8.1 Problema della diffusione in meccanica quantistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "8.1 Problema della diffusione in meccanica quantistica"

Transcript

1 8.1 Problema della diffusione in meccanica quantistica Prima di procedere oltre nello studio dell interazione puntuale, in questo paragrafo vogliamo dare un breve cenno alle nozioni di base della teoria della diffusione (scattering in inglese) in meccanica quantistica, rimandando per una trattazione dettagliata a [RSIII], [T]. Nel prossimo paragrafo applicheremo tali nozioni al caso specifico dell interazione puntuale Introduzione al problema ominciamo descrivendo un esperimento di diffusione nella sua forma più semplice. onsideriamo una particella lanciata da grande distanza verso un bersaglio fisso nel laboratorio. Inizialmente la particella non sente l azione del bersaglio e si muove quindi di moto libero. A mano a mano che si avvicina al bersaglio, la particella comincia a sentire l interazione; l evoluzione quindi è sostanzialmente diversa da quella libera e tale rimane fino a quando la particella si muove nelle vicinanze del bersaglio. Infine la particella si allontana dal bersaglio e, dopo un tempo sufficientemente lungo, il suo moto diviene di nuovo un moto libero che, in generale, sarà diverso da quello iniziale. Un esperimento di diffusione consiste quindi nel determinare il moto libero finale (cioè dopo l interazione col bersaglio) per un assegnato moto libero iniziale (cioè prima dell interazione col bersaglio). In particolare ci limitiamo a considerare il caso in cui l energia cinetica del moto libero finale è uguale a quella del moto libero iniziale (diffusione elastica). Passiamo ora a formulare un modello matematico che descriva un tale esperimento di diffusione. Le due ipotesi alla base del modello sono le seguenti. i) Il bersaglio è un sistema fisico il cui stato non è influenzato dalla particella e la cui azione sulla particella è descritta da un potenziale V (x) che decade rapidamente a zero per x. ii) Il moto della particella è descritto dall equazione di Schrödinger. Da tali ipotesi discende dunque che lo stato della particella al tempo t è descritto da ψ t = e i t H ψ, H = H 0 + V (x), H 0 = 2 2m (8.1) dove ψ L 2 (R d ) è il dato iniziale e d denota la dimensione dello spazio. Per quanto detto sopra, la descrizione matematica di un esperimento di diffusione si basa sostanzialmente sullo studio delle soluzioni dell equazione di Schrödinger (8.1) che si riducono ad una evoluzione libera per t (cioè molto prima dell interazione con il bersaglio) e per t + (cioè molto dopo l interazione con il bersaglio). Nel seguito discuteremo brevemente i passi successivi da compiere per arrivare a tale descrizione Stati asintoticamente liberi e operatori d onda 1

2 Il primo passo consiste nel caratterizzare le soluzioni dell equazione di Schrödinger che per tempi grandi si riducono ad una evoluzione libera. A questo scopo diamo la seguente definizione. Definizione Lo stato ψ L 2 (R d ) si dice asintoticamente libero per t + se esiste f L 2 (R d ) tale che lim e i t H ψ e i t H 0 f = 0 (8.2) t + Analogamente si definisce uno stato asintoticamente libero per t. L insieme degli stati asintoticamente liberi per t e t + si denota con H in e H out rispettivamente. Naturalmente non tutti gli stati sono asintoticamente liberi. Per esempio ogni autovettore di H con autovalore negativo non è certamente asintoticamente libero. Il primo problema matematico è dunque dimostrare l esistenza di stati asintoticamente liberi. In altri termini occorre provare che, assegnata f L 2 (R d ), esiste ψ L 2 (R d ) tale che vale (8.2). Parlando grossolanamente, si tratta di risolvere il problema di auchy per l equazione di Schrödinger con dato iniziale assegnato a t = + (oppure a t = ). Usando il fatto che l operatore di evoluzione temporale è unitario, la (8.2) è equivalente a lim ψ t t + ei H e i t H 0 f = 0 (8.3) Quindi il problema si può riformulare così: per ogni f L 2 (R d ), provare che esiste il limite in L 2 (R d ) per t + di e i t H e i t H 0 f. Questo suggerisce la seguente altra importante definizione. Definizione Si dice operatore d onda Ω + l operatore lineare definito da Ω + f = lim t + ei t H e i t H 0 f (8.4) per ogni f L 2 (R n ). Analogamente si definisce l operatore d onda Ω. Si noti che risulta H in = Ran Ω, H out = Ran Ω + (8.5) In definitiva, provare l esistenza degli stati asintoticamente liberi equivale a provare l esistenza degli operatori d onda. Se il potenziale V (x) soddisfa opportune ipotesi di regolarità e decadimento all infinito allora si dimostra effettivamente che gli operatori d onda esistono. Per esempio, in dimensione tre una condizione sufficiente è V L 2 (R 3 ). Gli operatori d onda soddisfano alcune importanti proprietà: i) Gli operatori Ω ± sono isometrici. D altra parte, in generale, Ran Ω ± L 2 (R d ) e questo significa che gli operatori d onda non sono, in generale, unitari in L 2 (R d ). 2

3 Quindi risulta Ω ±Ω ± = I, Ran Ω ± sono due sottospazi chiusi di L 2 (R d ) e Ω ± Ω ± = P ±, dove P ± denotano gli operatori di proiezione ortogonale su Ran Ω ±. Equivalentemente, si ha Ω ± RanΩ± = Ω 1 ± e Ω ± (RanΩ± ) = 0. ii) Vale la proprietà di intrallacciamento (interwining in inglese), cioè Ω ± = e i t H Ω ± e i t H 0. Infatti, fissati s, t e f L 2 (R), risulta e i s+t H s+t i e H 0 f = e i t H e i s H e i s H 0 e i t H 0 f. Passando al limite s si ottiene la proprietà per Ω +. Analogamente si procede per Ω. Risulta inoltre che se f D(H 0 ) allora Ω ± f D(H) e HΩ ± f = Ω ± H 0 f (verificare). iii) Ran Ω ± sono sottospazi invarianti per l azione del gruppo e i t H. Infatti, se ψ Ran Ω allora esiste f L 2 (R) tale che ψ = Ω f e si ha e i t H ψ = e i t H Ω f = Ω e i t H 0 f Ran Ω. Analogamente si procede per Ω ompletezza asintotica e operatore di diffusione Una volta provata l esistenza degli operatori d onda si può affrontare il problema centrale della teoria della diffusione: per ogni evoluzione libera assegnata per t (cioè prima dell interazione con il bersaglio) determinare l evoluzione libera risultante per t + (cioè dopo l interazione con il bersaglio). A questo scopo è importante le seguente altra definizione. Definizione Si dice che vale la condizione di completezza asintotica se risulta dove H b indica il sottospazio degli stati legati del sistema. Ran Ω = Ran Ω + = H b (8.6) La verifica che vale la condizione di completezza asintotica costituisce il secondo (e più difficile) problema matematico della teoria della diffusione. Si può dimostrare che una condizione sufficiente in dimensione tre è che V L 1 (R 3 ) L 2 (R 3 ). Nel seguito facciamo vedere come, data l esistenza degli operatori d onda e la condizione di completezza asintotica, sia possibile risolvere il problema centrale della teoria della diffusione. Sia dunque assegnata f L 2 (R) e sia quindi e i t H 0 f il moto libero assegnato per t. Sfruttando l esistenza di Ω, possiamo costruire la soluzione dell equazione di Schrödinger e i t H Ω f che per t si riduce al moto libero assegnato, cioè tale che lim t t e i H Ω f e i t H 0 f = 0 (8.7) 3

4 Il problema è dunque caratterizzare l andamento asintotico dell evoluzione e i t H Ω f per t +. Usando la completezza asintotica, sappiamo che Ω f Ran Ω + e quindi esiste g L 2 (R) tale che Ω f = Ω + g. Inoltre, per definizione di Ω + risulta lim t t + e i H Ω f e i t H 0 g = 0 (8.8) In altri termini, in condizioni di completezza asintotica e i t H Ω f si riduce effettivamente per t + all evoluzione libera e i t H 0 g, dove g è la soluzione dell equazione Ω + g = Ω f. Tenuto conto che l operatore inverso di Ω + è ben definito su Ran Ω +, possiamo scrivere g = Ω 1 + Ω f Sf (8.9) L operatore S si dice operatore di diffusione, o anche matrice S, e la sua determinazione equivale a risolvere il problema della diffusione: se e i t H 0 f è l evoluzione libera assegnata per t allora e i t H 0 Sf è l evoluzione libera risultante per t +. L operatore S soddisfa alcune importanti proprietà. i) S è unitario. Infatti SS = Ω +Ω (Ω +Ω ) = Ω +Ω Ω Ω + = Ω +P Ω + = (Ω +P Ω + ) = (Ω +P + Ω + ) = (Ω +Ω + ) = I. Analogamente si verifica che S S = I. ii) [S, e i t H 0 ] = 0 Infatti S e i t H 0 = Ω +Ω e i t H 0 = Ω + e i t H Ω = (e i t H Ω + ) Ω = (Ω + e i t H 0 ) Ω = e i t H 0 Ω +Ω = e i t H 0 S. Risulta inoltre che se f D(H 0 ) allora Sf D(H 0 ) e [S, H 0 ]f = 0 (verificare). iii) Se f D(H 0 ) allora (f, H 0 f) = (Sf, SH 0 f) = (Sf, H 0 Sf). Quest ultima proprietà esprime il fatto che le energie cinetiche dei moti liberi uscente e entrante coincidono e dunque la diffusione è elastica Teoria della diffusione stazionaria La semplice dimostrazione dell esistenza degli operatori d onda Ω ± e della matrice S non è naturalmente sufficiente per studiare le applicazioni del modello. Il passo ulteriore è trovare delle buone rappresentazioni di questi oggetti in termini delle autofunzioni generalizzate dell hamiltoniana H. Tali autofunzioni in alcuni casi semplici si possono determinare esplicitamente 4

5 e, più in generale, si possono calcolare in modo perturbativo. Questo consente dunque di calcolare anche Ω ± e S, in modo esatto o perturbativamente. La parte di teoria che studia questo problema va sotto il nome di teoria della diffusione stazionaria Teorema della diffusione nei coni Vediamo infine come la conoscenza di S consenta di fare predizioni teoriche di dati sperimentali. onsideriamo per fissare le idee il caso tridimensionale e sia un cono con vertice nell origine del sistema di riferimento; supponiamo quindi che lo sperimentatore prepari lo stato libero incidente e i t H 0 f per t e misuri poi la probabilità che, per t +, la particella si trovi nel cono. Denotiamo tale probabilità con P(f, ). Tenuto conto che la soluzione dell equazione di Schrödinger che per t si riduce a e i t H 0 f si scrive e i t H Ω f, dalla regola di Born risulta P(f, ) = lim t + ( ) dx e i t H Ω f (x) 2 (8.10) Nella proposizione seguente, nota come teorema della diffusione nei coni, si dimostra una formula che consente di calcolare P(f, ) in termini di S. Proposizione Per ogni f L 2 (R 3 ) si ha P(f, ) = dk Sf(k) 2 (8.11) Dimostrazione Utilizzando il fatto che lim t + e i t H Ω f e i t H 0 Sf = 0, facciamo vedere che in (8.10) si può sostituire e i t H Ω f con e i t H 0 Sf. Posto u t e i t H Ω f e v t e i t H 0 Sf, si ha dx u t (x) 2 dx v t (x) 2 = dx ū t (x)(u t (x) v t (x)) + dx (ū t (x) v t (x))v t (x) ( ) 1/2 ( ) 1/2 ( ) 1/2 ( ) 1/2 dx u t (x) 2 dx u t (x) v t (x) 2 + dx u t (x) v t (x) 2 dx v t (x) 2 ( u t + v t ) u t v t (8.12) Siccome u t = v t = 1 e lim t + u t v t = 0, si ottiene ( ) P(f, ) = lim dx e i t H 0 Sf (x) 2 (8.13) t + Usando infine la forma asintotica per tempi grandi dell evoluzione libera si ha ( m ) 3 ( mx ) 2 P(f, ) = lim dx Sf = dk t + t t Sf(k) 2 (8.14) 5

6 Si verifica facilmente che la dimostrazione della proposizione procede allo stesso modo anche in dimensione due e uno. Nel primo caso i coni si riducono ad angoli con il vertice nell origine. In dimensione uno invece i coni possibili si riducono semplicemente al semiasse positivo R + e a quello negativo R. Quindi P(f, R + ) è la probabilità che, per t +, la particella si trovi sul semiasse positivo e P(f, R ) è la probabilità che, per t +, la particella si trovi sul semiasse negativo. Se si assegna un moto libero per t proveniente dal semiasse negativo con momento positivo allora P(f, R + ) rappresenta la probabilità di trasmissione e P(f, R ) la probabilità di riflessione. 6

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012

MECCANICA QUANTISTICA. Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME. Anno accademico 2011/2012 MECCANICA QUANTISTICA Corso di laurea in fisica PROGRAMMA DEL CORSO E PROGRAMMA D ESAME Anno accademico 2011/2012 Argomenti facenti parte del programma d esame. Argomenti facenti parte del programma d

Dettagli

8. Interazione puntuale

8. Interazione puntuale 8. Interazione puntuale 8. Hamiltoniana e spettro. 8.2 Espansione in autofunzioni. 8.3 Evoluzione asintotica per t ±. 8.4 Problema della diffusione in meccanica quantistica. 8.5 Applicazione all interazione

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

Esercitazioni di Meccanica Quantistica I

Esercitazioni di Meccanica Quantistica I Esercitazioni di Meccanica Quantistica I Sistema a due stati Consideriamo come esempio di sistema a due stati l ammoniaca. La struttura del composto è tetraedrico : alla sommità di una piramide con base

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente,

F x 1 = x 1 + x 2. 2x 1 x 2 Determinare la matrice C associata a F rispetto alla base canonica (equivalentemente, Corso di Laurea in Fisica. Geometria 1. a.a. 2006-07. Gruppo B. Prof. P. Piazza Esonero del 1/12/06 con soluzione Esercizio. Spazio vettoriale R 2 con base canonica fissata e coordinate associate (x 1,

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A.

1 PRELIMINARI 1.1 NOTAZIONI. denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. 1 PRELIMINARI 1.1 NOTAZIONI denota l insieme vuoto. a A si legge a appartiene a A oppure a è elemento di A. B A si legge B è un sottoinsieme di A e significa che ogni elemento di B è anche elemento di

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE /2 DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 0 Vecchio Ordinamento o Applicativo: Risolvere gli esercizi I e II (tempo: due ore Siano date due particelle (non identiche di spin /. A t =0lospindellaprimapunti nella direzione

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE 0/ DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 3. Teoria della misura e dell

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

PROBLEMA A DUE CORPI: STATI DEL CONTINUO

PROBLEMA A DUE CORPI: STATI DEL CONTINUO Capitolo 10 PROBLEMA A DUE CORPI: STATI DEL CONTINUO Riprendiamo l equazione di Schrödinger per il sistema di due particelle interagenti con l intento di cercare la classe di soluzioni che descrivono stati

Dettagli

Successioni ricorsive

Successioni ricorsive Successioni ricorsive Emanuele Paolini Analisi Matematica I, 015 016 In queste note prenderemo in considerazione le successioni a n definite per ricorrenza o ricorsivamente dalle condizioni: a1 = α, (1)

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009

Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009 Prova Finale di Tipo B e Prova di Accesso alla Laurea Magistrale 30 Gennaio 2009 Dipartimento di Matematica Università di Roma Tre U. Bessi, A. Bruno, S. Gabelli, G. Gentile Istruzioni (a) La sufficienza

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Geometria I. Soluzioni della prova scritta del 19 settembre 2016

Geometria I. Soluzioni della prova scritta del 19 settembre 2016 Geometria I Soluzioni della prova scritta del 9 settembre 6 Esercizio Consideriamo una forma bilineare simmetrica g : V V R su uno spazio vettoriale reale V di dimensione finita, una sua base B e la matrice

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013

Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del 2/12/2013 Istituzioni di Probabilità Laurea magistrale in Matematica prova scritta del /1/13 Exercise 1 punti 1 circa Un foglio browniano è un processo gaussiano a valori reali X s, t, indicizzato da s, t in [,

Dettagli

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII

ELEMENTI DI LOGICA MATEMATICA LEZIONE VII ELEMENTI DI LOGICA MATEMATICA LEZIONE VII MAURO DI NASSO In questa lezione introdurremo i numeri naturali, che sono forse gli oggetti matematici più importanti della matematica. Poiché stiamo lavorando

Dettagli

Compitino 1 di Meccanica Quantistica I

Compitino 1 di Meccanica Quantistica I Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Capitolo 6 EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Consideriamo lo studio di stati stazionari di sistemi elementari. Il sistema più semplice è quello di una particella libera, la cui

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Note di Teoria della Probabilità.

Note di Teoria della Probabilità. Note di Teoria della Probabilità. In queste brevi note, si richiameranno alcuni risultati di Teoria della Probabilità, riguardanti le conseguenze elementari delle definizioni di probabilità e σ-algebra.

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

Teoria dello scattering

Teoria dello scattering Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 7 Teoria dello scattering Teoria dello scattering Abbiamo già usato la regola d oro di Fermi per calcolare delle sezioni d urto:

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 3 Sistemi di equazioni lineari Siano m, n N \ {}, sia K un campo Definizione a) Un sistema

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

24.1 Coniche e loro riduzione a forma canonica

24.1 Coniche e loro riduzione a forma canonica Lezione 24 24. Coniche e loro riduzione a forma canonica Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y amenodicostantimoltiplicativenonnulle,diciamo ax

Dettagli

Modelli e Metodi Matematici della Fisica. S1/AC

Modelli e Metodi Matematici della Fisica. S1/AC Modelli e Metodi Matematici della Fisica. S/AC Filippo Cesi 2 Nome Cognome Devo verbalizzare questo esame come (fare una croce): 2 CFU (AA 2-) 6 CFU (solo anal. funzionale) 6 CFU (solo anal. complessa)

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005 Prova Finale di Tipo B e Prova di Accesso alla Laura Special Dip. Matematica - Università Roma Tre 2 febbraio 2005 Istruzioni. a) La sufficienza viene raggiunta con un punteggio di almeno 20 punti in ciascuno

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 2/4 FM2 - Fisica Matematica I Prima Prova di Esonero [--2]. (2 punti). Si consideri il sistema lineare ẋ = αx + x 2 + α, ẋ 2 = x + 2α, ẋ = α 2 x 2 con α

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Analisi Matematica 2 Successioni di funzioni CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 6 SERIE DI POTENZE Supponiamo di associare ad ogni n N (rispettivamente ad ogni n p, per qualche

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

0.1 Introduzione Algebra lineare 3

0.1 Introduzione Algebra lineare 3 Indice 0.1 Introduzione... 2 Algebra lineare 3 1.1 Spazi vettoriali... 3 1.2 Applicazioni lineari... 8 1.3 Matrici... 12 1.4 Sul prodotto scalare... 15 1.5 Applicazioni lineari e matrici... 17 1.6 Sistemi

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Proprietà Strutturali dei Sistemi Dinamici: Stabilità

Proprietà Strutturali dei Sistemi Dinamici: Stabilità Proprietà Strutturali dei Sistemi Dinamici: Stabilità Ingegneria dell'automazione Corso di Sistemi di Controllo Multivariabile - Prof. F. Amato Versione 2.2 Ottobre 2012 1 Stabilità Consideriamo il sistema

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

Soluzioni del Tutorato 4 (29/03/2017)

Soluzioni del Tutorato 4 (29/03/2017) 1 Soluzioni del Tutorato 4 (29/3/217) Esercizio 1 Si consideri il moto di una particella di massa m = 1 soggetta a una forza centrale di potenziale V ( r ) = log( r ) Si studi qualitativamente il moto

Dettagli

Analisi Matematica 2. Continuità, derivabilità e differenziabilità

Analisi Matematica 2. Continuità, derivabilità e differenziabilità Docente: E. G. Casini Università degli Studi dell Insubria DIPATIMENTO DI SCIENZA E ALTA TECNOLOGIA Corso di Studio in Matematica e Fisica Analisi Matematica ichiami di Teoria ed Esercizi con Svolgimento

Dettagli

Lezione Risoluzione di sistemi

Lezione Risoluzione di sistemi Lezione Risoluzione di sistemi Sia AX = B un sistema di equazioni lineari, con la sua matrice completa associate (A B) Per la Proposizione sappiamo di poter trasformare con operazioni elementari di riga

Dettagli