Sistemi di equazioni differenziali
|
|
|
- Giacomo Monaco
- 8 anni fa
- Visualizzazioni
Transcript
1 Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere un sistema ecologico di due o più popolazioni. Consideriamo quindi un sistema di due equazioni differenziali { x f(x, y y g(x, y ( dove x x(t e y y(t sono due funzioni incognite (ad esempio le densità di due popolazioni al variare del tempo e f(x, y e g(x, y sono funzioni assegnate (che supponiamo differenziabili in una regione del piano. Un sistema di questo tipo si dice autonomo poichè le funzioni f(x, y e g(x, y non dipendono dal tempo t. Esempio 5.1. { x y y x è un sistema detto oscillatore armonico. Più in generale, { x 5x + y y x y è un sistema lineare omogeneo a coefficienti costanti. È utile rappresentare il sistema in forma matriciale: ( x y ( 5 ( x y Una soluzione del sistema ( è data da una coppia di funzioni x(t, y(t derivabili in un certo intervallo. In generale, le soluzioni del sistema non sono uniche ma dipendono da due costanti arbitrarie. Per determinarle, purchè valgano condizioni di regolarità per le funzioni f e g, è sufficiente fissare le condizioni iniziali, Vale cioè il 55
2 56 Capitolo 5 Teorema 5. (di Cauchy. Sotto opportune ipotesi di regolarità per le funzioni f e g, assegnate le condizioni iniziali x(t 0 x 0, y(t 0 y 0, esiste un unica coppia di funzioni x(t, y(t, soluzioni del sistema ( che verificano le condizioni iniziali. Esempio 5.3 (L oscillatore armonico. Abbiamo visto che un esempio di sistema omogeneo a coefficienti costanti è l oscillatore armonico: { x y y x. Ora, se deriviamo la prima equazione, troviamo e sostituendo la seconda equazione x y x x. Quest ultima è un equazione del secondo ordine a coefficienti costanti che ha come soluzione generale x c 1 cos t + c sin t. Sostituendo nella seconda equazione si trova y c 1 cos t + c sin t e quindi y c 1 sin t c cos t. Non è difficile vedere che le curve soluzione sono circonferenze. Ad esempio se la condizione iniziale è il passaggio per il punto P 0 (1, 0 si ha c 1 1, c 1 e quindi la soluzione { x cos t y sin t. che è la circonferenza di centro l origine e raggio unitario. Si noti che al variare del parametro t, ogni soluzione x x(t, y y(t descrive nel piano x, y una curva che viene detta orbita oppure traiettoria del sistema. Un punto (x 0, y 0 tale che f(x 0, y 0 0 e g(x 0, y 0 0 si dice punto stazionario o di equilibrio. Si noti che la soluzione dell equazione differenziale passante per (x 0, y 0 è (x(t, y(t (x 0, y 0. In altre parole, l orbita di un punto stazionario è il punto stesso. S. Console M. Roggero
3 Sistemi di equazioni differenziali Il piano delle fasi Un sistema di equazioni differenziali { x f(x, y y g(x, y si può interpretare in modo fisico nel modo seguente: la coppia di funzioni (f(x, y, g(x, y definisce in ogni punto del piano un vettore e quindi descrive un campo vettoriale V. Le soluzioni (x(t, y(t possono essere interpretate come posizione di una particella al tempo t la cui velocità (x, y è data in ogni punto dal campo V. Le orbite sono quindi le traiettorie della particella. Il piano x, y viene detto piano delle fasi. Esempio 5.4. Nel caso del sistema { x x + y y 3x + y che può essere scritto in forma matriciale come ( x scriviamo alcuni vettori del campo: P P P ( 1 1 ( 0 ( 3 y ( 1 3 V V V ( x y ( 1 3 ( 1 3 ( 1 3 ( 1 1 ( 0 ( 3 ( 1 1 ( 6 ( 7 13 Se facciamo questo per un gran numero di vettori otteniamo il piano delle fasi. Il seguente disegno rappresenta il piano delle fasi e alcune traiettorie. Modelli Matematici applicati all Ecologia (3.1.06
4 58 Capitolo 5 Esempio 5.5. Nel caso dell oscillatore armonico abbiamo il seguente piano delle fasi. { x y y x S. Console M. Roggero
5 Sistemi di equazioni differenziali 59 Le orbite (eccetto l orbita per l origine, che è l origine stessa sono circonferenze di centro l origine. Se consideriamo il sistema (che possiamo pensare come una lieve pertubazione dell oscillatore armonico { x 0.05x y y x 0.05y abbiamo il seguente piano delle fasi con orbite che a differenza del caso dell oscillatore armonico non sono chiuse. Modelli Matematici applicati all Ecologia (3.1.06
6 60 Capitolo 5 5. Soluzioni di sistemi lineari omogenei a coefficienti costanti Vediamo ora come si possono trovare in generale le soluzioni di un sistema lineare omogeneo a coefficienti costanti { x ax + by y cx + dy che può essere scritto in forma matriciale come ( ( ( x a b x y c d y ossia: posto Z AZ, ( ( ( x Z, Z x a b y y, A. c d L idea è di operare in modo simile al caso delle equazioni del second ordine omogenee a coefficienti costanti: cerchiamo soluzioni di tipo esponenziale, cioè del tipo Z W e λt S. Console M. Roggero
7 Sistemi di equazioni differenziali 61 con W un vettore che scriviamo come matrice 1 (vettore colonna ( w1 W, e λ α + iβ un numero complesso. Sostituendo Z W e λt nell equazione Z AZ troviamo cioè, dividendo per e λt : w λw e λt AW e λt λw AW. Questo significa che λ è un autovalore di A e W un autovettore di A. Dunque la ricerca delle soluzioni del sistema lineare omogeneo Z AZ si riduce alla ricerca degli autovalori ed autovettori della matrice A. Esempio 5.6. Consideriamo il sistema ( ( x 5 y Autovalori ed autovettori di A sono: λ 1 1, W 1 λ 6, W ( x y ( 1 ( 1.. Ogni coppia autovalore-autovettore produce una soluzione: ( ( 1 e t, e 6t. 1 La soluzione generale è una combinazione lineare delle soluzioni: ( ( 1 W c 1 e t + c e 6t, 1 con c 1 e c costanti arbitrarie. Leggendo il risultato per righe possiamo scrivere le soluzioni generali per x e y: { x c1 e t + c e 6t, y c 1 e t c e 6t. In generale, abbiamo i seguenti casi per le soluzioni di sistemi lineari omogenei a coefficienti costanti: Modelli Matematici applicati all Ecologia (3.1.06
8 6 Capitolo 5 A ha autovalori reali distinti: la soluzione generale è del tipo W c 1 W 1 e λ 1t + c W e λ t, dove λ 1 e λ sono gli autovalori, W 1 e W i relativi autovettori e c 1 e c costanti arbitrarie. A ha autovalori reali coincidenti: in tal caso possiamo avere due casi a seconda che in corrispondenza all unico autovalore λ di molteplicità, A possieda autovettori indipendenti oppure questo non avvenga. Il secondo caso è più complesso e non lo trattiamo rimandando ad esempio a [Antonio C. Capelo, Modelli matematici in biologia, introduzione all ecologia matematica, Zanichelli Decibel editore, Cap. I.5.1]. Se invece A ha autovettori indipendenti W 1 e W, la soluzione generale è del tipo W c 1 W 1 e λt + c W e λt, dove c 1 e c sono costanti arbitrarie. A ha autovalori complessi coniugati λ 1 α + iβ, λ α iβ: in questo caso gli autovettori sono W 1 ± iw e usando la formula di Eulero si vede che la soluzione generale è del tipo W c 1 e αt (W 1 cos(βt W sin(βt + c e αt (W 1 sin(βt + W cos(βt, dove c 1 e c sono costanti arbitrarie. Esempio 5.7. Consideriamo il sistema ( ( x 0 1 y 4 0 ( x y Gli autovalori della matrice del sistema A sono soluzioni dell equazione caratteristica: λ 1 4 λ λ e sono quindi dati da ±i. I corrispondenti autovettori sono ( 1 ±i cioè ( 1 0 ( 0 ± i. S. Console M. Roggero
9 Sistemi di equazioni differenziali 63 La soluzione generale è quindi: W c 1 (( 1 0 +c (( 1 0 ( 0 cos(t sin(t + ( 0 sin(t cos(t con c 1 e c costanti arbitrarie. Leggendo il risultato per righe possiamo scrivere le soluzioni generali per x e y: { x c1 cos(t + c sin(t, y c 1 sin(t + c cos(t. Notiamo che possiamo scrivere le equazioni delle orbite in modo più espressivo quadrando ed eliminando il tempo t tra le equazioni: +, x y c 1 cos (t + c 1 c sin(t cos(t + c sin (t 4c 1 sin (t 8c 1 c sin(t cos(t + 4c cos (t Moltiplicando la prima equazione per 4 e sommando le due equazioni, troviamo 4x + y 4(c 1 + c, che rappresenta l equazione di un ellisse. Dunque, in questo caso le orbite sono ellissi, come si vede dalla seguente figura, che mostra il piano delle fasi e alcune orbite. Modelli Matematici applicati all Ecologia (3.1.06
10 64 Capitolo Esercizi S. Console M. Roggero
Equazioni del 2. ordine omogenee a coeff. costanti
Equazioni del. ordine omogenee a coeff. costanti Hanno la forma Ricordiamo che la soluzione dell equazione e Pertanto cerchiamo le soluzioni sempre sotto forma di esponenziali. y"" + ay" + by = 0 Try y
Equazioni differenziali lineari del secondo ordine a coefficienti costanti
Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione
determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.
ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai
1 Equazioni Differenziali
Equazioni Differenziali Un equazione differenziale è un equazione che esprime un legame tra una variabile indipendente x (o t, quando ci riferiamo al tempo) una variabile dipendente y o incognita che sta
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI
ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1
Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari
Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano
Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti
Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale Sia A R n,n una matrice quadrata n n Per definire l esponenziale di A, prendiamo spunto dall identità e
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,
II Università degli Studi di Roma
Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado
Lo studio dell evoluzione libera nei sistemi dinamici
Lo studio dell evoluzione libera nei sistemi dinamici December, Un sistema lineare, dinamico, a dimensione finita e continuo (ovvero in cui il tempo t appartiene all insieme dei reali) può essere descritto
Risoluzione di sistemi lineari
Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini
Equazioni differenziali
4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte
Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine
Corso di Analisi Numerica
Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:
Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0
0.1 Condizione sufficiente di diagonalizzabilità
0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali
Cenni sulle coniche 1.
1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò ([email protected]) Scopo della geometria analitica
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2
1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano
Studio generale di una conica
Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica
MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari
MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Analisi Matematica 2: Esercizi su Equazioni Ordinarie
Analisi Matematica 2: Esercizi su Equazioni Ordinarie Vladimir Georgiev Dipartimento di Matematica L.Tonelli, Università di Pisa, Largo Bruno Pontecorvo 5, I-56127, Pisa, Italy. E-mail: [email protected]
3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.
1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la
Equazioni differenziali lineari a coefficienti costanti
Equazioni differenziali lineari a coefficienti costanti Generalità Il modello matematico di un qualsiasi sistema fisico in regime variabile conduce alla scrittura di una o più equazioni differenziali.
LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m
LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta
Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10
Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un
Capitolo 6. Sistemi lineari di equazioni differenziali. 1
Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare
Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti
Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo
Metodo dei minimi quadrati e matrice pseudoinversa
Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati
Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ [email protected] Lorenzo Pareschi (Univ. Ferrara)
Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.
Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
2.1 Esponenziale di matrici
¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare
7. Equazioni differenziali
18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non
Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011
Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:
0.1 Arco di curva regolare
.1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali
Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.
Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..
ESERCIZI SUI SISTEMI LINEARI
ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio
Alcune nozioni di calcolo differenziale
Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio
Esercizi sui sistemi di equazioni lineari.
Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la
TEMI D ESAME DI ANALISI MATEMATICA I
TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare
10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI
15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono
Operazioni tra matrici e n-uple
CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
1 Rette e piani in R 3
POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata
Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] ette e piani nello spazio. 9 Gennaio
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g
LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
I teoremi della funzione inversa e della funzione implicita
I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Classificazione delle coniche.
Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto
S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto
SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Polinomio di Taylor del secondo ordine per funzioni di due variabili
Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente
Massimi e minimi vincolati
Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché
Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x
Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x
Osservazioni sulle funzioni composte
Osservazioni sulle funzioni composte ) 30 dicembre 2009 Scopo di questo articolo è di trattare alcuni problemi legati alla derivabilità delle funzioni composte nel caso di funzioni di R n in R m Non si
MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R
ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo
Equazioni di Eulero del corpo rigido.
Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle
Coniche - risposte 1.9
Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.
Geometria analitica: rette e piani
Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
Parte 12b. Riduzione a forma canonica
Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,
Funzioni di più variabili a valori vettoriali n t m
Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio
Dipendenza e indipendenza lineare
Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus
Esercizi sulle coniche (prof.ssa C. Carrara)
Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare
Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.
1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3
NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +
NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,
1 Combinazioni lineari.
Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni
