Montessori e Psicomatematica
|
|
|
- Oreste Paoli
- 9 anni fa
- Visualizzazioni
Transcript
1 Cinisello Balsamo, 29 novembre 2014 Montessori e Psicomatematica Benedetto Scoppola, Opera Nazionale Montessori e Universita di Roma Tor Vergata
2 Sommario - Grazie - Montessori e la matematica: l origine delle cose - Euclide in Psicomatematica - Altri aspetti del metodo in matematica - La matematica nell educazione globale del bambino
3 Montessori e la matematica Montessori scrisse due libri sulla matematica nel pieno della sua maturita : Psicoaritmetica e Psicogeometria, entrambi pubblicati in Spagna nel Due questioni: - Perche psico-? - Quanto sono importanti?
4 Psico-discipline Sono, per Montessori, le discipline che concorrono allo sviluppo psichico equilibrato del bambino. Il bambino e al centro della proposta, le discipline sono il mezzo, non il fine. Ma a parte l inedito psicogrammatica, le discipline sono solo l aritmetica e la geometria.
5 E importante la matematica? Si provera a dimostrare che la matematica non e una parte, piu o meno importante, del metodo Montessori. E una delle vie maestre, forse la migliore, per comprenderne fino in fondo le caratteristiche. Ma quali sono queste caratteristiche?
6 Una domanda rischiosa Iniziamo da due aspetti fondamentali del metodo, che sono il materiale e l ispirazione storica. Sono riassunti in una frase (inedita) che Montessori pronuncio durante il corso del 1931 di Roma.
7 Dalla conferenza 31, 5 maggio 1931, corso di Roma Fino a un certo punto l aritmetica e la geometria furono legate, poi fu necessario distinguerle. Ma la cosa piu semplice e naturale e l origine delle cose: come dico sempre, il bambino deve avere l origine delle cose perche l origine e piu chiara e naturale per la sua mente. Noi non dobbiamo far altro che trovare un materiale che renda l origine accessibile.
8 Un programma didattico La frase che abbiamo appena letto e un programma che forse non abbiamo ancora completamente compreso, e che dovremmo realizzare fino in fondo. La matematica e forse il contesto in cui questo programma e piu chiaro e piu completamente realizzato.
9 L origine delle cose Quando, in un contesto matematico, Montessori parla dell origine delle cose, si riferisce evidentemente alla matematica greca. Prima dell avvento della matematica ellenistica, i greci avevano sviluppato una matematica platonica, fondata sull idea di verita.
10 Un esempio di geometria platonica
11 La matematica ellenistica Nel III secolo A.C., un periodo in cui il concetto di verita entro in crisi in tutto il Mediterraneo, la risposta della scienza greca fu la matematica assiomatico deduttiva. Poche verita sono definite all interno della teoria, tutto il resto deve essere dimostrato.
12 Formazione scientifica Montessori conosceva bene la geometria Euclidea. Aveva studiato in un istituto tecnico (indirizzo fisicamatematica) dove si studiava su un libro basato sugli Elementi.
13 Ecco il testo di geometria su cui Montessori studio
14 Esempi concreti del programma montessoriano Definizione 1, V libro: Una grandezza è parte di una grandezza, la minore della maggiore, quando misuri completamente la maggiore.
15 Il materiale
16 Proposizione 47, libro I: in un triangolo rettangolo il quadrato sul lato opposto all angolo retto eguaglia i quadrati sugli altri due lati.
17 Il materiale
18
19
20 Altre connessioni con la scienza greca Gli elementi numerici sono pari e dispari, e di questi gli ultimi (i dispari) sono limitati e i primi (i pari) illimitati. [ ] e i numeri, come ho detto, costituiscono l intero universo.' Aristotele, Metafisica ( a13-19)
21 Il materiale
22 Platone o Euclide? Giustamente, la presentazione della matematica e basata per Montessori su un approccio platonico. E una matematica i materiali parlano con muta eloquenza. L ispirazione viene pero dagli Elementi di Euclide.
23 Problemi complessi
24 Altri aspetti del metodo in matematica La libera scelta e i periodi sensitivi: i bambini sono liberi di scegliere il materiale con cui vogliono lavorare. L autocorrezione: i materiali sono costruiti in modo da indicare l eventuale errore al bambino, senza intervento dell adulto.
