Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27"

Transcript

1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

2 Introduzione Sia f : I R e sia x 0 I. Problemi: come approssimare f nell intorno di x 0 con un polinomio? come stimare l ordine di infinitesimo della differenza fra la funzione e il polinomio approssimante? La risposta a questi problemi è legata a proprietà di regolarità di f ordine di derivabilità di f Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 2 / 27

3 1 troveremo un polinomio P n di grado n tale che f (x) = P n (x) + o ((x x 0 ) n ) per x x 0, 2 esprimeremo P n mediante le derivate di f in x 0 fino all ordine n. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 3 / 27

4 Il polinomio di Taylor con il resto di Peano Siano f : I R, x 0 I, e supponiamo che una f sia derivabile n volte in x 0, con n N. Allora esiste un unico polinomio P n di grado n tale che f (x) = P n (x) + o ((x x 0 ) n ) per x x 0. Vale P (k) n (x 0 ) = f (k) (x 0 ) per k = 0,..., n, quindi P n è dato da P n (x) = n k=0 f (k) (x 0 ) (x x 0 ) k. k! P n : polinomio di Taylor di f di ordine n e di centro x 0 e indicato con T n x 0 f. Se x 0 = 0, P n è detto polinomio ditaylor di f di ordine n e di centro 0 e indicato con T n f. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 4 / 27

5 Conseguenza Da f (x) = P n (x) + o ((x x 0 ) n ) per x x 0 si ricava la formula di Taylor con il resto di Peano: f (x) = n k=0 f (k) (x 0 ) (x x 0 ) k + o ((x x 0 ) n ) per x x 0. k! Attenzione!!!!!! a non confondere i due concetti ordine del polinomio di Taylor n k=0 è l indice n fino al quale sommo f (k) (x 0 ) (x x 0 ) k k! grado del polinomio di Taylor: è il grado effettivo del polinomio, è dell ordine, e può essere < dell ordine. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 5 / 27

6 Casi particolari della formula di Taylor con resto di Peano: (0) T 0 x 0 f = P 0 (x) = (1) T 1 x 0 f = P 1 (x) = (2) T 2 x 0 f = P 2 (x) = (3) T 3 x 0 f = P 3 (x) = Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 6 / 27

7 Programma calcolo di polinomi di Taylor e quindi di sviluppi di Taylor applicazione degli sviluppi di Taylor a limiti di funzioni (anche limiti di successioni) applicazione degli sviluppi di Taylor allo studio del grafico qualitativo di funzioni: criterio della derivata n-esima Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 7 / 27

8 Esempio: sviluppo di Taylor di cos per x 0 Calcoliamo Si ha j N Quindi T n 0 (cos(x)) = n k=0 cos (k) (0) cos (4j) (x) = cos x, cos (4j+1) (x) = sin x, cos (4j+2) (x) = cos x, cos (4j+3) (x) = sin x. cos (4j) (0) = 1 cos (4j+1) (0) = 0 cos (4j+2) (0) = 1 cos (4j+3) (0) = 0 allora nella formula per T0 n (sin(x)) sopravvivono solo in contributi con indice k PARI!! k! x k Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 8 / 27

9 Per esempio T 1 0 (cos(x)) = 1 In forma compatta si scrive T 2 0 (cos(x)) = x 2 T 4 0 (cos(x)) = x x 4 T 2n (cos x) = n k=0 ( 1) k (2k)! x 2k Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 9 / 27

10 Polinomi di Taylor notevoli (di centro x 0 = 0) T n (e x ) T n (log(1 + x)) T 2n+1 (sin x) T 2n (cos x) T 2n+1 (sinh x) T 2n (cosh x) = n k=0 xk k!, = n ( 1) k+1 x k k=1 k, x 1 = n ( 1) k x 2k+1 k=0 (2k+1)!, = n ( 1) k x 2k k=0 (2k)!, n k=0 x2k+1 (2k+1)!, = n k=0 x2k (2k)!, Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 10 / 27

11 T n ((1 + x) α ) = 1 + αx + per x > 1, α > 0 α(α 1) x ( ) α x n n n T n ((1 x) 1 ) = x k, per x 1 k=0 T 2n+1 (arctan)(x) = n k=0 ( 1) k x 2k+1. (2k + 1) Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 11 / 27

12 Sviluppi di Taylor notevoli Esempio Per x 0 si ha e x = 1 + x + x x 3 3! x n n! + o(x n ) Esempio Per x 0 si ha (1 + x) α = 1 + αx + α(α 1) x ( ) α x n + o(x n ) n Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 12 / 27

13 Calcolo di polinomi di Taylor: esempio 1. Calcoliamo il polinomio di Taylor di ordine 6 e centro 0 di f (x) = e x2 x R. Si ha T0 6 (f (x)) = 1 + x 2 + x x Calcoliamo il polinomio di Taylor di ordine 6 e centro 0 di f (x) = log(2 + x 2 ) x R. Si ha T0 6 (f (x)) = log 2 + x 2 2 x x 6 24 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 13 / 27

14 Applicazioni al calcolo dei limiti: esempio Calcolare Si ha Quindi lim x 0 x sin x x(1 cos x). sin x = x x 3 cos x = 1 x 2 lim x o(x 3 ), 2 + o(x 3 ) x sin x x(1 cos x) = 1 3 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 14 / 27

15 Applicazioni al calcolo dei limiti (II) L = lim x 0 + x 2 cos x log(1 + x 2 ) 7x 2 tan(x 4 ) Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 15 / 27

16 De l Hôpital vs. Taylor Esempio (log(cos(x 4 ))) 2 lim x 0 x 16 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 16 / 27

17 Esercizi e x cos(x) sin(x) lim [1] x 0 e x2 e x3 sin 2 (x) sin(x 2 ) lim x 0 x 2 log(cos(x)) [ ] 2 3 lim x 0 cos(x 4 ) x x 8 [ 3] Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 17 / 27

18 Criterio della derivata n-esima Sia x 0 un punto stazionario per una funzione f. Preso x I, intorno di x 0, studiando il segno di f (x) f (x 0 ) si può stabilire se x 0 sia un punto di massimo relativo: f (x) f (x 0 ) 0, se x 0 sia un punto di minimo relativo: f (x) f (x 0 ) 0, se x 0 NON sia un punto nè di massimo nè di minimo: f (x) f (x 0 ) cambia il segno. Criterio della derivata seconda per classificare punto stazionario x 0 : studiare il segno di f (x 0 )... E se f (x 0 ) = 0?? Si può ricorrere al criterio della derivata n-esima... Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 18 / 27

19 Criterio della derivata n-esima Sia f :]a, b[ R, n volte derivabile in x 0 ]a, b[, n 2, e supponiamo che f (x 0 ) = f (2) (x 0 ) =... = f (n 1) (x 0 ) = 0, f (n) (x 0 ) 0. Allora si hanno le seguenti alternative: se n è pari e { f (n) (x 0 )< 0, allora punto di max. rel. per f in x 0 ; f (n) (x 0 )> 0, allora punto di min. rel. per f in x 0 ; se n è dispari e { f (n) (x 0 )< 0, allora f è strett. decresc. in un intorno di x 0 ; f (n) (x 0 )> 0, allora f è strett. cresc. in un intorno di x 0. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 19 / 27

20 Esempi f (x) = x 4, x 0 = 0 f (x) = x 3, x 0 = 0 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 20 / 27

21 Formula di Taylor con resto di Lagrange Siano I intervallo, f : I R derivabile (n + 1)-volte in I. Allora x 0, x I tale che con x > x 0, esiste ξ ]x 0, x[, con x < x 0, esiste ξ ]x, x 0 [, f (x) = T n x 0 (f (x)) + f (n+1) (ξ) (n + 1)! (x x 0) n+1, cioè il resto della formula di Taylor si può esprimere nella forma (detta di Lagrange) f (n+1) (ξ) (n + 1)! (x x 0) n+1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 21 / 27

22 La formula di Taylor con il resto di Lagrange ci permette di studiare il segno del resto. Esempio: quanto vale cos(1)? Sviluppando cos x in polinomio di Taylor di ordine n = 5 rispettivamente n = 7 si ottiene cos(1) Quindi si ottiene il volare approssimato di con l errore inferiore a 1 720! cos(1) Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 22 / 27

23 Esercizi: studio di funzioni 1. Determinare dominio, intervalli di monotonia, massimi e minimi (relativi e assoluti), e disegnare un grafico qualitativo delle seguenti funzioni: 1 f (x) = log x x 2 f (x) = x 3 x f (x) = (x 2 3) e x2 4 f (x) = e x e 3x 5 f (x) = log x arctan(x 1) 6 f (x) = x 1 x 2 x 6 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 23 / 27

24 Asintoti Definizione Sia f : R R tale che lim f (x) = ±. Se esistono m, q R tali che x + lim (f (x) mx q) = 0, x + allora la retta y = mx + q si dice asintoto per f a +. Se m = 0, diciamo che y = mx + q è asintoto orizzontale a +. Se m 0, diciamo che y = mx + q è asintoto obliquo a +. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 24 / 27

25 Quindi per dimostrare che la retta y = mx + q è un asintoto obliquo per f a + bisogna verificare che 1 lim f (x) = ±. x + 2 esiste finito il limite f (x) lim = m 0. x + x In tal caso q = lim (f (x) mx) x + Analogamente per x. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 25 / 27

26 Asintoti Definizione Sia f : R R tale che lim f (x) = ±. Se esistono m, q R tali che x lim (f (x) mx q) = 0, x allora la retta y = mx + q si dice asintoto per f a. Se m = 0, diciamo che y = mx + q è asintoto orizzontale a. Se m 0, diciamo che y = mx + q è asintoto obliquo a. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 26 / 27

27 Esercizi: studio di funzioni 2. Determinare dominio, intervalli di monotonia, asintoti, massimi e minimi, e disegnare un grafico qualitativo delle seguenti funzioni: 1 f (x) = 3 (x 1)(x 2) 2 2 f (x) = 3 (x + 2) 2 e x 3 f (x) = x 2 6x 9 ( ) 1 x 2 4 f (x) = arcsin 1 + x 2 5 f (x) = x 2 e x 1 x Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 27 / 27

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 1 / 16 Serie di Taylor Il nostro obiettivo è di scrivere

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 27 gennaio 214 TEMA Esercizio 1 (9 punti Si consideri la funzione f(x =xe x 2 x+2 (a Determinare il dominio, eventuali simmetrie ed il segno di f; (b determinare i iti agli estremi del dominio,

Dettagli

APPELLO X AM1C 17 SETTEMBRE 2009

APPELLO X AM1C 17 SETTEMBRE 2009 Cognome e nome APPELLO X AMC 7 SETTEMBRE 29 Esercizio. Sia f(x) = x arctan x + log( + x 2 ) (a) Determinarne: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, eventuali massimi, minimi

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che 109 Lezioni 9-40 La formula di Taylor con resto di Peano OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che f(x) =f(a)+o(1) per x a; se f è derivabile

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 Calcolo di forme indeterminate del tipo 0/0 Avevamo già visto (cap4a.pdf, pag. 1) che quando si deve

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Esame di Analisi Matematica Prova scritta del 21 giugno 2011

Esame di Analisi Matematica Prova scritta del 21 giugno 2011 Prova scritta del 21 giugno 2011 A1 Sia f la funzione definita ponendo f(x) = e x2 1 x + 1. (d) Utilizzare tutte le informazioni raccolte per tracciare un grafico approssimativo (e) (Facoltativo) Determinare

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Punti di estremo e Teorema di Fermat

Punti di estremo e Teorema di Fermat Punti di estremo e Teorema di Fermat Nello studio di una funzione, le derivate sono (tra le altre cose) uno strumento utile per la determinazione di intervalli di monotonia e puntidiestremo. Definizione.

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche I 13 Gennaio 2009 A Esame di Istituzioni di Matematiche I 13 Gennaio 2009 Determinare l equazione del piano passante per il punto A = (2, 1, 3) e perpendicolare al vettore v dato da v = Au, dove A = 2 1 3 0 1 2, u = 1 3.

Dettagli

1 Analisi mat. I - Esercizi del 13/10/99

1 Analisi mat. I - Esercizi del 13/10/99 Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014

Derivate. Paola Mannucci e Alvise Sommariva. Università degli Studi di Padova Dipartimento di Matematica. 12 novembre 2014 Derivate. Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 12 novembre 2014 Paola Mannucci e Alvise Sommariva Derivate. 1/ 106 Approssimazione Problema. Data

Dettagli

Sviluppo di Taylor. Continuando analogamente, otteniamo

Sviluppo di Taylor. Continuando analogamente, otteniamo Sviluppo di Taylor Vogliamo determinare il polinomio che meglio approssima una funzione f(x) in un dato punto x 0 Sia f:i R con x 0 I Per determinare la miglior approssimazione lineare, vogliamo determinare

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Derivabilità, invertibilità e studi di funzione

Derivabilità, invertibilità e studi di funzione Derivabilità, invertibilità e studi di funzione. Studiare la continuità e la derivabilità delle funzioni elencate in tutto il loro dominio di definizione e calcolare la derivata nei punti in cui la funzione

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Studi di funzione, invertibilità, Taylor

Studi di funzione, invertibilità, Taylor Studi di funzione, invertibilità, Taylor 1. Studiare le funzioni elencate:dominio di definizione; asintoti; crescenza e decrescenza; punti di non derivabilità, max/min locali; convessità. (a f (x x 2 ln(x

Dettagli

Secondo appello 2004/ Tema 1

Secondo appello 2004/ Tema 1 Secondo appello 2/25 - Tema Esercizio Risolvere l equazione di variabile complessa z 2 (z z)2 + (Re z) [ Im (z 2 ) ] =, () e disegnare le soluzioni sul piano di Gauss. Poniamo z = + i. Si ottiene che deve

Dettagli

Il polinomio di Taylor di grado 1.

Il polinomio di Taylor di grado 1. Analisi Matematica Ingegneria Informatica Gruppo 4, canale 6 Argomenti 26 ottobre 207 Il polinomio di Taylor di grado.. Esercizio. Sia f() una funzione derivabile in a. Se poniamo otteniamo con facili

Dettagli

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 9 Febbraio 209 Soluzioni Scritto ) Data la funzione fx) = arctanx + 4x 2 2 x + ) a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b) Calcolare,

Dettagli

Corso di Laurea in Ingegneria Civile Analisi Matematica I

Corso di Laurea in Ingegneria Civile Analisi Matematica I Corso di Laurea in Ingegneria Civile Analisi Matematica I Lezioni A.A. 2006/2007, prof. G. Stefani Primo periodo 18/09/06-15/12/06 Testi consigliati: M.Bertsch, R.Dal Passo - Elementi di Analisi Matematica

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

Analisi 1 - Foglio di esercizi VII - Soluzioni

Analisi 1 - Foglio di esercizi VII - Soluzioni Analisi 1 - Foglio di esercizi VII - Soluzioni /11/018 1. f x log x D =, 1 1,,, +. Conviene eettuare la sostituzione z = x per ritrovarsi con la funzione dispari gz = z log z, di dominio D =, 1 1, 0 0,

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5,

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5, Ingegneria Elettronica e Informatica Analisi Matematica a (Foschi Compito del..208. Tre numeri reali positivi formano una progressione geometrica. La loro media aritmetica è 5, mentre la loro media geometrica

Dettagli

Il NUMERO della FILA è contenuto nel testo dell esercizio 8 ed è il valore assegnato di y (0) f(x) =,

Il NUMERO della FILA è contenuto nel testo dell esercizio 8 ed è il valore assegnato di y (0) f(x) =, Analisi Matematica 1 14 gennaio 2019 Il NUMERO della FILA è contenuto nel testo dell esercizio 8 ed è il valore assegnato di y (0) Fila 1 1. dom f =], 2[ ] 2, 2[ ]2, + [; f non è pari né dispari; x 2 f(x)

Dettagli

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018.

Lezione 1-03/10/2018, dalle alle in aula 3 - Esempi svolti: Svolgimento di alcuni esercizi della settimana del 28/09/2018. DIARIO DELLE LEZIONI DI TUTORATO DI ANALISI MATEMATICA I Corsi di laurea in Ingegneria delle Comunicazioni e Ingegneria Elettronica Tutor: Dott. Salvatore Fragapane Lezione 1-03/10/2018, dalle 12.00 alle

Dettagli

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita Versione provvisoria.

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita  Versione provvisoria. Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Novembre 05 Esercizi proposti durante le esercitazioni del corso di Analisi

Dettagli

Derivate di funzioni

Derivate di funzioni Derivate di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 12 giugno 2018

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 12 giugno 2018 Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA Prova scritta del giugno 08 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 5) Determinare

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Lezioni sulla formula di Taylor.

Lezioni sulla formula di Taylor. Lezioni sulla formula di Taylor. Sviluppo di Taylor: sia x 0 punto interno del dominio di f funzione localmente regolare in x 0 (f C (I), con I intorno di x 0 ), allora f si scrive localmente in x 0 come

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018

CORSI DI LAUREA IN MATEMATICA E FISICA UNIVERSITÀ DEL SALENTO Prova scritta di ANALISI MATEMATICA I - 22/01/2018 Prova scritta di ANALISI MATEMATICA I - 22/0/208 Studiare la funzione definita da fx) = x + x 2 2 Calcolare, se esiste, il ite sin3x) x cos3x) 2x x 0 log 4 + sin cos x) x ) 3 Calcolare log 2 xdx 4 Si risolva

Dettagli

Corso di Laurea in Informatica. I parziale di Analisi Matematica

Corso di Laurea in Informatica. I parziale di Analisi Matematica Corso di Laurea in Informatica I parziale di Analisi Matematica 18 Dicembre 2017 Marco Mughetti Cognome:... Nome:... Numero di matricola:... Email:... Risultati 1.(pt.1) 2.(pt.1) 3.(pt.1) 4.(pt.1) 5.(pt.6)

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

f x = cos(5x 2 + 3) f t = sin(6x + 4)

f x = cos(5x 2 + 3) f t = sin(6x + 4) f x = 3x 5 + 3 x f t = 3t 4 e t f x = x2 +3x 5ex f t = 2t + 7 cos t 4 f x = cos(5x 2 + 3) f t = sin(6x + 4) g x = ln(x 2 + 3) h x = 3x 2 + 5 sin (7x + 9) g t = e x2 +cos(2x) h x = 3e3x x 6 f t = tan(3t)

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Analisi Matematica 1-10/2/15 - Compito 3 - Versione 1

Analisi Matematica 1-10/2/15 - Compito 3 - Versione 1 Analisi Matematica - /2/5 - Compito 3 - Versione Cognome Nome, matricola, e-mail istituzionale :.... (p. 4) Studiare la seguente funzione rispondendo alle seguenti domande: f(x) = e x3 +x, (a) (p..*) determinare

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x).

x + 1 2x], g(x) = x x + 2, h(x) = ln(x 1 2x 2 4x). Funzioni Esercizio Siano f, g due funzioni definite da fx) = x x 2, gx) = ln x Trovare l insieme di definizione di f e g 2 Determinare le funzioni composte f g e g f, precisandone insieme di definizione

Dettagli

Polinomio di Taylor.

Polinomio di Taylor. Polinomio di Taylor. Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova 20 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Polinomio di Taylor. 1/

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Confronto locale di funzioni Test di autovalutazione

Confronto locale di funzioni Test di autovalutazione Test di autovalutazione 1. Per x 0: (a) x 3 = o(x 4 ) (b) x 4 = o(sin x 2 ) (c) x 3 x 3 + 1 (d) x 7 + x x 2 x 2. Il limite lim x 0 + (a) vale 0 (b) non esiste (c) vale 2 (d) è infinito 4x 3 x ln x tan

Dettagli

(1.d) Determinare la convessità di f(x). Disegnare un grafico qualitativo di f(x) in tutto il suo dominio. x 1 (1 x2. ( 1) n n α log(1 + 1 n 2 ).

(1.d) Determinare la convessità di f(x). Disegnare un grafico qualitativo di f(x) in tutto il suo dominio. x 1 (1 x2. ( 1) n n α log(1 + 1 n 2 ). Esame di Analisi Matematica Uno 24 gennaio 2017 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 24 gennaio 2017 (Primo appello, a.a.

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

ln(3 ) lim Es. 2 x Es. Calcolo Derivata 2 1 x Es. Calcolo Derivata f( x) ln M. Mozzanica

ln(3 ) lim Es. 2 x Es. Calcolo Derivata 2 1 x Es. Calcolo Derivata f( x) ln M. Mozzanica 04/03/019 - Esercizi Es. 1 ln(3 ) 1 lim + Es. Calcolo Derivata f( ) = 1 Es. Calcolo Derivata f( ) ln 1 + = 3 1 08/03/019 - Esercizi Es. Determinare se esistono valori reali dei parametri a,b in modo che

Dettagli

Corso di Analisi Matematica. Comportamenti asintotici

Corso di Analisi Matematica. Comportamenti asintotici a.a. 2013/2014 Laurea triennale in Informatica Corso di Analisi Matematica Comportamenti asintotici Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:...

Prova scritta di Analisi Matematica T-1, 18/12/2018. MATRICOLA:...NOME e COGNOME:... Prova scritta di Analisi Matematica T-, 8/2/28 MATRICOLA:...NOME e COGNOME:............................................. Ingegneria chimica e biochimica Ingegneria elettronica e telecomunicazioni )3 punti)

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

Sviluppi di Taylor e applicazioni

Sviluppi di Taylor e applicazioni Sviluppi di Taylor e applicazioni Somma di sviluppi Prodotto di sviluppi Quoziente di sviluppi Sviluppo di una funzione composta Calcolo di ordini di infinitesimo e di parti principali Comportamento locale

Dettagli

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004

COGNOME... NOME... Matricola... II corso Prof. Camporesi. Esame di ANALISI MATEMATICA - 9 Settembre 2004 COGNOME... NOME... Matricola... II corso Prof. Camporesi Esame di ANALISI MATEMATICA - 9 Settembre 2004 A ESERCIZIO 1. (5 punti) 1. Risolvere in campo complesso l equazione z 5 + (1 + i)z = 0. 2. Dimostrare

Dettagli

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A

Provetta scritta di Calcolo I Corsi di laurea in Fisica - Scienza e Tecnologia dei Materiali Prova scritta del 7/12/2005 Fila A Provetta scritta di Calcolo I Prova scritta del 7/2/25 Fila A ) Calcolare i limiti 3 x 3 x 4 ; b) lim sin(2x) + x2 x( cos(3x)) c) lim + 5 x 7 x 4 x 2 + x. 2) Determinare il massimo di x 3 (2 + x 4 ) 3/2,

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

Esercizio 1 Calcolare i limiti delle seguenti successioni per n + :

Esercizio 1 Calcolare i limiti delle seguenti successioni per n + : Esercizio 1 Calcolare i limiti delle seguenti successioni per n + : 1. n = (n 2 + sin n) sin 2 n 2. n = n cos( π ) sin( 2π ) n 3n 2 3. n = n e sin 1 n n 4. n = log a (n n 2 1) + log a n 5. n = n + 5 n

Dettagli

Matematica. 11. Applicazioni delle derivate, problemi di ottimo e studio di funzione. Giuseppe Vittucci Marzetti 1

Matematica. 11. Applicazioni delle derivate, problemi di ottimo e studio di funzione. Giuseppe Vittucci Marzetti 1 Matematica 11. Applicazioni delle derivate, problemi di ottimo e studio di funzione Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale

Dettagli

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio.

Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa facciata e sul retro di questo foglio. Analisi e Geometria Terzo appello 4 settembre 207 Compito F Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima parte Scrivere le risposte ai due seguenti quesiti A e B su questa

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà

ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà ANALISI 1 1 UNDICESIMA LEZIONE Derivazione- definizione e prime proprietà 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

ln(3 ) lim 2 x Es. Es. Calcolo Derivata 2 1 x Es. Calcolo Derivata f( x) ln M. Mozzanica

ln(3 ) lim 2 x Es. Es. Calcolo Derivata 2 1 x Es. Calcolo Derivata f( x) ln M. Mozzanica 4/3/19 - Esercizi Es. 1 ln(3 ) 1 lim Es. Calcolo Derivata f( ) 1 Es. Calcolo Derivata f( ) ln 1 3 1 8/3/19 - Esercizi Es. Determinare se esistono valori reali dei parametri a,b in modo che la seguente

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 1 (Laurea triennale di Matematica, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 1/10/2018.

Dettagli

Seconda prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: (x 1); C: y = ; D: y = 2 x; E: N.A.

Seconda prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO COGNOME: NOME: MATR.: (x 1); C: y = ; D: y = 2 x; E: N.A. Seconda prova in Itinere Ist. Mat. 1, Prima parte, Tema PIPPO 10 marzo 017 COGNOME: NOME: MATR.: 1) La retta tangente al grafico di f(x) = e x 1 x+ nel punto (1, ) è A: y = x + 4; B: y = (4x+) (x 1); C:

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli