita a rette parallele agli assi x x 0 ) 2 a 2 + y y 0) 2 b 2 = 1 Centro O x 0 ;y 0 ) mn > 0 m + ny 2 + px + qy + r = 0 p 2 4m + q2 4n r > 0 O p 2m ; q 2n ) a + y2 = 1, a > b Fuochi sull asse x, 2 b2 a semiasse maggiore b semiasse minore F± a 2 b 2 ; 0) V ±a; 0), V 0; ±b) a + y2 = 1, a < b Fuochi sull asse y, 2 b2 a semiasse minore b semiasse maggiore F0; ± b 2 a 2 ) V ±a; 0), V 0; ±b) 3
5 1.6 L iperbole Definizione: luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. La figura così ottenuta ha due assi di simmetria. L asse che interseca la figura stessa è detto asse trasverso su di esso si trovano i fuochi) e l altro asse non trasverso. Il punto di intersezione degli assi è detto centro, i punti di intersezione tra l asse trasverso e la figura stessa sono detti vertici. Esistono due rette, detti asintoti, tali che la distanza tra ciasuna di esse e i punti dell ellisse tende a zero al tendere all infinito di x o y. Riferita a rette parallele agli assi x x 0 ) 2 a 2 y y 0) 2 b 2 = 1 x x 0 ) 2 a 2 y y 0) 2 b 2 = 1 m + ny 2 + px + qy + r = 0 p 2 4m + q2 4n r > 0 p 2 4m + q2 4n r < 0 { Centro O x 0 ; y 0 ) Asse trasverso orizzontale { Centro O x 0 ; y 0 ) Asse trasverso verticale mn < 0 O p 2m ; q ) 2n Asse trasverso orizzontale Asse trasverso verticale a 2 y2 b 2 = 1 F± a 2 + b 2 ; 0) V ±a; 0) a semiasse trasverso b semiasse non trasverso y = ± b a x a 2 y2 b 2 = 1 F0; ± a 2 + b 2 ) V 0; ±b) a semiasse non trasverso b semiasse trasverso y = ± b a x 4
6 1.7 L iperbole equilatera Definizione: iperbole con semiassi congruenti, ossia a = b. y 2 = a 2 Fuochi sull asse x F±a 2; 0) V ±a; 0) y = ±x y 2 = a 2 Fuochi sull asse y F0; ±a 2) V 0; ±a) y = ±x Riferita ai propri asintoti xy = k k > 0, occupa il I e III quadrante F 1 2k; 2k), F 2 2k; 2k) V 1 k; k), V 2 k; k) x = 0, y = 0 Riferita ai propri asintoti xy = k k < 0, occupa il II e IV quadrante F 1 2k; 2k), F 2 2k; 2k) V 1 k; k), V 2 k; k) x = 0, y = 0 Funzione omografica y = ax + b cx + d d c ; a ) c c 0, ad bc 0 Coordinate del centro x = d c, y = a c 5
Formule Utili Analisi Matematica per Informatici a.a
Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Coniche
GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1
GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)
PIANO CARTESIANO E RETTA
PIANO CATESIANO E ETTA Distanza tra due punti: d(a, B) = (x A x B ) + (y A y B ) Distanza tra due punti su una retta di coefficiente angolare m: d(a, B) = x A x B + m Punto medio di un segmento: M = (
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.
Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di
GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche
GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE. 16 20 20 0 5 5 dovendo essere
SIMULAZIONE - VERIFICA DI MATEMATICA L IPERBOLE Problema 1: a) y = 4 x 4 x + x = 0 y = x x 1 x 1 C. E.: 4 x 0 x y = 4 x y = 4 x x + y = 4 semiocirconferenza superiore di centro l'origine e raggio C. C.:
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
Equazione implicita della circonferenza. b= 2 c= 2 2 r 2
FORMULARIO DI GEOMETRIA ANALITICA Punto medio tra due punti. Distanza fra due punti. Baricentro di un triangolo. M = 1, y M = y 1 y d= 1 y y 1 0 = 1 3 3, y 0 = y 1 y y 3 3 Retta per due punti. Retta per
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
Geometria analitica piana
Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,
il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere
Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Esercitazione per la prova di recupero del debito formativo
LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:
CLASSIFICAZIONE DELLE CONICHE AFFINI
CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e
Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0
Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali
1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).
. Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
Cenni sulle coniche 1.
1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò ([email protected]) Scopo della geometria analitica
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane
Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?
Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc
La parabola. Tutti i diritti sono riservati.
La parabola Copyright c 8 Pasquale Terrecuso Tutti i diritti sono riservati. La parabola di equazione y = a + b + c Concavità............................................................... Se a varia................................................................
LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15
LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.
L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze
Geometria analitica piana
Capitolo 4 Geometria analitica piana 4.1 Il riferimento cartesiano Un sistema di riferimento cartesiano del piano è costituito da una coppia di rette orientate, dette asse x o asse delle ascisse e asse
Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.
Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull
1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza
Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel
Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?
Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?
Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
Lezione 5 Geometria Analitica 1
Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla
Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y
LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette
MATEMATICA LA PARABOLA GSCATULLO
MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto
Costruzione delle coniche con riga e compasso
Costruzione delle coniche con riga e compasso Quando in matematica è possibile dare diverse definizioni, tutte equivalenti, di uno stesso oggetto, allora significa che quell oggetto può essere caratterizzato
Fasci di Coniche. Salvino Giuffrida. 2. Determinare e studiare il fascio Φ delle coniche che passano per A (1, 0) con tangente
1 Fasci di Coniche Salvino Giuffrida 1. Determinare e studiare il fascio Φ delle coniche che passano per O = (0, 0), con tangente l asse y, e per i punti (1, 0), (1, ). Determinare vertice e asse della
LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco
LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.
Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI
Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO
ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.
Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la
Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva
Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo
Quadro riassuntivo di geometria analitica
Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive
GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);
VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
Appunti di Geometria Analitica. Il sistema di coordinate cartesiane ortogonali nel piano
Appunti di Geometria Analitica In questi brevi appunti, richiameremo alcune nozioni di geometria analitica studiate negli anni precedenti: in particolare, rivedremo il concetto di coordinate cartesiane
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
Introduzione a GeoGebra
Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z
GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI
LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 [email protected] http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.
Esercizi svolti sulla parabola
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice
IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA
INDICE DELLE UFC N. DENOMINAZIONE 1 PIANO CARTESIANO E RETTA 2 DISEQUAZIONI DI 1 E 2 GRADO E SISTEMI DI 1 GRADO 3 CONICHE: PARABOLA E DISEQUAZIONI DI 2 GRADO, ELLISSE E IPERBOLE 4 FUNZIONI ESPONENZIALI
X = x + 1. X = x + 1
CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y
CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA
CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento
Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.
Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
Proprietà focali delle coniche.
roprietà focali delle coniche. Mauro Saita e-mail: [email protected] Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale
7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza
7 Geometria analitica piana: retta, parabola, iperbole equilatera, circonferenza Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame
PROIEZIONI ORTOGONALI: SEZIONI CONICHE
www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
Formulario di Matematica
Nicola Morganti 6 dicembre 00 Indice FORMULE DI GEOMETRIA ANALITICA PIANA. LA RETTA................................... LA CIRCONFERENZA............................. L ELLISSE...................................
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
PROGRAMMA di MATEMATICA
Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali
Geometria Analitica Domande, Risposte & Esercizi
Geometria Analitica Domande, Risposte & Esercizi La parabola. Dare la definizione di parabola come luogo di punti La parabola è un luogo di punti, è cioè un insieme di punti del piano che verificano tutti
Compito A
Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente).
Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:
La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione
TRASFORMAZIONI GEOMETRICHE
TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano
RECUPERO LA CIRCONFERENZA, L ELLISSE, L IPERBOLE
RECUPERO LA CIRCONFERENZA, L ELLISSE, L IPERBOLE Il grafico di una circonferenza Rappresenta graficamente la circonferenza di equazione 0 dopo aver determinato le coordinate del centro e la misura del
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
SUPERFICI CONICHE. Rappresentazione di coni e cilindri
SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio
LE COORDINATE CARTESIANE
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
1) a c - > 0 si ha un ellisse; 2) a c - 4. = 0 si ha una parabola; 3) a c - 4. < 0 si ha un iperbole.
1 Generalità sulle coniche AVVERTENZA QUESTI APPUNTI CONTENGONO DELLE NOTE INTRODUTTIVE SULLE CONICHE. QUESTE NOTE HANNO UN CARATTERE INTUITIVO, NON RIGOROSO E NON ESAUSTIVO. ESSE SONO STATE SCRITTE SOLO
Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente.
La paraola Definizione: si definisce paraola il luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. Una rappresentazione grafica indicativa
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
Appunti: il piano cartesiano. Distanza tra due punti
ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti
La circonferenza nel piano cartesiano
La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione
La parabola. Giovanni Torrero Aprile La poarabola come luogo geometrico
La parabola Giovanni Torrero Aprile 2006 1 La poarabola come luogo geometrico Definizione 1 (La parabola come luogo geometrico) La parabola è il luogo geometrico formato da tutti e soli i punti del piano
D4. Circonferenza - Esercizi
D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
Breve formulario di matematica
Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO
GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali
Esercizi e problemi sulla parabola
Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,
