Storia della Matematica
|
|
|
- Orlando Conte
- 6 anni fa
- Visualizzazioni
Transcript
1 Lezione Dipartimento di Matematica Sapienza, Università di Roma Roma, 1 Aprile 2014
2 La scienza ellenistica Abbiamo dato uno sguardo aulla scienza ellenistica, limitandoci a due figure: Euclide e Archimede. Due caratteri distintivi della scienza ellenistica sono rigore di metodo e progettazione scientifica di apparati e meccanismi tecnologici, caratteristici anche della scienza moderna. Accanto alla matematica e alla meccanica, furono sviluppate nel periodo ellenistico, anche teorie scientifiche per ottica, scenografia, idrostatica, astronomia, geografia matematica, ecc. Tra le scienze sperimentali, fiorirono anatomia, fisiologia, botanica, zoologia, chimica, ecc. Altre eccezionali figure di scienziati ellenistici furono Erofilo (anatomia e fisiologia), Aristarco e Ipparco (Astronomia), Teofrasto (zoologia e botanica).
3 La distruzione della scienza ellenistica La distruzione della scienza ellenistica avvenne in quattro ondate successive 1 Conquista romana degli stati ellenistici: eliminazione dei soggetti politici che avevano finanziato la scienza, dispersione di quasi tutte le biblioteche, massiccia deportazione di intellettuali di lingua greca (uccisione di Archimede nel 212 a.c.). 2 Crisi dell impero romano (uccisione di Ipazia nel 415 d.c.) 3 Chiusura delle scuole filosofiche in Grecia, ordinata da Giustiniano nel 529 d.c. 4 Chiusura delle scuole filosofiche in Egitto e in Oriente dopo la conquista araba. Le rinascita della scienza nel periodo imperiale, dopo la prima ondata distruttiva, fu molto parziale e orientata al recupero delle sole parti della scienza ellenistica di immediato interesse per i conquistatori romani.
4 Caratteri della matematica indiana Esodo di intellettuali e scienziati greci: astronomi, matematici etc. che si stabiliscono in India. La matematica ellenistica dopo i grandi geometri Euclide, Archimede e Apollonio rivolge sempre più il proprio interesse all aritmetica, alla trigonometria e alla logistica. La matematica indiana mostra principalmente interesse per l aritmetica e il calcolo e non per la geometria. in India l interesse per la matematica è sempre strumentale (astronomia, calcoli commerciali) o ludico ed estemporaneo I maggiori contributi indiani alla matematica sono: l uso dello zero come numero; sistema di rappresentazione posizionale dei numeri; operazioni con i numeri negativi; operazioni algebriche su rapporti incommensurabili, concepiti alla stessa stregua dei numeri razionali. Il minor rigore della matematica indiana permette l introduzione e la ricerca delle proprietà di operazione e oggetti non ben definiti e non ben compresi, ma estremamente utili per gli sviluppi successivi della matematica. Questo approccio euristico permette un ampliamento degli orizzonti della matematica, al prezzo di una rinuncia a fondamenta rigorose e della perdita del controllo completo sui procedimenti e sui risultati.
5 Caratteri della matematica araba L impero conquistato in brevissimo tempo dagli arabi dopo la morte di Maometto, si estende dalla Spagna ai confini dell India. Dopo un periodo di grande violenza e di fanatismo religioso, i conquistatori arabi si mostrano tolleranti con la cultura degli stati conquistati e promuovono la valorizzazione degli intellettuali, e particolarmente degli scienziati indigeni. Nel 755 l impero arabo di spezza in due regni indipendenti. Quello occidentale, con capitale Cordova e quello orientale, con capitale Bagdad. A Bagdad furono fondati un osservatorio, una biblioteca e un accademia. Anche gli arabi, comne gli indiani, trattavano i rapporti irrazionali alla stessa stregua di quelli razionali, come se fossero numeri. I matematici arabi, a differenza di quelli indiani, continuarono a sviluppare la geometria geometria accanto all aritmetica e all algebra. Le dimostrazioni geometriche degli arabi cercano di conformarsi allo standard di rigore ellenistico mentre l aritmetica e l algebra vengono sviluppate con rigore inferiore. Spesso vengono presentati algoritmi numerici ma si cerca di dimostrarne la correttezza attraverso l interpretazione geometrica. Un contributo notevole della matematica araba riguarda lo studio di alcuni tipi di equazioni di terzo grado, di cui viene data l interpretazione geometrica attraverso l intersezione di cerchi e parabole.
6 Un esempio di interazione tra algebra e geometria Vediamo la formulazione di Al Kowarizmi di un problema algebrico equivalente alla soluzione di un equazione di secondo grado. La formulazione e la procedura di risoluzione sono completamente verbali e riguardano un caso particolare, trattato senza motivazioni nè spiegazioni, come nella tradizione mesopotamica. Un quadrato e dieci delle sue radici sono uguali a trentanove dirhems Si tratta quindi di risolvere l equazione x x = 39.
7 Un esempio di interazione tra algebra e geometria: II Soluzione prendi metà del numero delle radici, cioè cinque in questo caso, e quindi moltiplica questo numero per sé stesso e il risultato è 25. Aggiungi questo a 39, e ottieni 64. Estrai la radice quadrata, che è 8, e sottrai da questo metà del numero delle radici, cioè cinque, e rimane tre. Questa è la radice. Il procedimento determina un algoritmo applicabile in tutti i casi del genere ma non dimostra la correttezza del modo di procedere. Al Kowarizmi per dimostrare la correttezza del procedimento lo traduce in un problema geometrico.
8 Un esempio di interazione tra algebra e geometria: III Se u è un segmento unitario e x è un segmento di lunghezza x rispetto a u, allora x x = 39 significa che l area dello gnomone colorato (la figura composta dai due rettangoli verdi e dal quadrato rosso) vale 39. Poichè il quadrato bianco ha lato 5, la sua area vale 25. Quindi il quadrato grande ha area 64 = e quindi il suo lato x + 5 vale la radice quadrata di 64 cioè 8, da cui x = 3.
La geometria della riga e compasso
La geometria della riga e compasso Progetto Lauree Scientifiche A.S. 2010/2011 Università degli studi di Firenze 23/11/2010 Valore dell attività: Valore storico Valore dell attività: Valore storico Le
Programma di Maria Gabriella Cannas
Programma di Maria Gabriella Cannas Disciplina: matematica Libri di testo: Sasso Nuova Matematica a colori Algebra 2 Petrini Sasso Nuova Matematica a colori Geometria Petrini Ore settimanali: 5 Classe:
I numeri irrazionali nella geometria e nella storia. Daniela Valenti, Treccani scuola
I numeri irrazionali nella geometria e nella storia 1 Costruzioni geometriche di!a Con la geometria possiamo costruire un segmento che sia lungo esattamente!a Una costruzione semplice e versatile è basata
Sommario. 1. Che cos è la matematica? Numeri naturali e sistemi di numerazione 23
Sommario 1. Che cos è la matematica? 1 1.1. Un sapere onnipresente e temuto 1 1.2. La domanda più difficile 6 1.3. Che cosa ci insegna la storia 10 1.4. Ai primordi delle rappresentazioni simboliche 11
Storia della Matematica
Lezione 6 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 25 Marzo 2014 Archimede Nacque a Siracusa, probabilmente nel 287 a.c. e morì nel, 212 a.a. durante il sccheggio di Siracusa.
LICEO SCIENTIFICO STATALE G. GALILEI - SIENA
ANNO SCOLASTICO 2015 / 2016 LICEO SCIENTIFICO STATALE G. GALILEI - SIENA PROGRAMMA DI MATEMATICA SVOLTO NELLA CLASSE I sez. E TEORIA DEGLI INSIEMI * definizioni * rappresentazioni di un insieme * operazioni
PROGRAMMA DI MATEMATICA
Docente: Rosinella Cuomo Classe: IID Anno scolastico 2017/2018 ALGEBRA PROGRAMMA DI MATEMATICA 1. Le disequazioni di primo grado Insiemi di numeri sulla retta Disuguaglianze numeriche Disequazioni equivalenti
OBIETTIVI GENERALI OBIETTIVI SPECIFICI ALGEBRA
Revisione dei contenuti in data 21 aprile 2015 OBIETTIVI GENERALI Imparare a lavorare in classe (saper ascoltare insegnante e compagni, intervenire con ordine e nei momenti opportuni). Concepire il lavoro
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare
PROGRAMMA DI MATEMATICA
Classe: IE Indirizzo: artistico-grafico PROGRAMMA DI MATEMATICA I numeri naturali e i numeri interi 1. Che cosa sono i numeri naturali 2. Le quattro operazioni 3. I multipli e i divisori di un numero 4.
