Linee di Trasmissione: Propagazione per onde

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Linee di Trasmissione: Propagazione per onde"

Transcript

1 Linee di Trasmissione: Propagazione per onde v + (z) Rappresentazione shematia di una linea di trasmissione z Definizione matematia dell onda di tensione he si propaga verso la z resente: ω 0 v ( z) = ( V e ) e + j t γ z 0 L onda é un fasore (ioé un vettore rotante) sia nel tempo (termine tra parentesi) he lungo la direzione z (seondo termine)

2 Posto γ=α+jβ, si ha: Signifiato della ostante di propagazione γ ( ) 0 v ( z) = V e e e + jω t α z jβ z Costante di attenuazione α: India la rapiditá on ui si ridue l ampiezza dell onda he si propaga. Si misura in Neper/m o in db/m (1Np = db) Costante di fase β: India la rapiditá on ui ambia la fase lungo la oordinata z (per t=ost). E legata alla lunghezza d onda e alla pulsazione dalla relazione β=2π/λ 0 =ω/ν (ν rappresenta la veloitá di propagazione he dipende dal mezzo heriempela linea). β si misura in rad/se

3 Parametri primari della linea Sezione Δz L Δz R Δz C Δz G Δz Gli elementi R, L, C, G, sono detti parametri primari della linea di trasmissione. Dipendono dalla struttura fisia della linea e dal mezzo he la riempe. Utilizzando i parametri primari si possono riavare le equazioni he governano la propagazione sulla linea (si impongono le equazioni di Kiroff alla maglia e al nodo sul tratto di lunghezza infinitesima e si integra) - 3 -

4 Parametri seondari Impedenza Caratteristia (Z ): él impedenzahesivedeall ingressodi una linea di lunghezza infinita (é presente solo l onda he si propaga verso le z resenti) Costante propagazione γ=α+jβ Formule di alolo in funzione dei parametri primari: L 1 R 1 Z =, α= + G Z, β = ω L C C 2Z 2 Queste relazioni sono valide per ω>> R/L, G/C; tali ondizioni sono in pratia sempre verifiate se la frequenza operativa è superiore a qualhe deina di MHz

5 Tensioni e orrenti sulla linea I(z) V(z) v + (z) v - (z) + jβz - Vz () = v () z+ v () z= V0e + V0e Z L + - V0 jβz V0 Iz () = i () z+ i () z= e e Z Z z + + jβz + + jβz v +, i + : Onde Inidenti v -, i - : Onde Riflesse L onda riflessa di tensione ha lo stesso segno dell onda inidente; l onda riflessa di orrente ha segno opposto rispetto a quella inidente. Entrambe sono legate tramite l impedenza aratteristia della linea Le onde riflesse si generano quando si introdue una disuniformitá nella struttura fisia della linea (nel aso rappresentato é il ario). Per annullare l onda riflessa bisogna he Z L sia uguale a Z C

6 Coeffiiente di riflessione Onda Riflessa V e V Γ ( z) = = = e =Γ e Onda Inidente V e V + jβ z jβ z j2β z + j2β z 0 Propietá di Γ(z): Il modulo non dipende da z (é ostante lungo la linea) La fase presenta, al variare di z, una periodiitá di λ/2 Il modulo é sempre minore di 1 quando il ario é passivo (la potenza riflessa non puó superare quella inidente)

7 Andamento del V(z) V V max + + [ 1 Γ ] V(z) = v (z) + v (z) = v (z) + (z) + 0 j2 β z V ( z) = V 1 + Γ e = 0 + V min V min z V 0 + { 2 } Γ 0 os( 2β z ) + Γ La tensione presenta un andamento periodio (stesso periodo di Γ) on massimi e minimi he valgono rispettivamente: V max 1+ Γ, V 1 min Γ Si definise Rapporto d onda stazionaria (ROS) il rapporto tra queste due tensioni: ROS = V max V min - 7 -

