Gli insiemi numerici
|
|
|
- Livio Casadei
- 9 anni fa
- Visualizzazioni
Transcript
1 Gli insiemi numerici
2 L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato, cioè è possibile introdurre una relazione d ordine (<)
3 L insieme N In questo insieme sono interne due operazioni: Addizione Moltiplicazione (ed elevamento a potenza) Equivalentemente si dice che l insieme N è chiuso rispetto all addizione e alla moltiplicazione.
4 Ampliamo l insieme N in modo che si possano svolgere anche tutte le sottrazioni. L insieme N si può ampliare aggiungendo i numeri negativi. Nasce così l insieme Z dei numeri interi.
5 L insieme Z È l insieme dei numeri interi Z = {0; +1; -1; +2; -2; } È un insieme infinito Contiene: Numeri negativi Zero Numeri positivi
6 L insieme Z Identificando i numeri positivi con quelli naturali ((considerando Z + =N), possiamo dire che N è un sottoinsieme di Z. N=Z + Z
7 L insieme Z Z è chiuso rispetto alle operazioni: Addizione e sottrazione Moltiplicazione (ed elevamento a potenza)
8 Ampliamo l insieme Z in modo che si possano svolgere anche tutte (quasi) le divisioni. L insieme Z si può ampliare aggiungendo le frazioni. Nasce così l insieme Q dei numeri razionali.
9 Ancora non possiamo svolgere tutte le divisioni, ma quasi tutte Quanto fa 0 : 3? Perché? Quanto fa 3 : 0? Perché? Quanto fa 0 : 0? Perché?
10 0 : 3 = 0 perché 0 x 3 = 3 3 : 0 = nessun un numero! Infatti nessu numero, moltiplicato per 0 dà 3 0 : 0 = qualsiasi numero! Infatti qualsiasi numero, moltilpicato per 0 dà 0 Quindi: Escludiamo le divisioni con divisore 0, che sono: Impossibili se il dividendo è diverso da zero Indeterminate se il dividendo è uguale a zero
11 L insieme Q È l insieme dei numeri razionali (ratio = rapporto) Q = {a/b : a, b sono numeri interi, a è diverso da 0} Quindi Q è un insieme infinito, che ha Z come sottoinsieme
12 L insieme Q Q N=Z + Z
13 L insieme Q Q è chiuso rispetto alle operazioni: Addizione e sottrazione Moltiplicazione (ed elevamento a potenza) e divisione*
14 Ampliamo l insieme Q in modo che si possa svolgere anche l operazione inversa dell elevamento a potenza. Tutte??? Ci porterà a generare l insieme R dei numeri reali.
15 L insieme R È un insieme infinito È chiuso rispetto a: Addizione e sottrazione Moltiplicazione e divisione* Estrazione di radice di indice dispari Estrazione di radice di indice pari di numeri positivi
16 L insieme R Contiene: numeri razionali (in Q) numeri irrazionali (in R meno Q) (esempi: radice di due, radice di tre, pi-greco, )
17 L insieme R R Q N=Z + Z
18 Esempi π - 2 R -3/4 +2/3 +0,333 Z Q N=Z
19 Insieme numerico N Z Q 1) Il problema algebrico Operazioni interne Addizione Moltiplicazione-Elevamento a potenza Addizione, Moltiplicazione - Elevamento a potenza Sottrazione Addizione, Moltiplicazione - Elevamento a potenza Sottrazione Divisione? Voglio che diventi interna l operazione inversa all elevamento a potenza
20 Qual è l operazione inversa dell elevamento al quadrato? La RADICE QUADRATA di un numero a positivo o nullo è quel numero, positivo o nullo, che elevato al quadrato dà come risultato a. a = b se a=b 2 con a 0 e b 0
21 Q non è chiuso rispetto all estrazione di radice quadrata, infatti ci sono alcuni numeri che non hanno la radice quadrata in Q. Vediamo il caso del numero 2
22 Cerchiamo in N
23 Cerchiamo in Q Supponiamo che ci sia una frazione ridotta ai minimi termini che abbia come quadrato 2. a b 2 = 2 Ma a non è multiplo di b, quindi nemmeno a a è frazione apparente. b b Come fa una frazione non apparente ad essere uguale a 2? Abbiamo ottenuto una contraddizione!!!
24 Quindi non esiste alcun numero razionale che abbia come quadrato 2. Proviamo a cercare quel numero che elevato al quadrato dà 2. 2 ( 1) < 2 < (2) Se cerco quello con una cifra decimale? 2 2 ( 1,...) < 2 < (1,...) 2
25 2) Problema storico, alla scuola di Pitagora È possibile trovare una unità di misura che sia contenuta un numero intero di volte sia nel lato sia nella diagonale di qualsiasi quadrato?
26 Tutto è numero Pitagora Samo 470 a.c. Metaponto 495 a.c.
27 Se il lato del quadrato si può ricoprire con un numero intero di palline senza lasciare spazi vuoti......si potrà fare lo stesso per la diagonale?
