Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone"

Transcript

1 Affinità arte seconda agina 8 di 5 easy matematica di Adolfo Scimone Omotetia Definizione 1 - Si chiama omotetia di centro x ( 0, y0 ) ogni trasformazione biunivoca del iano in se in cui due unti corrisondenti sono allineati con il centro e alla retta Q corrisonde una retta arallela Q' e tale che sia uguale a k 0 il raorto tra i segmenti orientati e. La trasformazione associa uindi ad ogni unto ( x, y) il unto ( x', y') allineato con, tale che sia k il raorto fra i segmenti orientati k = 2 y' 2 y 2 y x 0 x X er il Teorema di Talete, si ha x x0 y y0 = = k x' x0 y' y0 er cui si ha x0 = k( x x0) y0 = k( y y0) e uindi = kx+ x0( 1 k) = ky+ y0( 1 k) (1) con det A = k 0 0 k = k 2

2 Affinità arte seconda agina 9 di 5 easy matematica di Adolfo Scimone Il unto x ( 0, y0 ) è il unto unito della trasformazione e si chiama centro dell'omotetia ; ogni retta assante er viene trasformata in se stessa : è erciò una retta unita. Dicesi affinità omologica ogni affinità avente una retta luogo di unti fissi (asse) tale che le congiungenti unti corrisondenti sono tra loro arallele (direzione) e rette corrisondenti si intersecano sull asse. L affinità omologica si dirà ortogonale se la sua direzione è erendicolare all asse. Teorema - Ogni omotetia è una similitudine di raorto k ; se k > 1 si ha una dilatazione ; se 0 < k < 1 si ha una contrazione se k = 1 si ha l'identità se k = -1 si ha la simmetria centrale di centro. Si dimostra che il raorto fra le aree di due figure corrisondenti F e F' è uguale al uadrato della costante di omotetia. Definizione 2 - L'omotetia (1) si dice concorde se k R + Essa trasforma un segmento Q nel segmento Q' arallelo ed euiverso al rimo. Q Q' Definizione 3 - L'omotetia (1) si dice discorde o inversa se k R Essa trasforma un segmento Q nel segmento Q' arallelo e di verso oosto a Q Q Q'

3 Affinità arte seconda agina 10 di 5 easy matematica di Adolfo Scimone Se il centro dell'omotetia è l'origine, la trasformazione ha euazioni = kx = ky (2) che trasformano un unto ( x, y) nel unto ( kx, ky) e ai unti (1, 0) e (0, 1) corrisondono i unti (k, 0) e (0, k ) er cui le (2) raresentano un cambiamento di unità di misura er i segmenti del iano se k è ositivo, ; se k è negativo raresentano anche un cambiamento del senso ositivo degli assi del sistema. Rotomotetie Definizione 4 - Si chiama rotomotetia di centro O, di angolo α e costante k 0, la trasformazione del iano in se di euazioni = k( xcosα ysen α) = k( xsenα + ycos α) (3) Se k = 1 si ha una rotazione di amiezza α, mentre se α = 0 non si ha un'omotetia. La (3) si uò ensare uindi come la trasformazione che muta un segmento Q nel segmento corrisondente Q' che risetto al rimo risulta ruotato di un angolo α e k volte dilatato. Teorema - Ogni similitudine di centro O è una rotomotetia, o in articolare una omotetia o una rotazione. Sia data una similitudine concorde = a11x 12 y = a12x+ a11y Essendo a11 + a12 = k ossiamo orre a = 11 k cosα a = ksenα 12 er cui si ha = kxcosα kysenα = kxsenα + kycosα ottenendo la (3). Si dimostra che una rotomotetia roria ha un solo unto unito, detto centro e nessuna retta unita.