8 Impedenza lungo la linea I(z) Z(z) V(z) Z L Z( z) V ( z) = = I( z) Z 1+ 1 Γ( z) Γ( z) z Esiste una orrispondenza biunivoa tra il valore del oeffiiente di riflessione e l impedenza vista in ogni sezione della linea (normalizzata all impedenza aratteristia) OSSERVARE: L impedenza é quella vista verso il ario! Relazione inversa: Γ ( z ) = Z( z) Z( z) + Z Z - 8 -

9 Impedenza di un tratto di linea hiuso su una Z L generia I(z) V(z) Z, β L Z L Z in Vin = = I in Z Z jz L L + tan( β ) Z + jz tan( βl) L Casi partiolari: Z L = 0 (orto iruito) Z L = (iruito aperto) Vin L Zin = = jz tan( β L) = jz tan(2 π ) I λ in Vin L Zin = = jz ot( β L) = jz ot(2 π ) I λ in

10 Rappresentazione grafia di Γ Γ é un numero omplesso he puó essere rappresentato sul piano x, y in forma polare Γ Φ 1 Se il numero omplesso Γ rappresenta il oeffiiente di riflessione su una linea di trasmissione, il punto su piano é sempre all interno del erhio a raggio unitario -1 1 Γ

11 Rappresentazione grafia di Γ Il oeffiiente di riflessione su una linea di trasmissione priva di perdite si rappresenta sul piano ome un erhio di raggio pari al Γ. La fase varia di 360 per uno spostamento di λ/2 sulla linea d Γ b a Punti aratteristii: Linea adattata Γ =0 ( entro della arta) Ciruito Aperto Γ =1 (a) Corto iruito Γ =-1 (d) Massimo di tensione sulla linea (b) (Γ reale e positivo) Minimo di tensione sulla linea () (Γ reale e negativo)

12 Carta di Smith Sul piano di rappresentazione di Γ si possono traiare le urve he rappresentano il luogo dei punti in ui la parte reale (o la parte immaginaria) di z n =Z/Z rimane ostante: Γ () z + 1 Re{ Zin} = Re = ost ( r) Γ() z 1 Γ () z + 1 Im{ Zin} = Im = ost ( x) Γ() z 1 Queste urve sono dei erhi, il ui raggio e entro dipendono dal valore di r o x. La Carta di Smith é la rappresentazione grafia di tali erhi, he onsente di risolvere, per via grafia, molti problemi relativi all impiego di linee di trasmissione nei iruiti a miroonde

13 Angolo di Γ (si misura in gradi o in L/λ 0 Verso il generatore Cerhio a x = 1 Verso il ario Cerhio a r = 1 Asse di riferimento

14 Rappresentazione delle ammettenze sulla Carta di Smith Γ φ Π+φ Γ Impedenza nel punto Γ: Impedenza nel punto Γ : ( π+ φ) z n 1+ Γ = 1 Γ j jφ 1+Γ 1+Γe 1 Γe 1 Γ 1 z n = = = = = j 1 ( π+ φ) jφ Γ 1 Γe 1+ Γ e 1+Γ z n Il punto diametralmente opposto presenta l inverso dell impedenza del punto originale, ioè la sua ammettenza. La arta di Smith può rappresentare indifferentemente Z o Y

15 Γ0 0 Γ x Γ L Carta di Smith Spostamenti a Γ ostante Z L ( x) ( x ) j2βx j Γ j4π 0 λ Γ = Γ0 e = Γ0 e e j 2βd j Γ j4π L Γ ( d ) = ΓL e = ΓL e e Spostamenti su linee senza perdite Asse d d 0 Asse x Spostamenti su erhi a Γ ostante (ironferenze entrate nell origine) Spostamenti verso il ario spostamenti lungo x resente ( x) = Γ βx Γ Rotazione antioraria dal ario spostamenti lungo x resente ( x) = ΓL βd Γ 2 Rotazione oraria NOTA: Γ (z) è una funzione periodia della distanza on periodo λ/2 ( d ) λ