28 Se il lato del quadrato si può ricoprire con un numero intero di palline......si potrà fare lo stesso per la diagonale?
29 Questa non è una soluzione accettabile: non si possono lasciare spazi vuoti!
30 Non funziona!
31 E se usassimo delle palline più piccole? Non funziona!
32 E se usassimo delle palline più piccole?
33 E se usassimo delle palline più piccole? Non funziona!
34 E se usassimo delle palline ancora più piccole?
35 E se usassimo delle palline ancora più piccole? Non funziona! Si riuscirà in qualche modo?
36 Lato e diagonale di un quadrato qualsiasi sono incommensurabili : è impossibile trovare un unità di misura che sia contenuta un numero intero di volte tanto nel lato quanto nella diagonale
37 Lato e diagonale di un quadrato sono incommensurabili : è impossibile trovare un unità di misura che sia contenuta un numero intero di volte tanto nel lato quanto nella diagonale
38 Lato e diagonale di un quadrato sono incommensurabili : è impossibile trovare un unità di misura che sia contenuta un numero intero di volte tanto nel lato quanto nella diagonale
39 Rivediamo la dimostrazione proposta nel dialogo tra Ippaso e i pitagorici.
40 Supponiamo che: n m il rapporto tra diagonale e lato del quadrato sia m :n
41 Supponiamo che: D C a b A B il rapporto tra diagonale e lato del quadrato sia m :n il rapporto diagonale:lato ridotto ai minimi termini sia a:b
42 D C Supponiamo che: b a A B il rapporto diagonale:lato ridotto ai minimi termini sia a:b Il triangolo ABD è un triangolo rettangolo isoscele Teorema di Pitagora a 2 =2b 2 a 2 è pari a è pari a=2c a 2 =4c 2 2b 2 =4c 2 b 2 =2c 2 a/b è ridotta ai minimi termini b 2 è pari b è dispari b è pari
43 Supponiamo che: il rapporto diagonale:lato ridotto ai minimi termini sia a:b Il triangolo ABD è un triangolo rettangolo isoscele Teorema di Pitagora a 2 =2b 2 D A b a C B a 2 è pari a è pari a/b è ridotta ai minimi termini a=2c a 2 =4c 2 2b 2 =4c 2 b 2 =2c 2 b 2 è pari b è dispari b è pari
44 Supponiamo che: il rapporto diagonale:lato ridotto ai minimi termini sia a:b Il triangolo ABD è un triangolo rettangolo isoscele Teorema di Pitagora a 2 =2b 2 D A b a C B a 2 è pari a è pari a/b è ridotta ai minimi termini a=2c a 2 =4c 2 2b 2 =4c 2 b 2 =2c 2 b 2 è pari b è dispari contraddizione b è pari
45 Se supponiamo che: lato e diagonale siano commensurabili cioè che esista una unità di misura contenuta a volte nella diagonale e b volte nel lato... b a
46 Se supponiamo che: lato e diagonale siano commensurabili. questa affermazione ci porterà a delle conclusioni contraddittorie. b è dispari contraddizione b è pari
47 Se supponiamo che: lato e diagonale siano commensurabili. questa affermazione ci porterà a delle conclusioni contraddittorie. Perciò dobbiamo concludere che: lato e diagonale sono incommensurabili
Corso base di Matematica. - I numeri -
Corso base di Matematica - I numeri - Fin dall antichità è stata avvertita dall uomo l esigenza di contare le cose. Ad es. gli animali al pascolo, i cacciatori e le prede, ecc. Da questa istintività nasce
GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni
GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione
LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali
LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA
2.1 Numeri naturali, interi relativi, razionali
2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non
Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli
Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO
Numeri e operazioni su di essi
Numeri e operazioni su di essi Paolo Montanari Appunti di Matematica Numeri 1 Classificazione dei numeri Il primo obiettivo che ci si pone è quello di classificare i numeri, cioè conoscere i differenti
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Il calcolo letterale
Il calcolo letterale Si dice ESPRESSIONE ALGEBRICA LETTERALE (o semplicemente espressione algebrica) un espressione in cui compaiono lettere che rappresentano numeri. Esempio: 5ab 4a b 3 + b 5a 1 ab 3
ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA
ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ANNO SCOLASTICO 2016/2017 MATEMATICA CLASSE I SEZ. Az PROGRAMMA SVOLTO DALL INSEGNANTE Prof. Alessandro Di Marco Testo adottato: MATEMATICA.VERDE 1 LD 1.
L insieme dei numeri Relativi
L insieme dei numeri Relativi ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Ampliamento di N e Q: i relativi Nell insieme N non possiamo fare operazioni quali -1 perché il risultato non
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S. VIA SILVESTRI 301 ANNO SCOLASTICO 2016-2017 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19
IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Opzione Sc. Applicate a.s. 2018/19 Classe 1L MODULO 1: I NUMERI NATURALI. Cap 1. 1. Le operazioni definite nell insieme dei numeri naturali
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )
Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere
Rapporti e proporzioni
Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a e b si dicono TERMINI del rapporto e il primo
LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria. PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014
LICEO SCIENTIFICO STATALE L. da VINCI Reggio Calabria PROGRAMMA DI MATEMATICA svolto nella classe 1^ E Anno Scolastico 2013/2014 I NUMERI NATURALI La rappresentazione dei numeri naturali. Le quattro operazioni.
2/2/2019 Documento senza titolo - Documenti Google
2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit 1/4 2/2/2019 Documento senza titolo - Documenti Google https://docs.google.com/document/d/1iypd_1q_iyggxdhq7cn4wnodk_78ggd97hc0h3wqsjg/edit
ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S
Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b
Vero Falso 1. L addizione è sempre possibile in N. 2. La sottrazione è sempre possibile in N. 3. Se x + y = t, x e y si chiamano fattori. 4. Se x y = t, t si chiama differenza. 5. Se x y = t, t si chiama
Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto
Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
Programma di MATEMATICA
Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la
Ampliamento di N: le frazioni
L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato
L insieme dei numeri naturali N Prof. Walter Pugliese
L insieme dei numeri naturali N Prof. Walter Pugliese Che cosa sono i numeri naturali I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10, Sono chiamati così perché sono stati i primi numeri che abbiamo conosciuto,
ESERCIZI DI MATEMATICA
DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI
Programma di MATEMATICA
Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la
(Prof.ssa Dessì Annalisa)
LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L
Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione
SCUOLA SECONDARIA DI PRIMO GRADO MATEMATICA Competenza : 1. Comunicazione efficace Indicatore: 1.1 Comprensione Descrittori Descrittori Descrittori 1.1.1 E in grado di comprendere testi e altre fonti di
LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice
LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la
Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza
Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare
U.D. N 04 I polinomi
Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune
Matematica per le scienze sociali Elementi di base. Francesco Lagona
Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Curricolo verticale MATEMATICA
Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare
Rapporti e proporzioni
Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a e b si dicono TERMINI del rapporto e il primo
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI Programma di Matematica classe 1 a D anno scolastico 2010/2011 Nozioni sugli insiemi Nozione di insieme, elemento, appartenenza. insiemi finiti ed
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti
Precorso di Matematica
Precorso di Matematica Maria Margherita Obertino [email protected] Davide Ricauda [email protected] Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle
LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA
LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11
PROGRAMMA SVOLTO NELLA CLASSE IV D. Matematica
Anno scolastico 2013/2014 LICEO CLASSICO "V. POLLIONE" Via Div. Julia Formia Tel. 0771-771.261 PROGRAMMA SVOLTO NELLA CLASSE IV D Matematica Prof. Francesco Mazzucco 1 1) Elementi di algebra Le operazioni
Rapporti e proporzioni
Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a b = a b a e b si dicono TERMINI del rapporto
RADICE QUADRATA:LA CRISI DEI PITAGORICI
MATEMATICA RADICE QUADRATA:LA CRISI DEI PITAGORICI Prof.ssa M. Rosa Casparriello Scuola media di Fontanarosa PREREQUISITI Conoscere le potenze e saper operare con esse; Saper applicare la tecnica di scomposizione
SCIENZE MATEMATICHE FISICHE e NATURALI
UNIVERSITÀ di ROMA TOR VERGATA FACOLTÀ di SCIENZE MATEMATICHE FISICHE e NATURALI Argomenti di Matematica delle prove di valutazione Anno 03-04 A. Manipolazioni algebriche, semplificazioni; calcolo elementare
I RADICALI QUADRATICI
I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi
Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
La misura delle grandezze
GEOMETRIA EUCLIDEA La misura delle grandezze Una classe di grandezze geometriche è un insieme di enti geometrici in cui è possibile: - il confronto tra due qualsiasi elementi dell insieme; - l addizione,
U.D. N 04 I polinomi
8 U.D. N 04 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) prodotto di due i più monomi 04) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune divisore di due o più monomi
1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.
I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA
Anno 1. Frazioni algebriche: definizione e operazioni fondamentali
Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il
Le espressioni letterali
Calcolo letterale Le espressioni letterali Sono espressioni contenenti numeri reali e lettere. A=(B+b)h/2 A=2(b+h) Le lettere rappresentano numeri reali. La stessa lettera assume sempre lo stesso valore.
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
I numeri razionali 1. numeri razionali assoluti e relativi 2.definizioni,confronto,rappresentazione ed operazioni
PROGRAMMA DI MATEMATICA CLASSE 1^P A.S. 2017/2018 Prof. ALGHISI MODULO N 1 1. CALCOLO ARITMETICO 2. CALCOLO ALGEBRICO 1. CALCOLO ARITMETICO ANALISI DELLE FAMIGLIE NUMERICHE I numeri naturali 1. ordinamento
