Corso di Analisi Matematica I numeri reali
|
|
|
- Giulia Cattaneo
- 9 anni fa
- Visualizzazioni
Transcript
1 Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57
2 1 Insiemi e logica 2 Campi ordinati 3 Estremo superiore e assioma di continuità 4 Radici, potenze, logaritmi 5 Grandezze trigonometriche ICD (Bari) Analisi Matematica 2 / 57
3 Insiemi I concetti di base di teoria degli insiemi non saranno definiti in modo rigoroso ma informale. Insieme: nozione primitiva, sinonimo di classe, collezione, famiglia L insieme degli iscritti all Università di Bari L insieme delle stelle di una certa galassia Notazione: X Y Z (lettere maiuscole dell alfabeto) Elemento: ogni insieme è determinato dai suoi elementi Appartenenza: se X è un insieme e x è un suo elemento, si scrive simbolo di appartenenza x X ICD (Bari) Analisi Matematica 3 / 57
4 Come si specifica un insieme: Elencandone gli elementi: X = {1, 2, 3} Usando le proprietà verificate dai suoi elementi: X = {x p(x) è vera} ove p(x) è una proprietà che dipende da x. X = {x x è un numero naturale pari} ICD (Bari) Analisi Matematica 4 / 57
5 Osservazioni Non è importante: l ordine in cui si è elencano gli elementi {1, 2, 6} = {1, 6, 2} la molteplicità degli elementi L insieme delle sol. dell eq. x 1 = 0 coincide con l insieme delle sol. dell eq. (x 1) 2 = 0, anche se nel secondo caso x = 1 ha molteplicità algebrica 2. ICD (Bari) Analisi Matematica 5 / 57
6 Relazioni tra insiemi: uguaglianza ed inclusione. Due insiemi A e B sono uguali se hanno gli stessi elementi. In tal caso si scrive A = B. Ogni elemento di A è elemento di B e ogni elemento di B è elemento di A Formalmente: x (x A x B) e x (x B x A) Quantificatore universale: per ogni Implicazione logica: implica se... allora ICD (Bari) Analisi Matematica 6 / 57
7 Se vale una sola delle due richieste: Ogni elemento di A è elemento di B si dice che A è contenuto in B e si scrive A B. Formalmente: x (x A x B) A è un sottoinsieme di B A B non esclude che A = B. Se A B ma A non è uguale a B si scrive A B e si parla di inclusione stretta. ICD (Bari) Analisi Matematica 7 / 57
8 A B: Ogni elemento di A è elemento di B ed esiste x in B che non appartiene ad A Formalmente: x (x A x B) e x B x / A Quantificatore esistenziale: esiste non appartiene insieme vuoto : indica un insieme che non ha elementi ICD (Bari) Analisi Matematica 8 / 57
9 Insiemi numerici L insieme dei numeri naturali: N = {0, 1, 2, 3, 4, 5,...}. L insieme dei numeri relativi: Z = {0, ±1, ±2, ±3, ±4, ±5,...}. L insieme dei numeri razionali: { n } Q = m n, m Z, m 0 Due numeri razionali n m e n m si identificano se nm = n m. ICD (Bari) Analisi Matematica 9 / 57
10 Insiemi numerici Rappresentazione decimale dei numeri razionali: ogni numero razionale può essere rappresentato mediante un allineamento decimale limitato (dopo la virgola un numero finito di cifre diverse da 0); 1 2 = 0, 5 3 = 0, 75 4 illimitato, periodico, proprio (dopo la virgola un numero infinito di cifre diverse da 0, che si ripetono in modo periodico con periodo diverso da 9). 1 = 0, = 0, 3 2, = 2, 4 2, = 2, Gli allineamenti decimali di periodo 9 (detti impropri) sono usati come rappresentazione alternativa degli allineamenti decimali finiti. 1 = 0, 9 1, 35 = 1, 349. ICD (Bari) Analisi Matematica 10 / 57
11 Insiemi numerici L insieme dei numeri reali, che si denota con R, è l insieme dei numeri che scritti in forma decimale presentano dopo la virgola una successione qualsiasi di cifre diverse da 0, eventualmente anche infinita e non periodica. 0, π = 3, = 1, Gli elementi di R ma non di Q si chiamano numeri irrazionali (sono gli allineamenti decimali infiniti e non periodici). Inclusioni: N Z Q R ICD (Bari) Analisi Matematica 11 / 57
12 Operazioni su insiemi Sia X un insieme e A, B X. Intersezione A B = {x X x A e x B} Unione A B = {x X x A o x B} Differenza A \ B = {x X x A, x B} Ad esempio, R \ Q è l insieme dei numeri irrazionali. ICD (Bari) Analisi Matematica 12 / 57
13 Operazioni su insiemi coppia ordinata: (a, b) con a A, b B. Il prodotto cartesiano di A e B, che si denota con A B, è l insieme costituito da tutte le coppie ordinate (a, b) con a A, b B. A B = {(a, b) a A, b B} ICD (Bari) Analisi Matematica 13 / 57
14 Logica elementare In matematica si usano due tipi di affermazioni: enunciati o proposizioni cioè affermazioni di cui è possibile stabilire la verità o la falsità; 2 è un numero pari 2 è un numero dispari predicati o proprietà cioè affermazioni la cui verità o falsità dipende dai valori delle variabili che in essa compaiono. n è un numero naturale dispari ICD (Bari) Analisi Matematica 14 / 57
15 Logica elementare Dai predicati si ottengono enunciati mediante i quantificatori: n N (n dispari n 2 dispari). In generale, se p(x) e q(x) sono predicati, x A (p(x) q(x)) è un enunciato che prende il nome di implicazione universale. La maggior parte dei teoremi è costituita da implicazioni universali. p(x) si chiama ipotesi, q(x) si chiama tesi. ICD (Bari) Analisi Matematica 15 / 57
16 Logica elementare Per provare che x A (p(x) q(x)) è vera, si deve considerare un generico x A che verifica p(x) e mostrare q(x) è vera. Proviamo che il seguente enunciato è vero: n N (n dispari n 2 dispari). Per provare che x A (p(x) q(x)) è falsa, si deve determinare x A tale che p(x) sia vera ma q(x) sia falsa. Tale x si chiama controesempio. Infatti, la negazione di una implicazione universale è x A (p(x) e non q(x)) Il seguente enunciato è falso: n N (n primo n è dispari). Controesempio: n = 2 ICD (Bari) Analisi Matematica 16 / 57
17 Logica elementare L implicazione x A (p(x) q(x)) equivale a x A (non q(x) non p(x)) Quindi, avendo dim. che n N (n dispari n 2 dispari) è vero anche che n N (n 2 pari n pari). ICD (Bari) Analisi Matematica 17 / 57
18 Logica elementare Dimostrazione per assurdo. Consiste nel supporre vera l ipotesi e la negazione della tesi di un teorema e dedurre da questi fatti una contraddizione. Teorema Non esiste x Q soluzione dell equazione x 2 = 2. La negazione di x p(x) è x non p(x) ; la negazione di x p(x) è x non p(x). ICD (Bari) Analisi Matematica 18 / 57
19 Campi ordinati Studiare in dettaglio la struttura degli insiemi numerici. Capire meglio la differenza tra Q ed R. Occorre introdurre le operazioni e la relazione d ordine sia in Q che in R. ICD (Bari) Analisi Matematica 19 / 57
20 Addizione R 1 ): È definita in Q l operazione di addizione + tale che per ogni a, b Q, a + b = b + a; per ogni a, b, c Q, (a + b) + c = a + (b + c); esiste 0 Q tale che a Q a + 0 = a; per ogni a Q esiste un (unico) elemento di Q, indicato con a (opposto di a), tale che a + ( a) = 0. ICD (Bari) Analisi Matematica 20 / 57
21 Moltiplicazione R 2 ): È definita in Q l operazione di moltiplicazione tale che per ogni a, b Q, a b = b a; per ogni a, b, c Q, (a b) c = a (b c); esiste 1 Q tale che a Q a 1 = a; per ogni a Q, a 0 esiste un (unico) elemento di Q, indicato con a 1 o con 1 a (inverso o reciproco di a), tale che a a 1 = 1 a 1 a = 1. per ogni a, b, c Q, a (b + c) = a b + a c. ICD (Bari) Analisi Matematica 21 / 57
22 Osservazioni in Q + e sono definite nel seguente modo: n m + r ns + mr = s ms n m r s = n r m s. Le proprietà R 1 ) ed R 2 ) permettono di definire tutte le operazioni: per ogni a, b Q a b = a + ( b) per ogni a, b Q, b 0 a : b = a b 1 Rappresentazione geometrica di Q: 5/2 5/ ICD (Bari) Analisi Matematica 22 / 57
23 Relazione d ordine in Q Una relazione d ordine su un insieme X è una relazione tale che per ogni a X a a; per ogni a, b X a b, b a a = b; per ogni a, b, c X a b, b c a c. La relazione si dice di totale ordine se per ogni a, b X a b oppure b a. R 3 ): È definita in Q una relazione di totale ordine minore o uguale ( ) tale che per ogni a, b, c Q a b a + c b + c; per ogni a, b, c Q, 0 c a b a c b c. ICD (Bari) Analisi Matematica 23 / 57
24 Campi ordinati Notazioni: a b b a a < b a b, a b a > b a b, a b Ogni insieme che verifica le proprietà R 1 ) R 2 ) R 3 ) si dice campo ordinato. Q è un campo ordinato; R è un campo ordinato. ICD (Bari) Analisi Matematica 24 / 57
25 Quali sono allora le proprietà che distinguono Q da R? Perché è stato necessario ampliare Q? Q non è adeguato a misurare le lunghezze: abbiamo già visto che la misura della diagonale di un quadrato non può essere espressa mediante un numero razionale. Dal punto di vista geometrico: dopo aver occupato i punti della retta con tutti i numeri razionali, su di essa rimangono dei posti vuoti. Si è dovuto ampliare Q in modo da avere ancora un campo ordinato i cui elementi siano in corrispondenza biunivoca con i punti della retta: R verifica questa proprietà. ICD (Bari) Analisi Matematica 25 / 57
26 Regole di calcolo Esaminiamo alcune proprietà dei numeri reali, conseguenze di R 1 ) R 2 ) R 3 ). Per ogni a R a 0 = 0. Per ogni a, b R a b = 0 a = 0 oppure b = 0. Dalle precedenti proprietà si ottiene la legge di annullamento del prodotto: per ogni a, b R a b = 0 a = 0 oppure b = 0. ICD (Bari) Analisi Matematica 26 / 57
27 Regole di calcolo Proprietà degli opposti: Per ogni a R ( a) = a. Per ogni a, b R ( a) b = (a b). Per ogni a, b R a ( b) = (a b). Per ogni a, b R ( a) ( b) = a b. ICD (Bari) Analisi Matematica 27 / 57
28 Regole di calcolo Proprietà dei reciproci: Per ogni a R a a = a. Per ogni a, b R a, b 0 1 a b = 1 a 1 b. Per ogni a R a 0 1 a = 1 a. ICD (Bari) Analisi Matematica 28 / 57
29 Regole di calcolo Proprietà delle uguaglianze: Per ogni a, b, c R Per ogni a, b, c R a 0 a + b = c a = c b. a b = c b = c a. Risoluzione dell equazione di primo grado: per ogni a, b R, a 0 ax + b = 0 ax = b x = b a. ICD (Bari) Analisi Matematica 29 / 57
30 Regole di calcolo Regole di semplificazione: Per ogni a, b, c R a ± c = b ± c a = b. Per ogni a, b, c R, c 0 a c = b c a = b. Per ogni a, b, c R, c 0 a c = b c a = b. ICD (Bari) Analisi Matematica 30 / 57
31 Regole di calcolo Conseguenze delle proprietà della relazione d ordine: Per ogni a, b, c R a + b c a c b; a b + c a c b. È possibile trasportare un addendo da un membro all altro di una disuguaglianza cambiandolo di segno. Si ricava che: Per ogni a, b R a b b a; 0 a a 0; a 0 0 a. ICD (Bari) Analisi Matematica 31 / 57
32 Regole di calcolo Conseguenze delle proprietà della relazione d ordine: Per ogni a, b, c R a < b, c > 0 a c < b c; a b, c 0 a c b c; a < b, c < 0 a c > b c. Moltiplicando ambo i membri di una disuguaglianza per uno stesso numero si ottiene una disuguaglianza dello stesso segno se il numero è positivo, di segno opposto se il numero è negativo. ICD (Bari) Analisi Matematica 32 / 57
33 Regole di calcolo Disequazioni di primo grado: per ogni a, b R, a > 0 ax + b 0 ax b x b a ; ax + b > 0 ax > b x > b a ; ax + b 0 ax b x b a ; ax + b < 0 ax < b x < b a. ICD (Bari) Analisi Matematica 33 / 57
34 Regole di calcolo Regola dei segni: per ogni a, b R 0 a, 0 b 0 a b; 0 a, b 0 a b 0; a 0, b 0 0 a b. Il prodotto di due numeri è positivo se i numeri hanno le stesso segno, negativo se i numeri hanno segno opposto. Le proprietà precedenti continuano a valere se si sostituisce ovunque con <. ICD (Bari) Analisi Matematica 34 / 57
35 Regole di calcolo Ricordiamo che per ogni a R si definisce a 2 = a a. Proprietà dei quadrati e dei reciproci: per ogni a R per ogni a R a 2 0 a 2 = 0 a = 0; a > 0 1 a > 0 a < 0 1 a < 0. ICD (Bari) Analisi Matematica 35 / 57
36 Intervalli Sottoinsiemi di R che sulla retta corrispondono a segmenti: intervalli limitati. Siano a, b R, a b. [a, b] = {x R a x b} (a, b) = {x R a < x < b} (a, b] = {x R a < x b} [a, b) = {x R a x < b} ICD (Bari) Analisi Matematica 36 / 57
37 Intervalli Sottoinsiemi di R che sulla retta corrispondono a semirette: intervalli illimitati. Sia a R. [a, + ) = {x R x a} (a, + ) = {x R x > a} (, a] = {x R x a} (, a) = {x R x < a} Semiretta positiva: R + = (0, + ) Semiretta negativa: R = (, 0) R = R \ {0} = R + R ICD (Bari) Analisi Matematica 37 / 57
38 Insiemi limitati Definizione Sia E R, E. E si dice limitato superiormente se esiste M R tale che per ogni x E x M; limitato inferiormente se esiste m R tale che per ogni x E m x; limitato se è limitato sia superiormente che inferiormente cioè se esistono m, M R tali che per ogni x E m x M. ICD (Bari) Analisi Matematica 38 / 57
39 Massimo e minimo Definizione Sia E R, E. Un numero reale x è il massimo di E (e si denota con max E) se x E; per ogni x E x x; Un numero reale x è il minimo di E (e si denota con min E) se x E; per ogni x E x x; Quindi E ammette massimo E è limitato superiormente E ammette minimo E è limitato inferiormente ICD (Bari) Analisi Matematica 39 / 57
40 Estremo superiore e inferiore Esistono insiemi limitati che non ammettono massimo e/o minimo. Definizione Sia E R, E. Un numero reale K è un maggiorante di E se per ogni x E x K. Un numero reale K è un minorante di E se per ogni x E K x. ICD (Bari) Analisi Matematica 40 / 57
41 Estremo superiore e inferiore Definizione Sia E R, E. Se esiste il minimo dell insieme dei maggioranti di E, esso si chiama estremo superiore di E e si denota con sup E. sup E = min {K R K è un maggiorante di E} Se esiste il massimo dell insieme dei minoranti di E, esso si chiama estremo inferiore di E e si denota con inf E. inf E = max {K R K è un minorante di E} Se x = max E allora x = sup E. Se x = min E allora x = inf E. ICD (Bari) Analisi Matematica 41 / 57
42 Completezza di R Esempi Esempio importante: E = {x Q x 0, x 2 < 2} E è limitato superiormente, se sup E esiste allora verifica x 2 = 2. Quindi sup E non esiste in Q ma esiste in R (ed è 2). Un insieme X (totalmente ordinato) verifica la proprietà dell estremo superiore se R 4 ): ogni E X non vuoto e limitato superiormente ammette estremo superiore sup E X. ICD (Bari) Analisi Matematica 42 / 57
43 Definizione assiomatica di R Teorema Esiste un insieme che verifica le proprietà R 1 ), R 2 ), R 3 ), R 4 ), ossia un campo ordinato che ha la proprietà dell estremo superiore. Tale insieme si denota con R. R è una rappresentazione adeguata dell idea di retta. Usando R 4 ) (in una forma equivalente) si prova che R e la retta r sono in corrispondenza biunivoca cioè ad ogni punto di r corrisponde un unico numero reale e viceversa. Ciò permette di identificare r e R e di parlare di retta reale. ICD (Bari) Analisi Matematica 43 / 57
44 Valore assoluto Definizione Si chiama valore assoluto di un numero reale a, e si indica con il simbolo a, il numero reale non negativo definito come a = { a se a 0 a se a < 0. Se a, b R, a b rappresenta la distanza dei due punti a e b sulla retta reale. Sia a R +. Allora x a a x a x [ a, a]; x a x a oppure x a x (, a] [a, + ). ICD (Bari) Analisi Matematica 44 / 57
45 Radice n esima Una conseguenza della proprietà R 4 ). Ricordiamo che per ogni x R ed n N \ {0} x n = x } {{ x}. n volte Teorema (esistenza della radice n-esima) Sia y R, y > 0 e n N, n 1. Esiste uno ed un solo numero reale x > 0 tale che x n = y. Tale numero x si chiama radice n esima di y e si denota con il simbolo n y oppure y 1 n. Si noti che per ogni y R y 2 = y. ICD (Bari) Analisi Matematica 45 / 57
46 Radice n esima Cosa accade se y 0? Se y = 0 e n N \ {0}, l eq. x n = 0 ammette come unica sol. x = 0. Dato y R, y < 0 e n pari, l eq. x n = y non ammette sol. Dato y R, y < 0 e n dispari, osserviamo che ( n n ( ) n ( y)) = n ( 1)n ( y) = ( y) = y cioè x = n ( y) risolve l eq. x n = y. Quindi ha senso definire la radice n esima di y come n y = n ( y). ICD (Bari) Analisi Matematica 46 / 57
47 Rappresentazione decimale della radice n-esima Cerchiamo l allineamento decimale di 2: 2 = a 0, a 1 a 2 a = = 4 a 0 = 1 (1, 4) 2 = 1, 96 (1, 5) 2 = 2, 25 a 1 = 4 (1, 41) 2 = 1, 9881 (1, 42) 2 = 2, 0164 a 2 = Sia E = {1, 1, 4, 1, 41,...}. E è limitato superiormente (2 è un maggiorante) quindi ammette estremo superiore. Si prova che 2 = sup E. ICD (Bari) Analisi Matematica 47 / 57
48 Se a R \ {0} si definisce a 0 = 1. Potenze Dati a, r R si definisce la potenza di base a ed esponente r e si scrive a r. Caso in cui r è un numero intero. Se a R e r Z, r > 0 a r = a } {{ a }. r volte Se a R \ {0} e r Z, r < 0 (in tal caso r > 0) a r = 1 a r. ICD (Bari) Analisi Matematica 48 / 57
49 Potenze Caso in cui r è un numero razionale. Se a R + e r Q, r = m n, m Z, n N \ {0} a r = a m n = (a m ) 1 n = n a m. La base a può essere negativa solo in certi casi: sia a R e r Q, r = m n, m Z, n N \ {0}, n dispari a r = a m n = n (a m ). ICD (Bari) Analisi Matematica 49 / 57
50 Potenze Caso in cui l esponente è un numero reale. Se a > 1 e b R +, b = b 0, b 1 b 2 b n, allora a b = sup { a b0,b1b2 bn n N }. Se 0 < a < 1 (in tal caso 1/a > 1) e b > 0, allora a b = ( 1 ) b. 1 a Se a > 0, a 1 e b < 0 (in tal caso b > 0) a b = 1 a b. ICD (Bari) Analisi Matematica 50 / 57
51 Proprietà algebriche delle potenze Siano a, b reali positivi, c, d reali qualsiasi a 0 = 1 per ogni a 0; 1 c = 1 per ogni c; a c > 0 per ogni c; a c+d = a c a d ; a c d = a c /a d ; (a b ) c = a b c ; (a b) c = a c b c ; (a/b) c = a c /b c. ICD (Bari) Analisi Matematica 51 / 57
52 Logaritmo I logaritmi sono legati alle soluzioni delle eq. del tipo a x = y (ove l incognita è x). Teorema Siano a, y R +, a 1. Allora esiste uno ed un solo x R tale che a x = y. La soluzione di tale equazione si chiama logaritmo in base a di y e si indica con il simbolo log a y. ICD (Bari) Analisi Matematica 52 / 57
53 Se y 0 l eq. a x = y non ha soluzione. Se a = 1 l eq. a x = y non ha soluzione se y 1, ha infinite soluzioni se y = 1. Proprietà algebriche dei logaritmi: per ogni a, b > 0, x, y > 0 a log a x = x; log a (x y) = log a x + log a y; loga (x/y) = log a x log a y; loga x y = y log a x y R; log b x = log a x/ log a b; log a a = 1; loga 1 = 0. ICD (Bari) Analisi Matematica 53 / 57
54 Seno, coseno, tangente In un sistema di riferimento cartesiano ortonormale, si consideri la circonferenza goniometrica (indicata con C), cioè la circonferenza avente centro nell origine e raggio 1 (di equazione x 2 + y 2 = 1). Un numero x [0, 2π[ si dice ampiezza dell angolo AOP se x è la lunghezza dell arco AP, ove A = (1, 0). P O A ICD (Bari) Analisi Matematica 54 / 57
55 Seno, coseno, tangente Si definiscono coseno e seno di x (e si scrive cos x e sen x) come le coordinate del punto P : P = (cos x, sen x). Si possono definire sen x e cos x per ogni x R, nel seguente modo: { cos(x + 2kπ) = cos x x [0, 2π[, k Z sen(x + 2kπ) = sen x x [0, 2π[, k Z. Si definisce la tangente di x (e si scrive tg x) come tg x = sen x cos x x π + kπ, k Z. 2 ICD (Bari) Analisi Matematica 55 / 57
56 Alcuni valori da ricordare gradi radianti 0 π/6 π/4 π/3 π/2 π 3/2π 2π radianti 0 π/6 π/4 π/3 π/2 π 3/2π 2π seno 0 1/2 2/2 3/ coseno 1 3/2 2/2 1/ ICD (Bari) Analisi Matematica 56 / 57
57 Proprietà di seno e coseno Per ogni x, y R cos x 1, sen x 1; sen 2 x + cos 2 x = 1; cos(x ± y) = cos x cos y sen x sen y; sen(x ± y) = sen x cos y ± cos x sen y; sen 2 x = (1 cos(2x))/2; cos 2 x = (1 + cos(2x))/2; sen(2x) = 2 sen x cos x; cos(2x) = cos 2 x sen 2 x = 1 2 sen 2 x = 2 cos 2 x 1. ICD (Bari) Analisi Matematica 57 / 57
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)
Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in
Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica
Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,
Corso di Analisi Matematica. L insieme dei numeri reali
a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli
Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia
Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni
Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve
Matematica 1 per Ottici e Orafi. I Numeri Reali
Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c
2. I numeri reali e le funzioni di variabile reale
. I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
1 IL LINGUAGGIO MATEMATICO
1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti
DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI
FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti
Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA
Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi
Precorso di Matematica
Precorso di Matematica Maria Margherita Obertino [email protected] Davide Ricauda [email protected] Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
Nozioni introduttive e notazioni
Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione
Corso di Analisi Matematica Funzioni di una variabile
Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali
Richiami sugli insiemi numerici
Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri
Elementi di logica. 1. Introduzione. 2. Operatori logici (connettivi)
Elementi di logica. Introduzione La logica elementare si interessa della verità di affermazioni complesse a partire dalla verità di quelle più semplici che le compongono. Si può parlare di verità/falsità
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
IL LINGUAGGIO MATEMATICO
1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA
Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica
1 Funzioni reali di una variabile reale
1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f
Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton
Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.
Svolgimento degli esercizi del Capitolo 1
Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione
INTRODUZIONE ALL ANALISI MATEMATICA
INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme
Gli insiemi N, Z e Q. I numeri naturali
Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,
Corso di Analisi Matematica Successioni e loro limiti
Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione
CORSO DI AZZERAMENTO DI MATEMATICA
CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA
Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.
Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.
A.A. 2016/17 - Analisi Matematica 1
A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.
Matematica per le scienze sociali Elementi di base. Francesco Lagona
Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona ([email protected]) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli
INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.
INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme
04 - Logica delle dimostrazioni
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,
Istituto d Istruzione Superiore Francesco Algarotti
Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione
ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.
Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare
Corso di Analisi Matematica Limiti di funzioni
Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti
FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne
Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b
8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b
Verso il concetto di funzione
Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.
PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri
Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno
Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici
Syllabus delle conoscenze e abilità per il modulo Matematica di base comune a tutti i corsi di laurea scientifici Numeri numeri primi, scomposizione in fattori massimo divisore comune e minimo multiplo
A.S. 2015/2016 Programma svolto classe III Q
A.S. 2015/2016 Programma svolto classe III Q Circonferenza e cerchio Lunghezza della circonferenza e area del cerchio. Lunghezza di un arco. Area di un settore circolare e di un segmento circolare. Raggio
01 - Elementi di Teoria degli Insiemi
Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016
LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H
LICEO SCIENTIFICO L. DA VINCI - REGGIO CALABRIA ANNO SCOLASTICO 2013/2014 PROGRAMMA DI MATEMATICA SVOLTO DALLA CLASSE I SEZ.H Modulo 1 Calcolo numerico e primo approccio col calcolo letterale Numeri naturali:
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA
ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I
PROGRAMMA CONSUNTIVO
PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi
Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2
Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione
Massimo e minimo limite di successioni
Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,
Diario del Corso Analisi Matematica I
Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.
Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile
Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
Analisi Matematica 1
Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia
Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime
Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione
1. FUNZIONI IN UNA VARIABILE
1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler
Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.
Elementi di Logica Teoria degli insiemi
Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università
Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di
DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
Programma di matematica classe Prima
Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,
MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI
MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI
Errori frequenti di Analisi Matematica
G.C. Barozzi Errori frequenti di Analisi Matematica http://eulero.ing.unibo.it/~barozzi/pcam Complementi/Errori.pdf [Revisione: gennaio 22] Numeri reali e complessi 1. La radice quadrata di 4 è ±2. Commento.
Prof.ssa Raffaella De Rosa
Prof.ssa Raffaella De Rosa Le conoscenze e le competenze matematiche a conclusione del triennio della scuola secondaria di II grado DEFICIT DI FORMAZIONE SCOLASTICA - DEFICIT DI FORMAZIONE MATEMATICA '
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il
Disequazioni goniometriche
Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni
Unità Didattica N 2 Le funzioni
Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.
Analisi Matematica 1 A.A. 2015/16
Analisi Matematica 1 A.A. 2015/16 Ingegneria Informatica Ingegneria Elettronica e delle Telecomunicazioni Paola Gervasio orario di ricevimento: MER. 11:30-12:30, VEN 10:30 11:30 Edificio di via Valotti,
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani
Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione
7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.
NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI
M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica
Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche
Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni
Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.
CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie
LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati
CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia
CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3
Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,
Potenze, esponenziali e logaritmi 1 / 34
Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi
RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano
RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata
