5. TEST DEI CUBI 5.1 I RAPPORTI TRIDIMENSIONALI
|
|
|
- Albano Capasso
- 9 anni fa
- Visualizzazioni
Transcript
1 5. TEST DEI CUBI 5.1 I RAPPORTI TRIDIMENSIONALI Il test dei cubi comprende alcune figure geometriche costituite, appunto, da cubi di dimensioni minori, di cui si deve calcolare il numero. Si tratta di un reattivo studiato per misurare l attitudine spaziale, ossia la capacità di raffigurare degli oggetti nello spazio tridimensionale e nel cogliere i rapporti che esistono fra loro. Questo test, inoltre, evidenzia il possesso di numerose altre attitudini: intelligenza generale; capacità percettiva (discriminazione di forme); attenzione; analisi e sintesi; capacità di ragionamento concreto e astratto. Il test dei cubi è stato inserito in numerose batterie di reattivi psicoattitudinali perché è un test del tipo culture-fair, ossia prescinde, almeno in parte, dal livello culturale dei candidati, richiedendo soltanto una capacità elementare di calcolo. La capacità di ragionamento aritmetico e geometrico è ben diversa dalla capacità di calcolo e non si riduce ad essa. Riuscire in questo tipo di test significa dimostrare di essere intelligenti e di saper ragionare. Come per altri test, l esercitazione facilita il superamento delle prove, per cui è consigliabile familiarizzare con le strategie più idonee alla soluzione di questo genere test. La difficoltà maggiore consiste nel fatto di dover calcolare la quantità dei cubi che sono nascosti alla vista. Osserviamo la figura a sinistra. Si tratta di un cubo costituito da numerosi piccoli altri cubi. Come possiamo calcolare il loro numero, dal momento che ne vediamo solo alcuni? Poiché per ogni lato ci sono tre cubi, la formula per il calcolo del loro numero totale è: 3 3 = = 27 65
2 66 Nella figura a sinistra notiamo che manca un piccolo cubo. Come calcolare quelli rimanenti? Evitiamo di addentrarci in complicati calcoli che ci farebbero perdere del tempo prezioso e potrebbero risultare errati. Calcoliamo il totale dei cubi e da esso sottraiamo un unità: = = 27 1 = 26 Nella figura a sinistra mancano invece due cubi. Pertanto il totale dei cubi sarà: = = 27 2 = 25 Per risolvere correttamente il test è importante riuscire a calcolare esattamente quanti cubi mancano al totale. Nel caso, invece, in cui i cubi mancanti siano numerosi, è bene utilizzare una diversa strategia. Immaginiamo di dividere il cubo grande in tre strati orizzontali: i cubi contenuti in ogni strato sono naturalmente dello stesso numero. Sarà sufficiente, quindi, calcolare quelli di un solo strato: 3 2 = 3 3 = 9.
3 Il numero totale dei cubi è costituito dal triplo dei cubi di ogni strato: 3 (3 2 ) = 3 9 = 27 Come calcolare il numero dei cubi che costituiscono la figura a sinistra? Notiamo che lo strato inferiore è al completo (9 cubi); nello strato intermedio mancano 3 cubi (9 3 = 6); nell ultimo strato abbiamo solo 3 cubi. Pertanto: = 18 67
4 68 Nell esempio a fianco osserviamo che i cubi dello strato inferiore e di quello centrale sono al completo (9 2 = 18). Per quanto riguarda lo strato superiore il calcolo è semplice perché i cubi sono in evidenza (5). Dunque: = 23 Aumentiamo ora il numero complessivo dei cubi. Utilizzando la formula che già conosciamo, poiché ogni lato è costituito da 4 cubi, il totale sarà: 4 3 = = 64 Per il calcolo differenziato, però, teniamo presente che gli strati di cubi sono quattro. Ogni strato è costituito da: 4 2 = 4 4 = 16 Il calcolo totale, oltre che con la formula precedente, può essere ottenuto nel seguente modo: = 64
5 Quanti sono i cubi del disegno a sinistra? Partendo dal basso verso l alto, notiamo che i cubi dello strato inferiore e di quelli intermedi sono completi, ossia: oppure: 16 3 = = 48 I cubi dello strato superiore sono evidentemente 12. Pertanto: = 60 Un calcolo più semplice consisterà, invece, nel sottrarre al numero totale (64 cubi) i 4 cubi mancanti: 64 4 = 60 Valuterete, di volta in volta, la strategia più idonea a calcolare con esattezza e in minor tempo il numero dei cubi. È possibile e auspicabile che, con l esercitazione, siate in grado di scoprire nuove e più efficaci strategie per semplificare i calcoli. Nella figura a sinistra potremo utilizzare indifferentemente l una o l altra delle strategie indicate. Il calcolo sarà uno dei seguenti: ( ) = = 56 oppure: 64 8 = 56 69
6 Ora siete in grado di eseguire rapidamente ed esattamente il test che di seguito vi proponiamo. Per ogni prova avete a disposizione sei possibilità di risposta. Dopo aver effettuato il calcolo dei cubi, indicatene con una crocetta il numero esatto. Avete a disposizione 6 minuti per eseguire l intero test. Esercizi 1) 2) 70 a) 80 d) 64 b) 72 e) 56 c) 68 f) 50 a) 80 d) 60 b) 72 e) 56 c) 64 f) 52
7 3) 4) a) 72 d) 55 b) 64 e) 52 c) 60 f) 48 a) 56 d) 44 b) 50 e) 40 c) 48 f) 36 71
8 5) 6) 7) 72 a) 56 d) 44 b) 52 e) 40 c) 48 f) 36 a) 60 d) 46 b) 56 e) 40 c) 50 f) 36 a) 80 d) 69 b) 78 e) 63 c) 75 f) 59
9 8) 9) 10) a) 64 d) 52 b) 60 e) 48 c) 56 f) 42 a) 56 d) 44 b) 52 e) 40 c) 48 f) 36 a) 61 d) 43 b) 55 e) 37 c) 49 f) 31 73
10 11) 12) 74 a) 60 d) 46 b) 56 e) 40 c) 50 f) 36 a) 56 d) 42 b) 50 e) 38 c) 46 f) 32
11 Risposte 1) Risposta esatta: d ) Risposta esatta: d ) Risposta esatta: d ) Risposta esatta: c ) Risposta esatta: b ) Risposta esatta: d ) Risposta esatta: e ) Risposta esatta: e ) Risposta esatta: f ) Risposta esatta: e ) Risposta esatta: f ) Risposta esatta: f. 32. Punteggio Per ogni risposta esatta attribuitevi i relativi punteggi. Prove nn : punti 1 Prove nn : punti 2 Prove nn : punti 3 Totale punti SCHEMA DI VALUTAZIONE Fino a 12 punti = insufficiente Da 13 a 15 punti = sufficiente Da 16 a 18 punti = buono Da 19 punti in poi = ottimo 75
Analisi Matematica I Primo Appello ( ) - Fila 1
Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)
Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende
Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare
LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della
LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza
Analizziamo sinteticamente da dove deriva l algoritmo di estrazione della radice quadrata
ALGORITMO ESTRAZIONE DI RADICE quadrata Analizziamo sinteticamente da dove deriva l algoritmo di estrazione della radice quadrata Nell algoritmo abbiamo applicato semplicemente il quadrato di un binomio
francesca fattori speranza bozza gennaio 2018
DERIVATE APPLICATE ALLO STUDIO DI FUNZIONE. OM Le derivate servono a trovare eventuali massimi e minimi delle funzioni. Ho pensato questo modulo in questo modo: concetto di derivata; calcolo di una derivata
PIANO DI LAVORO INDIVIDUALE
PIANO DI LAVORO INDIVIDUALE Anno scolastico: 2015/2016 Prof. Ceporina Francesco Disciplina: Matematica Classe: 1ª F 1 Livelli di partenza rilevati Livello numero alunni A ottimo B- Discreto / Buono 7 C
Triangoli numerici e loro conseguenze aritmetiche su quadrati, cubi, numeri di Lie, numeri di Fibonacci, ecc.
Triangoli numerici e loro conseguenze aritmetiche su quadrati, cubi, numeri di Lie, numeri di Fibonacci, ecc. Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In questo lavoro parleremo
PROGRAMMAZIONE INIZIALE
MATERIA : MATEMATICA PROGRAMMAZIONE INIZIALE ANNO SCOLASTICO: 2018-2019 INSEGNANTE: Risso Agostino CLASSE: 1C SETTORE: Servizi Commerciali INDIRIZZO: FINALITA DELLA DISCIPLINA (finalità formative generali
LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della
LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza
VERIFICA DI MATEMATICA 2^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 14 maggio 2019
VERIFICA DI MATEMATICA ^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 4 maggio 09 NOME E COGNOME 3 4 Sistemi lineari Angela investe un capitale
Come risolvere i quesiti dell INVALSI - primo
Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x
Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
MATEMATICA SCUOLA PRIMARIA - Classe 5 a
1 MATEMATICA SCUOLA PRIMARIA - Classe 5 a COMPETENZE CONOSCENZE ABILITÀ 1. Classificazioni 1a. Classificare secondo più proprietà e rappresentare. 1b. Individuare le proprietà di una classificazione. 2.
VERIFICA DI MATEMATICA 2^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 2 aprile 2019
VERIFICA DI MATEMATICA 2^D Liceo Linguistico impostazione classica rispondere su un foglio protocollo da riconsegnare entro il giorno 2 aprile 2019 NOME E COGNOME 1 2 3 4 5 Geometria Dato il triangolo
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008
Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:
La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato
La trilaterazione È necessario sapere e saper operare con: Le proporzioni Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione è una tecnica
per un altro; le più importanti sono quelle di seguito elencate.
2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,
Risolvere problemi e saperli spiegare. scuola secondaria di primo grado Leonardo da Vinci classe 1
Risolvere problemi e saperli spiegare scuola secondaria di primo grado Leonardo da Vinci classe 1 gruppo di lavoro insegnanti: Milena Spaggiari, insegnante matematica della classe; Simona Nardinocchi,
Anno 1. M.C.D. e m.c.m. fra monomi
Anno 1 M.C.D. e m.c.m. fra monomi 1 Introduzione In questa lezione impareremo come calcolare il massimo comune divisore (M.C.D.) e il minimo comune multiplo (m.c.m.) di due o più monomi. Infine introdurremo
TRAGUARDI DI SVILUPPO DELLE COMPETENZE MATEMATICA OBIETTIVI DI APPRENDIMENTO
Classe seconda primaria TRAGUARDI DI SVILUPPO DELLE COMPETENZE MATEMATICA L alunno sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Come risolvere i quesiti dell INVALSI - secondo
Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:
1 MODULO OPERATIVO IL MONDO DEGLI INSIEMI
1 MODULO OPERATIVO IL MONDO DEGLI INSIEMI Acquisire il concetto di insieme N 1 IL CONCETTO DI INSIEME - classificazione e confronto di oggetti diversi tra loro - riconoscimento di attributi di oggetti
RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE
Prof. Di Caprio 1 RISOLVERE EQUAZIONI DI PRIMO GRADO INTERE Introduzione In questa lezione impareremo a risolvere equazioni di primo grado intere. Esse sono molto utili principalmente per risolvere alcune
Concetto intuitivo di limite di una funzione
Concetto intuitivo di limite di una funzione I limiti di funzioni sono valori a cui le funzioni si avvicinano in certi punti particolari, ossia in punti in cui non è possibile definire le funzioni stesse
Il quadrato di binomio, assieme allaa differenza dei quadrati che vedremo in seguito, è uno dei più importanti prodotti notevoli.
PRODOTTI NOTEVOLI I prodotti notevoli sono identità matematiche molto utilizzate nella risoluzione di espressioni algebriche letterali in quanto permettono uno svolgimento rapido dei calcoli, inoltre si
Matrici di Raven e Bochum
Matrici di Raven e Bochum @ Le matrici di Raven e di Bochum sono tabelle 3 3 (ovvero con 3 righe e 3 colonne), o 3 5 (ovvero con 3 righe e 5 colonne), contenenti in ogni cella, tranne in una o due, alcuni
Misura. Istituzioni di matematiche 2. Come facciamo a misurare? Come facciamo a misurare? Diego Noja
Istituzioni di matematiche 2 Diego Noja ([email protected]) 10 marzo 2009 Misura CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione Primaria Istituzioni
Matematica CONOSCENZE
Classe 2^ Scuola Primaria COMPETENZA DI RIFERIMENTO Utilizzare con sicurezza le tecniche e le procedure del calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali OBIETTIVI
COMPETENZE ABILITA CONOSCENZE
SCUOLA PRIMARIA PIANI DI STUDIO MATEMATICA ANNO SCOLASTICO 2010/2011 CLASSE PRIMA Utilizzare le tecniche e le procedure del Associare la quantità al numero: simbolo e Aspetto cardinale e ordinale. calcolo
Come risolvere i quesiti dell INVALSI - terzo
Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di
Monomi L insieme dei monomi
Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili
Matematica Lezione 4
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri
La circonferenza nel piano cartesiano
6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la
Un ripasso di aritmetica: Conversione dalla base 10 alla base 2
Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre
Prodotti notevoli Quadrato di un binomio
Prodotti notevoli Con l espressione prodotti notevoli si indicano alcune identità che si ottengono in seguito alla moltiplicazione di polinomi aventi caratteristiche particolari facili da ricordare.. Quadrato
Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza
Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare
I criteri di divisibilita: magie della aritmetica modulare. Silvana Rinauro
I criteri di divisibilita: magie della aritmetica modulare Silvana Rinauro Si vuole risolvere il seguente problema: se oggi è mercoledì, quale giorno della settimana sarà fra 100 giorni? Per rispondere
Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2003 2004 PROVA DI MATEMATICA. Scuola Elementare. Classe Seconda.
Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a
DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a COMPETENZE 1. Operare con i numeri nel calcolo scritto e mentale CONOSCENZE CONTENUTI A. I numeri da 0 a 20 B. I numeri da 20 a 100
CONCETTO DI ASINTOTO. Asintoto verticale Asintoto orizzontale Asintoto obliquo
CONCETTO DI ASINTOTO Asintoto e' una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe' significa che non tocca, in pratica si tratta di una retta che
Come si rappresentano?
DISEGNO TECNICO Come si rappresentano? COSA È? È uno tra i PROIEZIONE ORTOGONALE S I S T E M A di R A P P R E S E N TA Z I O N E G R A F I C A = Insieme di regole Chi disegna deve essere sicuro che anche
GRIGLIA DI CORREZIONE 2012 Matematica Classe V Scuola Primaria
GRIGLIA DI CORREZIONE 2012 Matematica Classe V Scuola Primaria LEGENDA AMBITI: NU (Numeri), SF (Spazio e figure), DP (Dati e previsioni), RF (Relazioni e funzioni) LEGENDA PROCESSI: 1. Conoscere e padroneggiare
Esperto: Marco Tarantino
` ` ` ` MULTIPLI UNITA DI MISURA SOTTOMULTIPLI M h k da k u k h da u d c m km hm dam m dm cm mm hl dal l dl cl ml Mg hk Kg da Kg Kg hg dag g dg cg mg ESEMPIO ESEMPIO Sarebbe meglio chiamarli "tecniche"
CURRICOLO di MATEMATICA classe terza
CURRICOLO di MATEMATICA classe terza 1 TERZA NUCLEO DISCIPLINARE: A - NUMERI OBIETTIVO GENERALE: A1 - Operare con i numeri oralmente e per scritto LA QUANTITA NUMERICA 1. Costruire la serie numerica raggiungendo
Introduzione. La scheda didattica è stata ideata grazie ad uno spunto del prof. Stefano Penge dell Università La Sapienza di Roma.
Costruire l'area del quadrato con Scratch Autore: Lorenzo Cesaretti Categoria: Coding Introduzione Vediamo come creare un algoritmo per la costruzione dell'area di un quadrato, chiedendo la lunghezza del
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3
CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo [email protected] Indici di posizione per caratteri quantitativi discreti e continui Il seguente data set riporta la rilevazione
Mario Mariscotti. Nuovo. Tavole numeriche
Mario Mariscotti Nuovo Tavole numeriche Indice internet: www.petrini.it e-mail: scienze&[email protected] Numeri primi minori di 0.000 Tavole di scomposizione in fattori primi dei numeri da a.000 5
CIRCUITI RESISTIVI ESERCIZI
CIRCUITI RESISTIVI ESERCIZI Calcolare la corrente erogata dal generatore e la corrente passante per ogni resistenza dei seguenti circuiti CIRCUITO 1 Figura 1 Per prima cosa calcoliamo la resistenza equivalente
ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di
PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni
1 L estrazione di radice
1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato
Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011
Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma
Soluzioni della verifica scritta 1 B Scientifico 24/01/2009
Soluzioni della verifica scritta 1 B Scientifico 4/01/009 Esercizio 1. Il polinomio x +x 4 5 xy + y non èordinatoné rispetto a x nè rispetto a y. E completo rispetto a y ma non rispetto a x. Nonè omogeneo.
Soluzione. Soluzione. Soluzione. Soluzione
SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La
INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.
INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione
Lo sviluppo di un semplice programma e la dimostrazione della sua correttezza
Il principio di induzione Consideriamo inizialmente solo il principio di induzione per i numeri non-negativi, detti anche numeri naturali. Sia P una proprietà (espressa da una frase o una formula che contiene