4 Affinità arte seconda agina 11 di 5 easy matematica di Adolfo Scimone ISOMETRIE Definizione 1 - Si chiama isometria una trasformazione del iano in sé che conserva le distanze, ossia se Q' è il segmento corrisondente di Q nella trasformazione, si ha d(, Q) = d(, Q'), Q R 2 er cui un'isometria è una articolare similitudine di raorto k = 1, erciò un'isometria conserva anche gli angoli ed è individuata dalle euazioni = a11x a12 y+ = a12x+ a11y+ = xcosα ysenα + o = xsenα + ycosα + con det A = 1, detta anche isometria diretta o concorde, o congruenza. Le congruenze conservano gli orientamenti delle figure, sono, cioè trasformazioni concordi. Oure: = a11x+ a12 y+ = a12x a11y+ = xcosα + ysenα + o = xsenα ycosα + con det A = - 1, detta anche isometria inversa o indiretta o discorde. Osservazione Se una isometria concorde non è una traslazione, né una simmetria centrale sarà una rotazione il cui centro (unto unito) si trova sugli assi dei segmenti AA e BB Una isometria discorde è una simmetria ortogonale se i vettori AA ' e BB ' sono aralleli: AA ' // BB ' Una isometria discorde, se non è una simmetria ortogonale sarà il rodotto di una simmetria ortogonale er una traslazione o rotazione. Si osservi che affinchè una affinità sia un isometria, la matrice della trasformazione deve essere ortogonale, ossia t t A A= A A = I n L insieme delle isometrie di uno sazio E è un gruo risetto al rodotto. La geometria che esso definisce è la geometria metrica. Le isometrie, ovvero uelle articolari trasformazioni biunivoche del iano in sé che conservano le distanze e gli angoli, si classificano in 1) identità 2) traslazioni 3) rotazioni 4) rototraslazioni 5) simmetrie centrali e assiali

5 Affinità arte seconda agina 12 di 5 easy matematica di Adolfo Scimone 1) Identità L'dentità ha euazioni = x = y nell'identità tutti i unti sono uniti. 2) Traslazione Dicesi traslazione ogni isometria diretta nella uale se A' e B' sono i corrisondenti di due unti ualsiasi A e B, risettivamente si ha d( A, A') = d( B, B') le euazioni sono ertanto = x+ = y+ Nella traslazione, che non sia l'identità, non vi sono unti uniti. 3) Rotazione Si dice rotazione di un iano, di centro un unto O e di amiezza un angolo α, la corrisondenza che ad O associa O stesso e ad ogni unto R 2 associa R 2 tale che do (, ) = do (, ') e l'angolo orientato O sia congruente e concorde ad α. Le euazioni della rotazione attorno all'origine sono = xcosα ysenα rotazione diretta = xsenα + ycosα oure = xcosα + ysenα rotazione inversa = xsenα ycosα Nella rotazione il unto O è unto unito. Se α = π si ha la simmetria risetto ad O(0, 0) di euazioni = x = y Se α = 0 si ha x = x' e y = y' che raresentano la trasformazione identica I, in cui ogni unto del iano è unto unito. Una rotazione di centro ( x, y ) ed amiezza α ha euazioni: x = ( x x )cosα ( y y )senα ϕ: y = ( x x )senα+ ( y y ) cosα

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si

Dettagli

TRASFORMAZIONI GEOMETRICHE E FUNZIONI

TRASFORMAZIONI GEOMETRICHE E FUNZIONI TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma

Dettagli

LE TRASFORMAZIONI NON ISOMETRICHE

LE TRASFORMAZIONI NON ISOMETRICHE GEOMETRIA 2 LE TRASFORMAZIONI NON ISOMETRICHE L'OMOTETIA richiami della teoria n Le trasformazioni non isometriche sono quelle trasformazioni in seguito alle quali le figure non restano congruenti; n l'omotetia

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

17 LE TRASFORMAZIONI GEOMETRICHE

17 LE TRASFORMAZIONI GEOMETRICHE 17 L TRSFORMZIONI GOMTRIH TST I FIN PITOLO 1 Nella trasformazione di equazioni: x' x y 1 y' x y al punto corrisponde: ; 0 ' 3; 4. ' 3;. ' ; 3. ' 1; 4. ' 4; 1. Quale delle seguenti affermazioni è falsa?

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Isometrie. (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

Isometrie. (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Isometrie.. Generalità. Una trasformazione di IR n è un alicazione biiettiva f : IR n IR n. Le trasformazioni si ossono comorre tra loro: se f e g sono due alicazioni biiettive da IR n ad IR n, allora

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Trasformazioni geometriche nel piano

Trasformazioni geometriche nel piano Trasformazioni geometriche nel piano Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09

NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 NOTE sulle ISOMETRIE a cura di Sara Bacci e Gabriele Cecchin III F 04/11/09 Introduzione Prima di analizzare le isometrie è necessario fare una breve introduzione. Bisogna innanzitutto ricordare che due

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali

Dettagli

Trasformazioni geometriche

Trasformazioni geometriche Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece

Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece ha lasciato inalterato. Si chiama trasformazione geometrica un