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S. VIA SILVESTRI 301 ANNO SCOLASTICO 2016-2017 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO. Liceo Linguistico
PROGRAMMAZIONE MATEMATICA PRIMO BIENNIO Liceo Linguistico Anno scolastico 2017-2018 Programmazione di Matematica pag. 2 / 7 MATEMATICA - PRIMO BIENNIO OBIETTIVI SPECIFICI DI APRENDIMENTO ARITMETICA E ALGEBRA
Programma di Matematica svolto durante l anno scolastico nella classe 2 sez.e
Programma di Matematica svolto durante l anno scolastico 2015-2016 nella classe 2 sez.e ALGEBRA 1) Richiami sul calcolo letterale e sulle equazioni algebriche lineari ad una incognita. 2) Disequazioni
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s
PROGRAMMAZIONE GENERALE MATEMATICA-INFORMATICA a.s. 2013-2014 GINNASIO CLASSI 4 sez. A-B-C SCIENZE UMANE CLASSI 1 sez. A-B-C-D-E-F Aritmetica e algebra Il primo anno sarà dedicato al passaggio dal calcolo
CLASSE I D. Anno scolastico 2017/2018
PROGRAMMA DI MATEMATICA Prof. MINARDA ELISABETTA CLASSE I D Anno scolastico 2017/2018 ARITMETICA: L insieme dei numeri naturali- Operazioni- Calcolo del M.C.D e del m.c.m- I sistemi di numerazione. L insieme
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate
Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il
La geometria della riga e compasso: Primo incontro
La geometria della riga e compasso: Primo incontro Progetto Lauree Scientifiche A.S. 2010/2011 Università degli Studi di Firenze 23/11/2010 Quando si devono rappresentare disegni geometrici, è importante
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Le lezioni frontali saranno associate a delle esperienze di laboratorio per accompagnare
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016
Programma di Matematica Classe 2^ E/L.L. Anno scolastico 2015/2016 ALGEBRA Ripasso programma di prima. Capitolo 5 - I monomi e i polinomi La divisione fra polinomi La divisione di un polinomio per un monomio.
LICEO SCIENTIFICO E. CURIEL Anno scolastico 2018/2019
LICEO SCIENTIFICO E. CURIEL Anno scolastico 2018/2019 Classe 1^ B PROGRAMMA CONSUNTIVO DEL DOCENTE DI: MATEMATICA PROF. FILIPPO SCARSO ALGEBRA I numeri naturali e i numeri interi I numeri razionali Insiemi
Storia delle matematiche
Progetto Lauree Scientifiche 2008-2009 Storia delle matematiche Livia Giacardi Dipartimento di Matematica, Università di Torino Scopi presentare alcuni argomenti di storia della matematica collegati con
MODULI DI MATEMATICA (PRIMO BIENNIO)
DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Biennio dell obbligo MODULI DI MATEMATICA (PRIMO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA DELL I.I.S. VIA SILVESTRI 301 ANNO SCOLASTICO 2017-20178 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: -
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2014/2015 CLASSE 2ALS MATERIA: MATEMATICA Strategie didattiche: Lelezionifrontalisarannoassociateadelleesperienzedilaboratorioperaccompagnarelateoriae
PROGRAMMAZIONE MODULARE
PROGRAMMAZIONE MODULARE Classe: 2 I.P.S.S. Sezione A Anno Scolastico: 2016-2017 Materia: MATEMATICA Docente: Danilo Latini FINALITÀ EDUCATIVE Far acquisire coscienza di se stessi, lavorando sull autostima
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)
COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI
CLASSE 1 B AFM 1. L ARITMETICA E L ALGEBRA DEI NUMERI I numeri naturali: che cosa sono, a cosa servono. Operazioni con i numeri naturali e loro proprietà: addizione, sottrazione, moltiplicazione, divisione,
LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone
A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.
PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE PRIMA IPC LEGENDA COMPETENZE 1) Utilizzare le tecniche e le procedure del calcolo aritmetico
LICEO SCIENTIFICO STATALE G. GALILEI - SIENA
LICEO SCIENTIFICO STATALE G. GALILEI - SIENA ANNO SCOLASTICO 2018/2019 PROGRAMMA DI MATEMATICA SVOLTO NELLA CLASSE I sez. B Prof.ssa Antonella Todaro TEORIA DEGLI INSIEMI * rappresentazioni di un insieme
Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam
ALGEBRA Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam Teoria degli insiemi - insiemi e loro rappresentazioni; - sottoinsiemi propri
ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.
B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro
Allegati dpr 89/2010 e d.m. 211/2010
DIPARTIMENTO MATEMATICA INDIRIZZO Servizi per l enogastronomia e l ospitalità alberghiera Programmazione disciplinare condivisa PRIMO BIENNIO Allegati dpr 89/2010 e d.m. 211/2010 DISCIPLINA MATEMATICA
V ANNO LICEO CLASSICO
Consolidamento della nozione di limite di successioni e di funzioni. Teorema del confronto. Il limite di somme e prodotti. funzione. Derivate di funzioni elementari. Derivata della somma e del prodotto
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI
Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni
ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini
ISTITUTO STATALE D ISTRUZIONE SUPERIORE Vincenzo Manzini Corsi di Studio: Amministrazione, Finanza e Marketing/IGEA- Costruzioni, Ambiente e Territorio/Geometra Liceo Linguistico/Linguistico Moderno -
LICEO SCIENTIFICO STATALE ANTONIO LABRIOLA. PROGRAMMA DI MATEMATICA Anno Scolastico 2017/2018
LICEO SCIENTIFICO STATALE ANTONIO LABRIOLA PROGRAMMA DI MATEMATICA Anno Scolastico 2017/2018 CLASSE 2I DOCENTE: prof.ssa Maria De Sanctis LIBRO DI TESTO: Matematica multimediale.blu con tutor vol 2 Massimo
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
L'avventura della matematica secondo il metodo Montessori dal punto di vista di un matematico
Roma, 21 gennaio 2016 L'avventura della matematica secondo il metodo Montessori dal punto di vista di un matematico Benedetto Scoppola, Opera Nazionale Montessori e Universita di Roma Tor Vergata Sommario
LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA
LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA OBIETTIVI SPECIFICI DEL BIENNIO 1) utilizzare consapevolmente le tecniche e le procedure di calcolo basilari studiate; 2) riconoscere nei
Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA
1. MODULO 1: RICHIAMI DI CALCOLO LETTERALE La scomposizione di polinomi e le operazioni con le frazioni algebriche 2. MODULO 2: LE EQUAZIONI Istituto di Istruzione Secondaria Superiore Statale Classe 1
algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi
Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015
Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni
LICEO DELLE SCIENZE UMANE ARTISTICO G. Pascoli Bolzano Anno scolastico 2017/ 18. Prof. Pillitteri Stefano PROGRAMMA DI MATEMATICA
CLASSE I D (indirizzo artistico) PROGRAMMA DI MATEMATICA Unità 1 - Numeri naturali e numeri interi 1. L insieme N 2. Le operazioni in N 3. Potenze ed espressioni in N 4. Multipli e divisori; 5. L insieme
MODULI DI MATEMATICA (SECONDO BIENNIO)
DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI MATEMATICA (SECONDO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico TERZA
Equazioni di primo grado
Riepilogo Multimediale secondo le tecniche della Didattica Breve Equazioni di primo grado realizzato con materiale reperibile on line www.domenicoperrone.net Distillazione su: LE EQUAZIONI OBIETTIVI COMPRENDERE
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE: 2^Bs. Insegnante : POCHETTI LUISA. Disciplina : MATEMATICA
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2017-2018 CLASSE: 2^Bs Insegnante : POCHETTI LUISA Disciplina : MATEMATICA PROGRAMMA SVOLTOPROGRAMMA SVOLTO: 1) SISTEMI LINEARI Sistemi di equazioni Metodo
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S
PROGRAMMA DI MATEMATICA PER LA CLASSE 2^A DEL LICEO SCIENTIFICO MALPIGHI SEZIONE ASSOCIATA I.I.S. VIA SILVESTRI ANNO SCOLASTICO 2015-2016 INSEGNANTE: MASCI ORNELLA ALGEBRA - Equazioni letterali fratte
PROGRAMMA DI MATEMATICA CONTENUTI.
PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI
LICEO CLASSICO - SCIENTIFICO STATALE "EUCLIDE" CAGLIARI Programma di Matematica classe 1 a D anno scolastico 2010/2011 Nozioni sugli insiemi Nozione di insieme, elemento, appartenenza. insiemi finiti ed
Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca
Matematica CLASSE PRIMA INDIRIZZO AFM - TUR UdA n. 1 Titolo: Calcolo aritmetico e algebrico Utilizzare le tecniche e le procedure di calcolo aritmetico e algebrico rappresentandole anche sotto forma grafica
