Corso base di Matematica. - I numeri -
|
|
|
- Dorotea Rota
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso base di Matematica - I numeri -
2 Fin dall antichità è stata avvertita dall uomo l esigenza di contare le cose. Ad es. gli animali al pascolo, i cacciatori e le prede, ecc. Da questa istintività nasce appunto il primo insieme numerico: l insieme dei numeri naturali N. I numeri naturali sono appunto quegli interi istintivamente concepiti. N = { 0, 1, 2, 3,, 9, 10, 11,, 1356, 1357, } N. B. L insieme N dei naturali I numeri naturali sono infiniti, mentre il sottoinsieme costituito dai primi 10 suoi elementi { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } rappresenta l insieme (finito) delle CIFRE DECIMALI, cioè i simboli attraverso i quali rappresentiamo (componiamo) qualunque numero. 2
3 Operazioni nell insieme N dei naturali Delle 4 operazioni aritmetiche ( +,,, ) risultano ovunque definite in N (cioè il risultato è ancora un numero naturale) la somma (+) ed il prodotto ( ). n, m N n + m N, n m N 3
4 Operazioni nell insieme N dei naturali La differenza ( ) e la divisione ( ) tra due naturali invece possono avere risultato non naturale. Ad esempio, presi 6 N e 8 N, si ha 6 8 N e 6 8 N n, m N n m N se e solo se n m n, m N ( m 0 ) n m N se e solo se! q N : n = m q 4
5 L insieme Z degli interi Per rendere ovunque definita l operazione aritmetica di sottrazione si amplia l insieme N dei naturali costruendo un nuovo insieme numerico Z (dall iniziale della parola Zahl che in tedesco significa numero) i cui elementi sono definiti come sottrazione di coppie di elementi di N. z Z, n, m N : z = ( n m ) z = ( m n ) Es. 5 = ( 0 5 ) = ( 1 6 ) = ( 2 7 ) = Z = {, 3, 2, 1, 0, + 1, + 2, } = { 0, ± 1, ± 2, ± 3, } 5
6 Proprietà dell insieme Z degli interi relativi 1. Non esiste il più piccolo dei numeri interi relativi e neanche il più grande dei numeri interi relativi. Pertanto non esistono né il minimo né il massimo numero intero relativo. z Z, z + 1 Z z 1 Z 2. L insieme Z degli interi è totalmente ordinato. a, b Z, a b b a 6
7 Operazioni nell insieme Z degli interi Delle 4 operazioni aritmetiche ( +,,, ) risultano ovunque definite in Z (cioè il risultato è ancora un numero intero) la somma (+), la sottrazione ( ) ed il prodotto ( ). n, m Z n ± m Z, n m Z 7
8 Operazioni nell insieme Z degli interi La divisione ( ) tra due interi invece può avere risultato non intero. Ad esempio, presi 6 Z e 8 Z, si ha 6 8 Z n, m Z ( m 0 ) n m Z se e solo se! q Z : n = m q 8
9 Riduzione a forma frazionaria dei razionali Se un numero non è intero, si dice decimale. Es. 3,4567 Un numero decimale può essere semplice o periodico. Si dice semplice se il numero di cifre dopo la virgola è finito. Es. 3,4567 Un numero periodico può essere semplice o misto. Si dice periodico semplice se tutte le cifre dopo la virgola si ripetono con la medesima sequenza. Es. 3,(4567) = 3, Si dice periodico misto se dopo la virgola ci sono cifre che non si ripetono e cifre che si ripetono con la medesima sequenza. Es. 3,4(567)= 3,
10 Riduzione a forma frazionaria dei razionali L algoritmo per riportare ogni numero decimale razionale nella forma frazionaria prevede al numeratore il numero costituito da tutte le cifre (significative) che rappresentano il numero (in presenza di cifre periodiche diminuito delle cifre che non si ripetono), ed al denominatore il numero costituito dalla cifra 1 e tanti zeri quante le cifre decimali (numero decimale semplice) oppure costituito da tanti 9 quante sono le cifre periodiche e tanti 0 quante sono le cifre dopo la virgola che non si ripetono (numero periodico misto). Così, ad es. 3,4567 = Cifre significative che compongono il numero Cifre decimali 10
11 Riduzione a forma frazionaria dei razionali L algoritmo per riportare ogni numero decimale razionale nella forma frazionaria prevede al numeratore il numero costituito da tutte le cifre (significative) che rappresentano il numero (in presenza di cifre periodiche diminuito delle cifre che non si ripetono), ed al denominatore il numero costituito dalla cifra 1 e tanti zeri quante le cifre decimali (numero decimale semplice) oppure costituito da tanti 9 quante sono le cifre periodiche e tanti 0 quante sono le cifre dopo la virgola che non si ripetono (numero periodico misto). Cifre significative che Così, ad es compongono il numero 3,4567 = diminuite delle cifre non periodiche 9999 Cifre decimali periodiche 11
12 Riduzione a forma frazionaria dei razionali L algoritmo per riportare ogni numero decimale razionale nella forma frazionaria prevede al numeratore il numero costituito da tutte le cifre (significative) che rappresentano il numero (in presenza di cifre periodiche diminuito delle cifre che non si ripetono), ed al denominatore il numero costituito dalla cifra 1 e tanti zeri quante le cifre decimali (numero decimale semplice) oppure costituito da tanti 9 quante sono le cifre periodiche e tanti 0 quante sono le cifre dopo la virgola che non si ripetono (numero periodico misto). Cifre significative che Così, ad es compongono il numero 3,4567 = diminuite delle cifre non periodiche Cifre decimali periodiche 9990 Cifre decimali non periodiche 12
13 Schema delle operazioni aritmetiche ovunque definite + N Z Q N. B. La divisione per zero è impossibile in tutti gli insiemi numerici!!! 13
14 L insieme I degli irrazionali Secondo il filosofo e matematico greco Pitagora, la realtà è di tipo razionale e così ogni sua misura (numero). Ippaso di Metaponto (discepolo del matematico di Samo), propose un interessante quesito che mise in dubbio la logica razionale dei pitagorici e che aprì la strada alle grandezze incommensurabili. 14
15 L insieme I degli irrazionali Tesi di Ippaso Dimostrazione per assurdo x 1 Neghiamo la tesi, cioè ipotizziamo che la lunghezza della diagonale del quadrato sia un numero razionale, cioè x Q 1 Se la diagonale è un numero razionale allora si può scrivere come rapporto tra due interi x Q a Z, b N {0} : Si può ipotizzare che a e b siano primi tra loro, cioè MCD ( a, b ) = 1 Se, ad es. a = 6 e b = 4 allora MCD ( a, b ) 1 e la frazione a / b può essere ridotta ai minimi termini, cioè con numeratore e denominatore non ulteriormente semplificabili ; nell es. MCD ( 6, 4 ) = 2 6 / 3 = 4/ 2 15 x = a b
16 L insieme I degli irrazionali Tesi di Ippaso x 1 2 a 2 a Ma x = x = = b 1 Se a e b sono primi tra loro, cioè MCD ( a, b ) = 1, allora anche i loro quadrati sono primi tra loro, e cioè MCD ( a 2, b 2 ) = 1 Ad es. a = 5 e b = 3 allora MCD ( a, b ) = 1 e MCD ( 25, 9 ) = 1 Applicando il Teorema di Pitagora al triangolo rettangolo in figura (metà quadrato), si ha : x 2 = Cioè x 2 = 2 b a b Pertanto, sostituendo la x si ha: a b 2 2 = a = 2 b E ciò è assurdo giacché MCD ( a 2, b 2 ) = 1. Se ne conclude che x Q.
17 Esistono infiniti numeri irrazionali. Un numero irrazionale deve essere : 1. Decimale (non può essere intero altrimenti sarebbe razionale) 2. Illimitato (non può avere un numero finito di cifre decimali altrimenti sarebbe razionale) 3. Aperiodico (le cifre dopo la virgola non possono mai ripetersi con la medesima sequenza altrimenti sarebbe razionale) 17
18 Schema degli insiemi numerici Insieme dei numeri NATURALI N = { 0, 1, 2, } Insieme degli INTERI RELATIVI Z = { 0, ± 1, ± 2, } Insieme dei RAZIONALI Q = a b, a Z b N {} 0 Insieme degli IRRAZIONALI Insieme dei REALI decimali = illimitati aperiodici 18 I R = Q I N Z Q R
19 In conclusione, quando si pensa ad un numero, ad es. 4 si ha: 4+ = = 1 N Z Q 19
20 Insiemi numerici numeri razionali numeri naturali numeri reali Q a =, a Z b N {} 0 b N ={0, 1, 2, } interi relativi R numeri irrazionali Z ={0, ±1, ±2, } I = decimali illimitati aperiodici 20
Gli insiemi numerici
Gli insiemi numerici L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato,
Richiami di aritmetica(2)
Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che
1 La frazione come numero razionale assoluto
1 La frazione come numero razionale assoluto DEFINIZIONE. La frazione che dà origine ad un numero decimale si dice frazione generatrice. Consideriamo le frazioni e determiniamo i corrispondenti valori
Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA
Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme
Richiami di aritmetica
Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
Ampliamento di N: le frazioni
L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti
LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali
LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica
ESERCIZIARIO DI MATEMATICA
Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi
Primo modulo: Aritmetica
Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:
RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
RADICE QUADRATA:LA CRISI DEI PITAGORICI
MATEMATICA RADICE QUADRATA:LA CRISI DEI PITAGORICI Prof.ssa M. Rosa Casparriello Scuola media di Fontanarosa PREREQUISITI Conoscere le potenze e saper operare con esse; Saper applicare la tecnica di scomposizione
MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche
MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).
Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli
Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO
TERMINOLOGIA. Indice della radice. radice. Segno di radice. Radicando
RADICI TERMINOLOGIA Indice della radice radice Segno di radice Radicando Estrazione di radice Estrarre la radice quadrata di un numero (radicando) significa trovare quel numero che elevato alla seconda
GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}
GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi
GLI INSIEMI NUMERICI N Z Q R -C. Prof.ssa Maddalena Dominijanni
GLI INSIEMI NUMERICI N Z Q R -C 3 2 Ampliamento degli insiemi numerici Chiusura rispetto alle operazioni L insieme N = {0; 1; 2; 3; 4; } dei numeri naturali è chiuso rispetto all addizione e alla moltiplicazione
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta
PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci
MATEMATICA DI BASE 1
MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il
5 numeratore 7 denominatore
LE FRAZIONI 1. La frazione. Frazione come operatore. Frazioni equivalenti 4. 1. Trovare una frazione equivalente a una frazione data. Ridurre una frazione ai minimi termini. Calcolare il termine incognito
Indice. 1 Analisi matematica dell infinito Concetti base La numerabilità di Q e la non numerabilità di R... 5
Indice 1 Analisi matematica dell infinito 2 1.1 Concetti base................................... 2 1.2 La numerabilità di Q e la non numerabilità di R................ 5 1 1 Analisi matematica dell infinito
ESTRAZIONE DI RADICE
ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente
Programma di MATEMATICA
Classe 1 a E Indirizzo COSTRUZIONI, AMBIENTE E TERRITORIO Cap. 1 I NUMERI NATURALI I numeri naturali le quattro operazioni multipli e divisori le potenze e le relative proprietà espressioni numeriche la
I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico
Anno Scolastico 2012/13 Disciplina: Matematica Classe: I Liceo classico (nuovo ordinamento) Docente: prof. Roberto Capone ALGEBRA I.S.I.S. F. De Sanctis Sez. ass. Liceo Classico Specifica dettagliata degli
ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S
Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA
64=8 radice perché 8 2 = 64
RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Numeri decimali, rapporti e proporzioni
Numeri decimali, rapporti e proporzioni E. Modica [email protected] Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione
Programma di matematica classe I sez. E a.s
Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri
PROGRAMMA A.S. 2014/2015
MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
PROGRAMMA SVOLTO E COMPITI ESTIVI
Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890
Corso di Analisi Matematica I numeri reali
Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo
La cardinalità di Q e R
La cardinalità di Q e R Ha senso chiedersi se ci sono più elementi in N o in Q? Sono entrambi due insiemi infiniti. I numeri naturali sono numerosi quanto i quadrati perfetti, infatti ad ogni numero naturale
MATEMATICA: competenza 1 - PRIMO BIENNIO. classi I e II scuola primaria COMPETENZE ABILITA CONOSCENZE
MATEMATICA: competenza 1 - PRIMO BIENNIO classi I e II scuola primaria Utilizzare le tecniche e le procedure del calcolo aritmetico scritto e mentale partendo da contesti reali Rappresentare i numeri naturali
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n
Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica
LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice
LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la
Algebra. I numeri relativi
I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti
CONOSCENZE 1. i numeri decimali finiti o illimitati
ARITMETICA PREREQUISITI l l l conoscere le proprietaá delle quattro operazioni e saper operare con esse conoscere il sistema di numerazione decimale svolgere calcoli con le frazioni CONOSCENZE 1. i numeri
INTRODUZIONE ALL ANALISI MATEMATICA
INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
Insiemi numerici. Teoria in sintesi NUMERI NATURALI
Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri
LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5
LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di
Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi
Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere
Indice. Unità 1 Frazioni e numeri decimali 1. Unità 2. Il numero. La radice quadrata 22
Indice Il numero Unità 1 Frazioni e numeri decimali 1 I numeri decimali 2 Dalla frazione al numero decimale 4 Dal numero decimale alla frazione 6 Operazioni con i numeri decimali 7 Le conoscenze essenziali
PROGRAMMAZIONE DISCIPLINARE
Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA
ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ANNO SCOLASTICO 2016/2017 MATEMATICA CLASSE I SEZ. Az PROGRAMMA SVOLTO DALL INSEGNANTE Prof. Alessandro Di Marco Testo adottato: MATEMATICA.VERDE 1 LD 1.
Rappresentazione dei Numeri
Rappresentazione dei Numeri Rappresentazione dei Numeri Il sistema numerico binario è quello che meglio si adatta alle caratteristiche del calcolatore Il problema della rappresentazione consiste nel trovare
1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO
1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la
PROGRAMMAZIONE DI MATEMATICA 2016/2017
PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero
PRECORSO DI MATEMATICA I Lezione INSIEMI ED INSIEMI NUMERICI E. Modica
PRECORSO DI MATEMATICA I Lezione INSIEMI ED INSIEMI NUMERICI E. Modica [email protected] SIMBOLI MATEMATICI Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne
1 Unità. Le frazioni e i numeri decimali. Giochiamo insieme
GLI ESERCIZI 1 Unità Le frazioni e i numeri decimali 1 Indica, segnando con una crocetta, quali delle seguenti divisioni hanno il quoziente nell insieme N e quali nell insieme Q + : N Q + N Q + 8 : 10
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro MATEMATICA CLASSE PRIMA
Comprensivo 1 Frosinone Secondaria 1 grado Aldo Moro 1. i sistemi di numerazione 2. i numeri naturali 3. i numeri decimali MATEMATICA CLASSE PRIMA NUCLEO TEMATICO: IL NUMERO U.A.: Il sistema di numerazione
Calcolatori: Sistemi di Numerazione
Calcolatori: Sistemi di Numerazione Sistemi di Numerazione: introduzione In un Calcolatore, i Dati e le Istruzioni di un Programma sono codificate in forma inaria, ossia in una sequenza finita di e. Un
algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi
Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA
Prontuario degli argomenti di aritmetica per la classe 2 a
Prontuario degli argomenti di aritmetica per la classe 2 a FRAZIONI Numeri razionali assoluti Un numero razionale assoluto è costituito da una classe di frazioni equivalenti, l insieme di queste classi
Programma di matematica classe I sez. B a.s
Programma di matematica classe I sez. B a.s. 2016-2017 Testi in adozione: Bergamini-Barozzi-TrifoneMatematica.bluSeconda edizione vol.1- primo biennio Ed. Zanichelli MODULO A: I numeri naturali e i numeri
DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.
L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI
LICEO SCIENZE UMANE/ARTISTICO G. PASCOLI Anno scolastico 2016/2017 Docente: Stefania Petronelli Matematica classe I sez. Internazionale L. Sasso La matematica a colori 1 ed. azzurra Petrini Gli insiemi:
Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4
Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo
FRAZIONI E NUMERI DECIMALI Conoscenze
FRAZIONI E NUMERI DECIMALI Conoscenze 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente? un numero naturale b. Quali numeri decimali si possono
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO
ISTITUTO OMNICOMPRENSIVO ALTO ORVIETANO FABRO PROGRAMMAZIONE ANNUALE MATEMATICA CLASSE II SECONDARIA I GRADO MACRO INDICA TORI OBIETTIVI DI APPRENDIMENTO Curricolo verticale OBIETTIVI DI APPRENDIMENTO
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica
INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica [email protected] SIMBOLI MATEMATICI Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. SIMBOLO
Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.
IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui
(Prof.ssa Dessì Annalisa)
LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L
Rappresentazione dei numeri interi in un calcolatore
Corso di Calcolatori Elettronici I Rappresentazione dei numeri interi in un calcolatore Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle
Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto
Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se
Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)
Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in
I.I.S. G. Brotzu Quartu S. Elena
I.I.S. G. Brotzu Classe : 1 C Libro di testo: Bergamini-Trifone-Barozzi Manuale di algebra Vol 1 e Manuale di geometria Gli insiemi e la loro rappresentazione. Sottoinsieme, insieme delle parti, intersezione
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)
COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti
SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI
SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI D Apuzzo PREMESSA: l origine delle cifre 1, 2, 3, 4, 6, 7, 8, 9, 0 I numeri naturali sono stati i primi numeri maneggiati dagli uomini e sono stati utilizzati
Gli insiemi e le relazioni. Elementi di logica
capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,
FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data.
FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente?
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI Programma di Matematica classe 1 a D anno scolastico 2010/2011 Nozioni sugli insiemi Nozione di insieme, elemento, appartenenza. insiemi finiti ed
Esercizi di matematica della Scuola Secondaria
Esercizi di matematica della Scuola Secondaria 1. Quale é il risultato corretto della seguente operazione aritmetica? (dare la risposta senza eseguire la moltiplicazione) X = 23, 45 0, 0123 (A) X = 0,
I NUMERI REALI SONO ASTRATTI
I NUMERI REALI SONO ASTRATTI L idea di numero, che ci sembra così evidente, è il punto d arrivo di un lunghissimo lavoro di astrazione D. Guedj Ogni misura di grandezza implica una nozione approssimativa