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

~ E 2 (R) si determini l equazione cartesiana del

~ E 2 (R) si determini l equazione cartesiana del In Esercizio 1 ~ E (R) si determini l equazione cartesiana del luogo dei punti equidistanti dal punto F=(1,) e dalla retta y=x. a) Si classifichi la conica così ottenuta; b) Si determini l asse e il vertice;

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

LA GEOMETRIA NELLO SPAZIO

LA GEOMETRIA NELLO SPAZIO GEOMETRIA 3 LE TRE DIMENSIONI richiami della teoria n La geometria dello sazio o geometria dei solidi eá il settore della geometria che si occua di cori a tre dimensioni; n una retta eá erendicolare ad

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Un trasformazione geometrica t è una corrispondenza biunivoca che fa corrispondere ad un punto P del piano un altro punto P, ad una figura F una figura F. Il punto P si dice il trasformato di P secondo

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE Affinità rte rim Pgin di 7 esy mtemtic di Adolfo Scimone TRASFORMAZIONI GEOMETRICHE Generlità sulle ffinità Chimsi ffinità o trsformzione linere un corrisondenz biunivoc tr due ini o tr unti dello stesso

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003

Trasformazioni - II. Classificazione delle trasformazioni in R 3. Rotazioni in R 3. Lezione 6 Maggio Lezione 6 maggio 2003 Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design Lezione 6 maggio Trasformazioni - II F. Caliò Classificazione delle trasformazioni in R (TITOLO) Rotazioni in R (TITOLO) Rotazione

Dettagli

PP ', stessa direzione e stesso verso.

PP ', stessa direzione e stesso verso. 1 ISOMETRIE Trasformazione geometrica: corrispondenza biunivoca che ad ogni punto P del piano associa un altro punto P' dello stesso piano. Se il punto trafformato P' (immagine del punto P) coincide con

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione Lavoro ed energia Sia dato un coro su cui agisce una forza. Suoniamo che inizialmente il coro sia fermo, dalla relazione F = ma doo un certo intervallo di temo in cui la forza agisce sull oggetto, il coro

Dettagli

Esercizio 1. Sono dati i vettori. 1 A v2 3 ;1A v3 k 0. (e) Calcolare la proiezione ortogonale su W? del vettore v ;1 SOLUZIONE

Esercizio 1. Sono dati i vettori. 1 A v2 3 ;1A v3 k 0. (e) Calcolare la proiezione ortogonale su W? del vettore v ;1 SOLUZIONE CORSI DI LURE IN INGEGNERI ELETTROTECNIC E INGEGNERI MECCNIC {.. 9- PROV SCRITT DI GEOMETRI DEL -- Corsi dei Pro. M. BORDONI, M. MRIETTI Esercizio. Sono dati i vettori v = @ ; v = @ ; v = @ k con k arametro

Dettagli

3 Questioni metriche. 4 Che cosa significa essere uguali? Fondamenti e didattica della matematica B. La geometria delle isometrie

3 Questioni metriche. 4 Che cosa significa essere uguali? Fondamenti e didattica della matematica B. La geometria delle isometrie 1 2 Fondamenti e didattica della matematica B 24 gennaio 2007 La geometria delle isometrie Dipartimento di Matematica e Applicazioni Università di Milano Bicocca Fondamenti e didattica della matematica

Dettagli

Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte

Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte Didattica della Matematica 1 - classe A047 Trasformazioni geometriche - seconda parte anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa 3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto

Dettagli

Isometrie. Prima parte. Mauro Saita Versione provvisoria. Ottobre Definizioni e assiomi.

Isometrie. Prima parte. Mauro Saita Versione provvisoria. Ottobre Definizioni e assiomi. Isometrie. rima parte. Mauro Saita maurosaita@tiscalinet.it Versione provvisoria. Ottobre 2011. Indice 1 Definizioni e assiomi 1 2 Isometrie 4 3 Simmetrie assiali. Rette ortogonali 5 3.1 Asse di un segmento.....................................

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Il disegno spiega su una superficie piana un oggetto tridimensionale

Il disegno spiega su una superficie piana un oggetto tridimensionale Università degli Studi Laboratorio Di Disegno -- dl..e.g.a. Prof. A. Petino Annotazioni er gli studenti Il disegno siega su una suerficie iana un oggetto tridimensionale Differenti modi di raresentare

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi

Dettagli

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le

3. Isometrie di R 2. In questo paragrafo studiamo le isometrie del piano R 2. Ricordiamo che le isometrie sono delle trasformazioni che conservano le 3. Isometrie di R. In questo paragrafo studiamo le isometrie del piano R. Ricordiamo che le isometrie sono delle trasformazioni che conservano le distanze fra coppie di punti, ossia delle applicazioni

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GEOMETRIA ANALITICA Il piano cartesiano rof. Calogero Contrino iano cartesiano Su un piano, si considerino due rette incidenti, sulle quali siano fissati due sistemi di ascisse. Si trasli una delle

Dettagli

[40] Problema 3. Stabilisci se esistono valori di k per quali l equazione

[40] Problema 3. Stabilisci se esistono valori di k per quali l equazione Verifica di Matematica 9 Maggio 018 Classe 3GHI sci Non utilizzare matita né bianchetto. Il unteggio viene attribuito in base alla correttezza e alla comletezza nella risoluzione dei quesiti, al metodo

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

Le Isometrie e il piano cartesiano

Le Isometrie e il piano cartesiano Le Isometrie e il piano cartesiano Generalità piano Gli enti geometrici del piano come punti, rette, angoli, poligoni,... possono essere spostati sul TRSLTI v RILTTI RISPTTO UN RTT r Francesca Incensi

Dettagli

LA GEOMETRIA DEI SOLIDI

LA GEOMETRIA DEI SOLIDI GEOMETRIA PREREQUISITI l conoscere gli enti fondamentali della geometria iana e le loro rorietaá l ossedere il concetto di arallelismo e erendicolaritaá l oerare con le misure angolari CONOSCENZE 1. le

Dettagli

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano Lezione3 Informatica Grafica Lezione del 17 Marzo 2010 Dipartimento di Ingegneria Meccanica Politecnico di Milano michele.antolini@mail.polimi.it 3.1 La geometria dell antichità si divide in due per quanto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Esercizi sull equivalenza Barra vero o falso. Se due rettangoli sono equivalenti e hanno una coia di lati congruenti, allora sono congruenti. Se due triangoli hanno basi congruenti

Dettagli

Cinematica grafica C.R P 2

Cinematica grafica C.R P 2 inematica grafica ome già evidenziato in recedenza, in alternativa alla formulazione analitica e limitatamente ai roblemi iani, è ossibile dare del roblema cinematico una formulazione grafica, che in qualche

Dettagli

Affinità. Isometrie. Simmetria assiale

Affinità. Isometrie. Simmetria assiale Si definisce sietria assiale rispetto ad una retta r l affinità Sr che lascia uniti i punti P di r e che trasfora ogni punto P appartenente ad r nel punto P tale che r sia l asse del segento PP'. Oltre

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano

10 ottobre Marina Bertolini Dipartimento di Matematica F.Enriques Università degli Studi di Milano Fondamenti e didattica della matematica - Geometria - Corso speciale - Facoltà di Scienze della Formazione - Università Milano Bicocca - a.a. 2007-2008 10 ottobre 2007 Marina Bertolini (marina.bertolini@mat.unimi.it)

Dettagli

Trasformazioni del piano isometrie

Trasformazioni del piano isometrie Trasformazioni del piano Sia E il piano euclideo. Trasformazione del piano in sé: è una funzione T da E ad E con buone proprietà di continuità, (la parola continuità qui ha un significato tecnico che non

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA Come ottenere la figura immagine di una figura data Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione Clicca sul

Dettagli

Isometrie. Tipi di isometrie

Isometrie. Tipi di isometrie Isoetrie Una Isoetria è una corrispondenza biunivoca del piano in sé che conserva le distanze. : 1) Una retta viene trasforata in una retta, un segento in un segento congruente, un cerchio in un cerchio

Dettagli

RICORDIAMO CHE LA PROSPETTIVITÀ È: ESSA PUÒ ESSERE CARATTERIZZATA DA:

RICORDIAMO CHE LA PROSPETTIVITÀ È: ESSA PUÒ ESSERE CARATTERIZZATA DA: RICORDIAMO CHE LA PROSPETTIVITÀ È: La corrispondenza biunivoca tra due enti (punti o rette) posti su due piani in rapporto diretto tra loro. I punti sono allineati al centro della prospettività. Le rette

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Classificazione delle proiettività piane reali. Omologia piana.

Classificazione delle proiettività piane reali. Omologia piana. Sulle lezioni n. 19-20 (25-27 novembre 2008). Gli argomenti di queste lezioni sono trattati in [Testo] in 4.5 e nell inizio di 4.6 (prop. 4.6.1), con numerosi riferimenti al capitolo 3, e in 4.7. Per ovviare

Dettagli

Breve introduzione informale alle isometrie del piano

Breve introduzione informale alle isometrie del piano Breve introduzione informale alle isometrie del piano Bibliografia: John Stillwell, The Four Pillars of Geometry, Springer 2005. (Ebook del Politecnico di Milano, scaricabile dal sito del Polimi). Federico

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

# STUDIO DELLA STABILITA COL CRITERIO DI NYQUIST#

# STUDIO DELLA STABILITA COL CRITERIO DI NYQUIST# # STUIO ELLA STABILITA COL CRITERIO I NYQUIST# Sia il olinomio di variabile comlessa s : Q(s)=a n s n +a n-1 s n-1 + +a 1 s+a 0 (1) Tale olinomio si uo considerare, con riferimento al iano comlesso (iano

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito.

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. Omologia e CABRI Definizioni Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. I punti all infinito del piano proiettivo si dicono punti impropri, la retta

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13 METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI

TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI TRASFORMAZIONI GEOMETRICHE: RICHIAMI, ESERCIZI ED APPROFONDIMENTI Appunti presi dalle lezioni del Prof. Liceo Scientifico di Castiglion Fiorentino (Classe B) February 1, 008 1 TRASFORMAZIONI Consideriamo

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Esercizi di consolidamento

Esercizi di consolidamento Esercizi di consolidamento Il sistema di riferimento nel iano Trova le misure dei segmenti che hanno come estremi le seguenti coie di unti e le coordinate dei loro unti medi. Að, Þ B, ; C 0, D, ; Eð, Þ

Dettagli

Trasformazioni non isometriche 1

Trasformazioni non isometriche 1 Trasformazioni non isometriche 1 Continuiamo il discorso sulle trasformazioni geometriche, considerando quelle non isometriche. 1. Omotetie Una delle più semplici trasformazioni non isometriche è l omotetia,

Dettagli

I SOLIDI DI ROTAZIONE

I SOLIDI DI ROTAZIONE GEOMETRIA 3 IL CILINDRO richiami della teoria n Il cilindro eá il solido generato dalla rotazione comleta di un rettangolo attorno ad uno dei suoi lati; n il cilindro equilatero ha diametro di base ed

Dettagli

Cenno alle affinità: la via analitica

Cenno alle affinità: la via analitica Cenno alle affinità: la via analitica ( ) 0 febbraio 0 Scopo di questo articolo è di presentare le caratteristiche essenziali delle affinità nel piano facendo riferimento esclusivamente alla via analitica

Dettagli

Numeri complessi. Esercizi.

Numeri complessi. Esercizi. Numeri complessi. Esercizi. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria. Marzo 014. Indice 1 Numeri complessi 1.1 Test di autovalutazione............................... 1. Test di

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

I criteri di similitudine introdotti a partire dalle trasformazioni

I criteri di similitudine introdotti a partire dalle trasformazioni I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

0 < x 3. A1 1 [7 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: x 2 mod 5 2x 1 mod 3. x 21 mod 7

0 < x 3. A1 1 [7 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: x 2 mod 5 2x 1 mod 3. x 21 mod 7 Dipartimento di Matematica e Informatica Anno Accademico 017-018 Corso di Laurea in Informatica L-31 Prova scritta di Matematica Discreta 1 CFU 5 Settembre 018 A1 1 [7 punti] Determinare le eventuali soluzioni

Dettagli

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità MICROCONOMIA CLA A.A. 003-004 ocente: Giacomo Calzolari RCITAZION N. quilibrio di mercato ed elasticità RCIZIO : quilibrio di mercato e sostamenti delle curve La quantità domandata di un certo bene è descritta

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto CAPITOLO 7 LE AFFINITA 7. Richiami di teoria Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto che questi due tipi di trasformazioni hanno alcune proprietà

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che abbiamo fatto questa parte un po in fretta, ma si può sempre provare. Esercizio. Si scrivano le equazioni

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Nel triangolo ABC la retta DE sia parallela alla base BC. La proposizione VI.2 afferma che AD: BD = AE: EC

Nel triangolo ABC la retta DE sia parallela alla base BC. La proposizione VI.2 afferma che AD: BD = AE: EC OTTAVA LEZIONE- LE ISOMETRIE Talete e primo criterio di similitudine Prima di iniziare il nuovo argomento delle isometrie terminiamo l'esame dei libri di Euclide con l'enunciato (senza dimostrazione) del

Dettagli