25 L interesse e il piacere della scoperta: il motore dell apprendimento e il desiderio di scoprire qualche relazione nascosta nel materiale. L interazione tra percezione e linguaggio: le scoperte vengono ordinatamente riportate in un quaderno, attraverso il linguaggio specifico.
26 Montessori e neuroscienze Le idee della matematica montessoriana sono molto vicine alle recenti scoperte delle neuroscienze: il modo con cui Montessori presenta la matematica ai bambini e molto vicino al modo con cui i bambini la rappresentano nel cervello.
27 Risultati neuroscientifici Il cervello rappresenta i numeri su una linea. La rappresentazione proporzionale e un prodotto culturale. Il cervello percepisce esattamente piccole quantita. Le quantita piu grandi sono percepite approssimativamente. La capacita di trattare grandi quantita dipende dall interazione dell area percettiva con quella linguistico-simbolica. Queste due aree sono lontane L area percettiva e molto vicina all area del cervello che controlla il movimento delle mani. L area percettiva tratta quantita e forme.
28 Un commento a margine L aspetto materiale, il fatto di toccare in prima persona degli oggetti, e non solo di osservarli, e uno dei punti fondamentali del metodo. Non rimaniamo indietro se evitiamo le sirene multimediali. Almeno per la matematica
29 La matematica nell educazione globale del bambino I due approcci, platonico e euclideo, sono attitudini contraddittorie che dovrebbero convivere nel bambino e nell uomo. I momenti di scetticismo dovrebbero esssere una opportunita didattica.
30
31 Essere scettici comporta molto lavoro I bambini sono pronti a farlo se ne hanno la possibilita. Dobbiamo utilizzare il loro scetticismo fino in fondo se vogliamo aiutarli a costruire una mente razionale.
32 Perche vogliamo costruire una mente razionale? L irrazionalismo e meno faticoso e molto naturale per il bambino e per l uomo, ma porta al fondamentalismo e alla violenza. La fatica di argomentare razionalemte le proprie opinioni influisce sulla capacita di ascoltare quelle degli altri.
33 Conclusioni Attraverso la matematica comprendiamo molto del metodo La psicomatematica e uno strumento insostituibile per la crescita armonica del bambino La costruzione della mente matematica e uno dei pilastri di Educazione e Pace
L'avventura della matematica secondo il metodo Montessori dal punto di vista di un matematico
Roma, 21 gennaio 2016 L'avventura della matematica secondo il metodo Montessori dal punto di vista di un matematico Benedetto Scoppola, Opera Nazionale Montessori e Universita di Roma Tor Vergata Sommario
Princìpi e dettagli: la proposta matematica Montessoriana
Princìpi e dettagli: la proposta matematica Montessoriana Roma, 10 novembre 2018 Benedetto Scoppola Università di Roma Tor Vergata Opera Nazionale Montessori Un metodo di insegnamento? Montessori non amava
MASTER Comunicazione della Scienza
MASTER 2007-2008 Comunicazione della Scienza Linguaggi e fondamenti concettuali della matematica 2a settimana Euclide 1 Euclide - Elementi Euclide - Elementi La prima proposizione del Libro I degli Elementi
IL PRIMO LIBRO DEGLI "ELEMENTI" DI EUCLIDE all'origine della discussione sulla teoria delle parallele
IL PRIMO LIBRO DEGLI "ELEMENTI" DI EUCLIDE all'origine della discussione sulla teoria delle parallele Il Libro degli "Elementi" di Euclide, che risale al IV-III secolo a.c., è da considerarsi un pilastro
MATEMATICA = STUDIO DEI NUMERI E DELLE FORME. LA MATEMATICA DIVENTA UN AREA DI STUDIO, UN IMPRESA INTELLETTUALE (con elementi religiosi ed estetici).
LA MATEMATICA QUESTA SCONOSCIUTA Prof. Vera Francioli Fino al 500 a.c., con gli Egiziani e i Babilonesi, la matematica era studio dei numeri, quasi esclusivamente aritmetica, come se ci fossero delle ricette
Università degli Studi di Roma Tor Vergata. Principio di induzione matematica
Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.
I numeri irrazionali nella geometria e nella storia. Daniela Valenti, Treccani scuola
I numeri irrazionali nella geometria e nella storia 1 Costruzioni geometriche di!a Con la geometria possiamo costruire un segmento che sia lungo esattamente!a Una costruzione semplice e versatile è basata
DIETRO LE QUINTE DELLA MATEMATICA
DIETRO LE QUINTE DELLA MATEMATICA TEKNOTRE Anno Accademico 2016-2017 Lezione n. 6 (10-2-2017) PERUCCO Pieraldo Dalla Logica alla Geometria Da regole empiriche a una rigorosa costruzione fondata sulla sistematica
La geometria euclidea
La geometria euclidea a ritroso Una proposta che prende spunto da riflessioni di esperti ben più titolati di noi Zeuthen, Gallo, L a proposta tutta da discutere Partire dal teorema di Pitagora, noto agli
La geometria della riga e compasso: Primo incontro
La geometria della riga e compasso: Primo incontro Progetto Lauree Scientifiche A.S. 2010/2011 Università degli Studi di Firenze 23/11/2010 Quando si devono rappresentare disegni geometrici, è importante
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre
Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione
Appunti di geometria euclidea
Appunti di geometria euclidea Il metodo assiomatico Appunti di geometria Euclidea Lezione 1 Prima di esaminare nel dettaglio la Geometria dal punto di vista dei Greci è opportuno fare unrichiamo di Logica.
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO. Liceo Linguistico
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO Liceo Linguistico Anno scolastico 2017-2018 Programmazione di Matematica pag. 2 / 7 MATEMATICA - PRIMO BIENNIO OBIETTIVI SPECIFICI DI APRENDIMENTO ARITMETICA E ALGEBRA
LICEO SCIENTIFICO ALBERT EINSTEIN ANNO SCOLASTICO Classe 3D. LIBRO DI TESTO: Abbagnano- Fornero CON-FILOSOFARE Dalle origine ad Aristotele
LICEO SCIENTIFICO ALBERT EINSTEIN ANNO SCOLASTICO 2016-2017 Classe 3D LIBRO DI TESTO: Abbagnano- Fornero CON-FILOSOFARE Dalle origine ad Aristotele PROGRAMA FILOSOFIA LA GRECIA E LA NASCITA DELLA FILOSIA
Indice generale. Introduzione. 1. Alcuni esempi per iniziare Le origini della tradizione europea fra addestramento e formazione 15
vii Indice generale Introduzione XIII 1. Alcuni esempi per iniziare 1 1.1. Il problema dei sub 1 1.2. Un problema di geometria 5 1.3. Insegnare matematica senza paura 12 2. Le origini della tradizione
Storia della Matematica
Lezione 9 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 1 Aprile 2014 La scienza ellenistica Abbiamo dato uno sguardo aulla scienza ellenistica, limitandoci a due figure: Euclide e
PNI SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it PNI 200 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Enunciare il teorema del valor medio o di Lagrange illustrandone il legame con il teorema di Rolle e le implicazioni ai fini della determinazione
LE BASI BIOLOGICHE DEL LINGUAGGIO
LE BASI BIOLOGICHE DEL LINGUAGGIO Relazione tra il linguaggio e il substrato biologico che lo rende possibile insieme ad altre abilità cognitive e motorie. Bla bla bla 2% del nostro peso corporeo 20% delle
TFA 059 Didattica della Matematica 2. P. Piccinni, Sapienza Università di Roma, Marzo 2015
TFA 059 Didattica della Matematica 2 P. Piccinni, Sapienza Università di Roma, Marzo 2015 Vladimir Arnold (1937-2010) La Matematica è quel capitolo della Fisica la cui componente sperimentale è molto a
Geometria euclidea. Alessio del Vigna
Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,
Giocando intorno a Pitagora
12 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE per una educazione alla cittadinanza Giocando intorno a Pitagora Roma, lì 23 Maggio 2017 BUGLIA GIOVANNI LUIGI Contesto Scuola secondaria di primo grado Classe
La matematica nell arte di Escher
geometria, metamorfosi e percezione 11 febbraio 2011 La prospettiva è una tecnica pittorica che si sviluppa lentamente La prospettiva è una tecnica pittorica che si sviluppa lentamente Possiamo vedere
12 Sulle orme di Euclide. Volume 1: i Poligoni
PREFAZIONE Solitamente, le rare opere scientifiche dell antichità che sono giunte fino a noi rivestono solo un interesse storico. La maggior parte degli autori precedenti a Galileo viene studiata per conoscere
P R O G R A M M A ANNO SCOLASTICO 2017/18 SEDE: I.T.I. MARCONI. materia: MATEMATICA. classe: 1 elettronici sezione P. professori : Gallo Raffaelina
P R O G R A M M A ANNO SCOLASTICO 2017/18 SEDE: I.T.I. MARCONI materia: MATEMATICA classe: 1 elettronici sezione P professori : Gallo Raffaelina ALGEBRA DEI NUMERI NOZIONI FONDAMENTALI -nozioni fondamentali
VERIFICA DI MATEMATICA 2^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 2 aprile 2019
VERIFICA DI MATEMATICA 2^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 2 aprile 2019 NOME E COGNOME 1 2 3 4 5 Geometria Dato il triangolo
La geometria della riga e compasso
La geometria della riga e compasso Progetto Lauree Scientifiche A.S. 2010/2011 Università degli studi di Firenze 23/11/2010 Valore dell attività: Valore storico Valore dell attività: Valore storico Le
Percorsi nel piano e nello spazio con GeoGebra Pierangela Accomazzo
Percorsi nel piano e nello spazio con GeoGebra Pierangela Accomazzo Apprendere come? con un approccio di tipo simbolico-ricostruttivo (ti spiego, poi tu leggerai su un libro, rifletterai e cercherai di
V ANNO LICEO CLASSICO
Consolidamento della nozione di limite di successioni e di funzioni. Teorema del confronto. Il limite di somme e prodotti. funzione. Derivate di funzioni elementari. Derivata della somma e del prodotto
a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:
1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing
Il teorema nella storia - Dimostrazioni Il teorema di Pitagora nel trattato Chou Pei Suan Chjing - Il titolo del trattato corrisponde a Il libro classico dello gnomone e delle orbite circolari del cielo.
DIETRO LE QUINTE DELLA MATEMATICA
DIETRO LE QUINTE DELLA MATEMATICA TEKNOTRE Anno Accademico 2016-2017 Lezione n. 2/3 (18-11-/02-12-2016) PERUCCO Pieraldo CONCETTI CHIAVE Dubbio Matematica come strumento Prodotto della cultura umana Relativismo
Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE
LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE PRIMA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: GLI INSIEMI
Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23
Sommario 1. Che cos è la matematica? 1 1.1. Un sapere onnipresente e temuto 1 1.2. La domanda più difficile 6 1.3. Che cosa ci insegna la storia 10 1.4. Ai primordi delle rappresentazioni simboliche 11
Appunti di Matematica 1 - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione
GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.
POLO FERMI -GIORGI - LICEO DELLE SCIENZE APPLICATE PROGRAMMA SVOLTO CLASSE TERZA sezione D. Disciplina: FILOSOFIA
POLO FERMI -GIORGI - LICEO DELLE SCIENZE APPLICATE PROGRAMMA SVOLTO CLASSE TERZA sezione D Disciplina: FILOSOFIA Che cos è la filosofia L amore per il sapere Il cammino della filosofia: l influsso dell
Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Docente Patrizia Domenicone. Programmazione classi prime Sezione A
Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi prime Sezione A Tobia Ravà, Anime di luna, 2004 Programmazione di Matematica Classi Prime
Poligoni con riga e compasso
Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,
PROGRAMMAZIONE DISCIPLINARE
Modello A2 Istituto d Istruzione Superiore POLO-LICEO ARTISTICO - VEIS02400C VENEZIA Liceo Artistico, Liceo Classico e Musicale Dorsoduro, 1073 30123 Venezia tel. 0415225252, fax 041 2414154 PROGRAMMAZIONE
Storia della Matematica
Lezione 3 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 11 Marzo 2014 Il primo libro degli degli elementi Nei primi quattro libri degli elementi si tratta delle proprietà della geometria
P R O G R A M M A ANNO SCOLASTICO 2016/2017 SEDE: I.T.I. MARCONI. materia: MATEMATICA. classe: 1 elettronici sezione P. professori : Gallo Raffaelina
P R O G R A M M A ANNO SCOLASTICO 2016/2017 SEDE: I.T.I. MARCONI materia: MATEMATICA classe: 1 elettronici sezione P professori : Gallo Raffaelina ALGEBRA DEI NUMERI NOZIONI FONDAMENTALI -nozioni fondamentali
Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv
Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della
La matematica non è un opinione, lo è oppure...?
La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...
Ma cosa si pensava della forma della terra prima delle fotografie?
Ma cosa si pensava della forma della terra prima delle fotografie? Anassimandro (IV sec. a.c.) Omero (VIII sec. a.c.?) Aristotele (384-322 a.c.) riportava due osservazioni a riprova della sfericità della
Bruner Il viaggio verso la mente
Bruner 1915-2016 Il viaggio verso la mente Laureatosi in Psicologia nel 1941, si dedicò allo studio dell intelligenza cercando di scoprire i meccanismi della mente che seleziona ed ordina l esperienza
Introduzione. Nome. per la geometria. per le frazioni
Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra
Progettazione Curricolare di MATEMATICA. Dalla Progettazione Curricolare alla Progettazione per Competenze
Progettazione Curricolare di MATEMATICA Dalla Progettazione Curricolare alla Progettazione per Competenze CLASSE SECONDA SCUOLA SECONDARIA di PRIMO GRADO Competenze attese al termine della classe seconda
Progetto continuità LAVORO ESTIVO DI MATEMATICA. Per studenti che si iscrivono alla prima superiore
Progetto continuità LAVORO ESTIVO DI MATEMATICA Per studenti che si iscrivono alla prima superiore Il presente lavoro è stato predisposto da un gruppo di docenti delle scuole medie inferiori e superiori
Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam
ALGEBRA Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam Teoria degli insiemi - insiemi e loro rappresentazioni; - sottoinsiemi propri
Programma di matematica classe I sez. E a.s
Programma di matematica classe I sez. E a.s. 2015-2016 Testi in adozione: Leonardo Sasso vol.1- Ed. Petrini La matematica a colori Edizione blu per il primo biennio MODULO A: I numeri naturali e i numeri
Misura. Istituzioni di matematiche 2. Come facciamo a misurare? Come facciamo a misurare? Diego Noja
Istituzioni di matematiche 2 Diego Noja ([email protected]) 10 marzo 2009 Misura CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione Primaria Istituzioni
LA RAGIONE UMANA. -tale capacità si basa sull esistenza del linguaggio, senza il quale non si potrebbe avere previsione;
THOMAS HOBBES Thomas Hobbes è stato un filosofo e matematico britannico, autore nel 1651 dell'opera di filosofia politica Leviatano. Oltre che della teoria politica si interessò e scrisse di storia, geometria,
L operazione inversa dell elevamento a potenza è l estrazione della radice quadrata
Consideriamo un numero ed eleviamolo alla seconda L operazione inversa dell elevamento a potenza è l estrazione della radice quadrata Questa operazione si indica con il simbolo, che si legge radice quadrata
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
Per la terza classe della scuola secondaria di I grado. Numeri e rettangoli
Per la terza classe della scuola secondaria di I grado Numeri e rettangoli Qui sotto vedete due rettangoli, disegnati sulla carta a quadretti: il primo ha un lato di 39 quadretti e l altro di 27; il secondo
LA LINEA E LA STRADA DEI NUMERI ACQUISIZIONE MOTORIA DEL NUMERO
Fausto Presutti Carmela Bordignon: LA LINEA E LA STRADA DEI NUMERI FAUSTO PRESUTTI CARMELA BORDIGNON LA LINEA E LA STRADA DEI NUMERI ACQUISIZIONE MOTORIA DEL NUMERO Sono riservati tutti i diritti di traduzione,
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: settembre Strategie didattiche: Per abituare gli allievi
24/02/2010. STORIA DELLA MATEMAT ICA Prof. Carlo Minnaja. Lezioni per studenti del Corso di Laurea in Matematica 1 a settimana
STORIA DELLA MATEMAT ICA Prof. Carlo Minnaja Lezioni per studenti del Corso di Laurea in Matematica 1 a settimana Costruzione con riga e compasso Dato un insieme di punti E nel piano euclideo, consideriamo