16 Carta di Smith Spostamenti a r o x Costanti Spostamento a x ostante r x L Γ L z L = r L + jx L Γ in z in = (r L + r) + jx L r L r in = r+r L Spostamento a r ostante jx x L Γ L Γ in x in = x L + x z L = r L + jx L z in = r L + j(x L + x) r L

17 Carta di Smith Spostamenti a g o b Costanti Carta delle Z Carta delle Y Spostamenti a b ostante Γ L g L Γ L b L g y L = g L + jb L Γ in Γ I,in Γ in y in = (g L + g) + jb L Spostamenti a g ostante jb y L = g L + jb L b Γ I,L L Γ I,in b in =b L +b g in =g L + g g L Γ L Γ L b L y in = g L + j(b L + b) b L Γ I,L Γ in g L Γ in b in =b L +b

18 Γ in L jx A d Z α = 0 B Z L Z = = Z + Z L Carta di Smith Esempio di Soluzione grafia jb Z L Z = 50 [Ω]; ε r = [4]; f 0 = 3 [GHz]; Z L = 20 + j40 [Ω]; (Z n =0.4+j0.8) β=7.2 [ /mm] B= 0.05 [Ω -1 ]; (b n =2.5) X = -80 [Ω]; (x n =-1.6) d = 15 [mm]; (βd=108 ) Γ L x in Γ in Γ A Γ B = [ rad] = βd = 40πd = βL Γ A Γ = Γin Zin = Z 96 j68 1 Γ in = + in [ Ω] Γ B b B

Linee di Trasmissione: Propagazione per onde

Linee di Trasmissione: Propagazione per onde inee di Trasmissione: Propagaione per onde v + () Rappresentaione shematia di una linea di trasmissione Definiione matematia dell onda di tensione he si propaga verso la resente: 0 v ( ) ( V e ) e j t

Dettagli

Tecnologie HW per TLC

Tecnologie HW per TLC Tecnologie HW per TLC Circuiti a Microonde (I Lezione) Docente: Macchiarella Giuseppe Politecnico di Milano macchiar@elet.polimi.it http://www.elet.polimi.it/upload/macchiar/indice.html 2005 - G. Macchiarella

Dettagli

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova del 5 luglio 2012

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova del 5 luglio 2012 Fisia dei mezzi trasmissivi Prof. C. Capsoni Prova del luglio 0 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICOL FIRM Eserizio Un generatore, la ui tensione varia nel tempo ome indiato in

Dettagli

Linee di trasmissione

Linee di trasmissione Le linee di trasmissione sono utilizzate in tutte le appliazioni in ui un segnale in alta frequenza deve essere onnesso da un punto di una rete ad un altro. Nel aso di una linea non si stabilise più istantaneamente

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema 1 In regime stazionario il ondensatore si omporta ome un iruito aperto, e l induttore ome un ortoiruito. Pertanto, il iruito da analizzare risulta quello mostrato in figura: i 1

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 4 Luglio 2014 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 4 uglio 014 1 3 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore on impedenza interna R G è ollegato ad un

Dettagli

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova dell 1 settembre 2011

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova dell 1 settembre 2011 Fisia dei mezzi trasmissivi rof.. apsoni rova dell settembre 0 3 4 non srivere nella zona soprastante OGNOME E NOME MTRIOL FIRM Eserizio Un eneratore, la ui tensione varia nel tempo ome indiato in fiura,

Dettagli

TRAMISSIONE su linea metallica a RF. Prof. Nadia Carpi as 03-04

TRAMISSIONE su linea metallica a RF. Prof. Nadia Carpi as 03-04 TRAMISSIONE su linea metallica a RF Prof. Nadia Carpi as 3-4 Linea di trasmissione GENERATORE CARICO ENERGIA EL/INFORMAIONE frequenza bassa energia elettrica centrali radiofrequenza informazioni utenze

Dettagli

Linee di trasmissione: Equivalenti in termini di doppi bipoli e considerazioni varie

Linee di trasmissione: Equivalenti in termini di doppi bipoli e considerazioni varie Linee di trasmissione: Equivalenti in termini di doppi bipoli e considerazioni varie A. Laudani November 3, 016 Soluzione generale dell equazione dei telegrafisti Una linea di trasmissione, caratterizzata

Dettagli

Elettromagnetismo Applicato

Elettromagnetismo Applicato Elettromagnetismo Applicato Prova scritta del 23 febbraio 2017 Il candidato risponda ai quesiti riportando i risultati negli appositi spazi sul secondo foglio. 1. Un onda sinusoidale si propaga in un mezzo

Dettagli

Appello del 17/2/ Soluzioni

Appello del 17/2/ Soluzioni Compito A - Testo Dipartimento di Ingegneria Enzo Ferrari Corso di Campi Elettromagnetici - a.a. 2014/15 Appello del 17/2/2015 - Soluzioni Esercizio 1. Un onda elettromagnetica con frequenza 300 MHz si

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

Adattamenti: Considerazioni Generali

Adattamenti: Considerazioni Generali Adattamenti: Considerazioni Generali g ADATT in Assenza onda di potenza riflessa in g, out out Max trasferimento di potenza in * g *, out Proprietà: se la rete di adattamento è priva di perdite ( composta

Dettagli

Linee prive di perdite

Linee prive di perdite inee prive di perdite Una linea si dice priva di perdite se nel circuito equivalente risulta: R=G. Perché tale approssimazione sia valida deve risultare: α 1 essendo la lunghezza del tronco di linea che

Dettagli

Corso di Radioastronomia 1

Corso di Radioastronomia 1 Corso di Radioastronomia 1 Aniello (Daniele) Mennella Dipartimento di Fisica Prima parte: introduzione e concetti di base Parte 1 Lezione 3 Caratteristiche principali delle linee di trasmissione Linee

Dettagli

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI

60 o e. E i. ε 2. ε 1. acqua marina A B I ONDE PIANE E MATERIALI I ONDE PIANE E MATERIALI OP 1 Il campo elettrico nel punto A ha un modulo di 1V/m e forma un angolo di 6 o con la normale alla superficie. Calcolare e(b). ε 1 ε 2 A B 6 o e ε 1 =, ε 2 = 2 Nel punto A le

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

Adattamenti Considerazioni Generali

Adattamenti Considerazioni Generali Adattamenti Considerazioni Generali ADATT in Assenza di onda riflessa in, out out Max trasferimento di potenza in * *, out Proprietà: se la rete di adattamento è priva di perdite ( composta da elementi

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

LE LINEE DI TRASMISSIONE

LE LINEE DI TRASMISSIONE LE LINEE DI TRASMISSIONE Modello di una linea a parametri distribuiti Consideriamo il caso di una linea di trasmissione che può essere indifferentemente un doppino telefonico, una linea bifilare o un cavo

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

Circuito a costanti concentrate

Circuito a costanti concentrate Circuito a costanti concentrate periodo Il contributo dei cavetti di collegamento a resistenza, capacita' ed induttanza del circuito e' trascurabile: resistenza, capacita' (ed induttanza) sono solo quelle

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

10 Il problema dell adattamento d impedenza Introduzione

10 Il problema dell adattamento d impedenza Introduzione 0 Il problema dell adattamento d impedenza Introduzione Tra le differenti problematiche relative alla propagazione di energia nelle guide d onda, un argomento di notevole rilevanza pratica è l adattamento

Dettagli

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4 Esame sritto di Elettromagnetismo del 16 Luglio 2012 - a.a. 2011-2012 proff. F. Laava, F. Rii, D. Trevese Elettromagnetismo 10 o 12 rediti: eserizi 1,2,3 tempo 3 h e 30 min; Reupero di un esonero: eserizi

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica UNIVESITÀ DEGLI STUDI DI PAVIA CAMPI ELETTOMAGNETICI E CICUITI I 23.01.2015 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) e v C (t) (per ogni istante di tempo

Dettagli

Equazioni Generali delle Linee di Trasmissione

Equazioni Generali delle Linee di Trasmissione Equazioni Generali delle Linee di Trasmissione 1 Rete Elettrica Ordinaria vs Linea di Trasmissione Parametri Concentrati Parametri distribuiti La lezione di oggi riguarda le linee di trasmissione dell

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Parametri di Diffusione

Parametri di Diffusione Parametri di Diffusione Linee di trasmissione: richiami Onde di tensione e corrente Coefficiente di riflessione Potenza nelle linee Adattamento Parametri di Diffusione (S) Definizione Applicazioni ed esempi

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Relazione di Fondamenti di automatica

Relazione di Fondamenti di automatica Università degli studi di Cassino relazione finale orso di fondamenti di automatia Elaborato J Relazione di Fondamenti di automatia Doente del orso: Stefano Chiaverini Riardo Galletti Matr. 65 - - Relazione

Dettagli

Circuiti a Microonde: Introduzione

Circuiti a Microonde: Introduzione Ciruiti a Miroonde: Introduzione Un iruito a miroonde è un interonnessione di elementi le ui dimensioni fisihe possono essere omparabili on la lunghezza d onda orrispondente alle frequenze operative Tipologie

Dettagli

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1

Lezione 15. Stabilità di sistemi retroazionati. F. Previdi - Automatica - Lez. 15 1 ezione 15. Stabilità di sistemi retroazionati F. Previdi Automatia ez. 15 1 Shema 1. Stabilità di sistemi retroazionati 2. Stabilità & inertezza 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

USO DELLA CARTA DI SMITH

USO DELLA CARTA DI SMITH USO DELLA CARTA DI SMITH L' impedenza in un punto qualsiasi della linea è Z = R + jx. Dividendo Z, R e X per l'impedenza caratteristica Zo della linea, si ottiene l' impedenza normalizzata z = Z/Zo = r

Dettagli

2.1 Valutazione della conduttanza e della resistenza per unita di lunghezza di una linea

2.1 Valutazione della conduttanza e della resistenza per unita di lunghezza di una linea Capitolo Linee con perdite In una linea di trasmissione reale la non perfetta conducibilita dei conduttori e le perdite di volume (cioe le perdite dovute alla isteresi dielettrica e alla conducibilita

Dettagli

Rappresentazione matriciale di Doppi Bipoli

Rappresentazione matriciale di Doppi Bipoli Rappresentazione matriciale di Doppi Bipoli Caratterizzazione matriciale di reti multi-porta V I I 1 V 1 1 1 Circuito a -porte 2 I 2 3 V 2 V 3 v v V v v 2 3. I i1 i 2 i 3. i I 5 V 5 5 4 I 3 I 4 V 4 Se

Dettagli

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI

Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni I FASORI Ing. Nicola Cappuccio 214 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 RIEPILOGO rappresentazione z = ρcos θ+ jρsin θ somma di due complessi con al regola del parallelogramma

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 18.01.013 Problema 1 Con riferimento al circuito in figura, nel quale l interruttore si chiude all istante t = 0, determinare l espressione di i 3 (t) per ogni istante di tempo t, e rappresentarne graficamente

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

Lezione 14. Vettori rotanti. RL con forzamento sinusoidale. e( t) = E M. i( t) = ke R L t + I M. e(t) E = RI + jω LI. E ( ) 2 ; η arctg ω L

Lezione 14. Vettori rotanti. RL con forzamento sinusoidale. e( t) = E M. i( t) = ke R L t + I M. e(t) E = RI + jω LI. E ( ) 2 ; η arctg ω L ezione 4 ( A) A Vettori rotanti ( A) Piano di Gauss A = Ae j( ωt+α ) = Acos( ωt + α ) + jasen( ωt + α ) Prima di procedere oltre, facciamo vedere perché il termine fasori. a parte reale ed il coefficiente

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

In queste circostanze, si riducono subito a: !!!! B. ˆ z (1) (2)

In queste circostanze, si riducono subito a: !!!! B. ˆ z (1) (2) Onde elettromagntihe Le soluzioni alle equazioni di Mawell sono molte: ne abbiamo viste diverse, es.: il ampo elettrostatio, i ampi (elettrii e magnetii) stazionari nei pressi di un filo on orrente ostante,

Dettagli

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte CATE NAUTICHE Sono sempre stato attratto dalla artografia: ogni arta ha la propria aratteristia he dipende dall uso he uno deve farne (per esempio la arta dell ONU o proiezione di Gall-Peters è un partiolare

Dettagli

E = ŷ E 0 e i(kx ωt)

E = ŷ E 0 e i(kx ωt) Equilibrio osillatore ario radiazione nera Consideriamo dapprima un onda piana, monoromatia e polarizzata linearmente, he attraversi un sottile strato (dx) di dielettrio omogeneo ed isotropo a bassa densità

Dettagli

ADATTATORI di IMPEDENZA

ADATTATORI di IMPEDENZA ADATTATORI di IMPEDENZA 1. Carta di Smith PREMESSA: per motivi che saranno chiari in seguito si ricorda che nel piano complesso, l equaione della generica circonferena di centro w 0 ( C ) e raggio R (

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Goniometria. r x. con x = 1 rad se l = r.

Goniometria. r x. con x = 1 rad se l = r. Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali ( = /360 dell'angolo giro), anhe se una Legge dello Stato italiano del 960 impone di esprimerli in radianti. Ogni

Dettagli

Circuiti Elettrici Lineari Sinusoidi e fasori

Circuiti Elettrici Lineari Sinusoidi e fasori Facoltà di Ingegneria Uniersità degli studi di Paia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici Lineari Sinusoidi e fasori Circuiti Elettrici Lineari a.a. 08/9

Dettagli

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω) Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L

Dettagli

8-9 Analisi di reti normali

8-9 Analisi di reti normali Lati della rete ipoli normali lettrotenia 8-9 Analisi di reti normali Per iasuno degli l ipoli (lati) GT GC ell analisi sono da determinare l tensioni l orrenti l inognite G Sistema di equazioni di rete

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema 1 Prima dell istante t = 0 i generatori operano in regime stazionario e il circuito da considerare è il seguente: v 1 (0 - ) v 2 (0 - ) I 0 i(0 - ) R 3 V 0 R 4 È evidente che È inoltre

Dettagli

Adattatori. Importanza adattamento

Adattatori. Importanza adattamento Adattatori uca Vincetti a.a. 8-9 Importanza adattamento Massimizzazione della potenza disponibile dal carico Riduzione delle sovratensioni e sovracorrenti che possono danneggiare linea e trasmettitore

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 2014 Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 014 1 3 4 non scrivere nella zona soprastante COGNOME E NOME MATRICOLA FIRMA Esercizio 1 Un generatore, la cui tensione varia nel

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 26 Febbraio 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 26 Febbraio 2014 Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 26 Febbraio 2014 1 2 3 non scrivere nella zona soprastante COGNOME E NOME MTRICO FIRM Esercizio 1 Si consideri il sistema costituito dalle tre

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

5 DISCONTINUITA (53) V1 (z) se z 0 V 2 (z) se z 0 (54) V(z) =

5 DISCONTINUITA (53) V1 (z) se z 0 V 2 (z) se z 0 (54) V(z) = 5 DISCONTINUITA Le soluzioni trovate nei paragrafi precedenti valgono solo se la geometria è uniforme rispetto a z. Tuttavia capita molto spesso che tale ipotesi non sia soddisfatta. Ciò può avvenire per

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatia - Lez. 19 1 Shema 1. Stabilità & inertezza 2. Indiatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio di

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore equivalente di Thevenin o di Norton, si determini, per ogni istante di tempo, l espressione

Dettagli

microonde Circuiti a microonde Circuito

microonde Circuiti a microonde Circuito Circuiti a microonde 1 N Circuito a microonde 3 Sezioni di riferimento (Bocche) 5 4 Un circuito a microonde è costituito dall interconnessione di elementi distribuiti e concentrati; l interazione con il

Dettagli

Risonatori a microonde

Risonatori a microonde Risonatori a microonde Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 11 Ottobre 6 Indice Circuiti risonanti serie e parallelo Fattore di qualità esterno: Q e Risonatori realizzati

Dettagli

Linee di trasmissione

Linee di trasmissione Capitolo 1 Linee di trasmissione 1.1 Circuiti a costanti concentrate e distribuite Nei circuiti a costanti concentrate le proprietà elettriche del circuito (resistenza, induttanza, capacità ecc.) si considerano

Dettagli

v(t) = V M sin(ωt + γ) = V M

v(t) = V M sin(ωt + γ) = V M . ELETTROTECNICA FASORI Eccitiamo il seguente circuito con una forzante sinusoidale: Dove V M è il valore di picco e γ è la fase iniziale. Trasformiamo in forma euleriana la funzione: v(t) = V M sin(ωt

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Eseritazioni di Elettrotenia a ura dell Ing ntonio Maffui Parte III: iruiti in eoluzione dinamia 00/003 Eseritazioni di Elettrotenia 00/003 Maffui ESEITZIONE N0: eti dinamihe del primo ordine ESEIZIO 0

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA TRASFORMATA DI LAPLACE I sistemi dinamii invarianti e lineari (e tali sono le reti elettrihe) possono essere studiati, nel dominio del tempo, attraverso le equazioni differenziali nelle quali l'inognita

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 DOWNLOAD Il pdf di questa lezione (onde2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 10/10/2017 LE ONDE NELLO SPAZIO Finora si è considerata

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

Carta di Smith. IEEE Student Branch dell'università di Pavia. anno MMI PARAMETRI IN SCALA RADIALE ROS (SWR)

Carta di Smith. IEEE Student Branch dell'università di Pavia. anno MMI PARAMETRI IN SCALA RADIALE ROS (SWR) 0.48 Carta di Smith IEEE Student Branch dell'università di Pavia anno MMI 0.39 0.42 0.45 0.5 0.48 0.5 0.5 0.45 0.5 0.42 0.39 PARAMETRI IN SCALA RADIALE ROS (SWR) COEFF. RIFL, P, G 2 COEFF. RIFL, E o I,

Dettagli

Lez.17 Bipoli in regime sinusoidale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 17 Pagina 1

Lez.17 Bipoli in regime sinusoidale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 17 Pagina 1 Lez.17 Bipoli in regime sinusoidale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 17 Pagina 1 L operatore impedenza L uso dei fasori consente di scrivere

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Diagrammi polari, di Nyquist e di Nichols Diagramma polare Diagramma di Nyquist Diagramma di Nichols Diagrammi polari, di Nyquist e di Nichols Diagramma

Dettagli

Prova scritta di metà corso mercoledì 23 aprile 2008

Prova scritta di metà corso mercoledì 23 aprile 2008 Prova sritta di metà orso meroledì 3 aprile 008 Laurea in Sienza e Ingegneria dei Materiali anno aademio 007-008 Istituzioni di Fisia della Materia - Prof. Lorenzo Marrui Tempo a disposizione: 1 ora e

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Angoli e misura degli angoli

Angoli e misura degli angoli Angoli e misura degli angoli Prima definizione di angolo Si definisce angolo ciascuna delle due parti in cui un piano è diviso da due semirette distinte con l origine in comune, semirette comprese. Le

Dettagli

Capitolo 3. Tecniche di adattamento

Capitolo 3. Tecniche di adattamento Capitolo 3 Tecniche di adattamento 3.1 Introduzione Nei circuiti a microonde si utilizzano essenzialmente due tecniche di adattamento: l'adattamento coniugato, con il quale si cerca di ottenere il massimo

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

Esercitazione di Controll0 Digitale n 1

Esercitazione di Controll0 Digitale n 1 8 marzo 3 Eseritazione di Controll Digitale n a.a. /3 =. Si onsideri il segnale x( t) sin ( π t) + sin( 4π t) Si valuti la frequenza minima del ampionatore he permette la riostruibilità del segnale, e

Dettagli

A. Fondazioni Superficiali. 1. Tipologie 2. Scelta del piano di posa 3. Verifica del carico limite 4. Verifica dei cedimenti

A. Fondazioni Superficiali. 1. Tipologie 2. Scelta del piano di posa 3. Verifica del carico limite 4. Verifica dei cedimenti A. Fondazioni Superfiiali 1. Tipologie 2. Selta del piano di posa 3. Verifia del ario limite 4. Verifia dei edimenti = N es lshfond r int erro ( D h) wzw BL + + Il omplesso terreno-fondazione è verifiato

Dettagli

Illuminatori d'antenne paraboliche Misure con la strumentazione di laboratorio.

Illuminatori d'antenne paraboliche Misure con la strumentazione di laboratorio. A.R.I. Sezione di Parma Illuminatori d'antenne paraboliche Misure con la strumentazione di laboratorio. Venerdi,5 dicembre, ore 21 - Carlo, I4VIL GUIDE D ONDA Una guida d onda è un profilato, in genere,

Dettagli

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione)

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione) Esame di eoria dei Circuiti 13 Febbraio 2015 Soluzione) Esercizio 1 γi 3 V 3 I 1 1 βi 1 I 2 I 2 I 3 V 4 g αi 2 2 3 V 5 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 2

Dettagli

Principali equazioni di acustica

Principali equazioni di acustica RT veloità del suono nel gas m R ostante del gas onsiderato T temeratura [ K Priniali equazioni di austia J Kg K λ λ lunghezza d onda [ m requenza in Hertz s z ρ z imedenza austia aratteristia Pa s m ρ

Dettagli

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014.

Elettrotecnica - Ing. Biomedica Ing. Elettronica Informatica e Telecomunicazioni (V. O.) A.A. 2013/14 Prova n luglio 2014. ognome Nome Matricola Firma Parti svolte: E E E D Esercizio I I R 6 R 5 D 6 G 0 g Supponendo noti i parametri dei componenti e la matrice di conduttanza del tripolo, illustrare il procedimento di risoluzione

Dettagli

0.24. Progettare un regolatore che soddisfi le seguenti specifiche, minimizzando le code di assestamento: Errore a regime=10% ω c =1rad/s Mf=40 o

0.24. Progettare un regolatore che soddisfi le seguenti specifiche, minimizzando le code di assestamento: Errore a regime=10% ω c =1rad/s Mf=40 o .4 ( s+.) ( s+ ) Dato l impianto Gs () = Progettare un regolatore he soddisfi le seguenti speifihe, minimizzando le ode di assestamento: Errore a regime=1% ω =1rad/s Mf=4 o 1 Magnitude (db) Phase (deg)

Dettagli

ANALOGIA MECCANICA. Carlo Vignali, I4VIL

ANALOGIA MECCANICA. Carlo Vignali, I4VIL ANALOGIA MECCANICA Carlo Vignali, I4VIL Un impulso meccanico sia prodotto ad un estremo di una fune: la deformazione viaggia lungo la fune indipendentemente da come questa sia terminata (l'impulso che

Dettagli

Richiami sui fenomeni ondulatori

Richiami sui fenomeni ondulatori Rihiami sui fenomeni ondulatori Cos è un onda? una perturbazione fisia, impulsiva o periodia he, prodotta da una sorgente in un punto dello spazio, si propaga in un mezzo on una veloità ben definita produendo

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Diagramma polare La risposta in frequenza si analizza tramite G(s) s jω G(jω) M( ω) e G(jω) jϕ( ω) e ω < Un altra rappresentazione grafica di G(jω) si ottiene

Dettagli

Corso di Microonde II

Corso di Microonde II POLITECNICO DI MILANO Corso di Microonde II Lezione n. 2: Cenni sui circuiti non reciproci Relazi costitutive (richiami) B = µ H, D= ε E Nei mezzi lineari, isotropi e di estensione infinita e vettori B

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Circuiti Elettrici Lineari Risposta in frequenza

Circuiti Elettrici Lineari Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici ineari isposta in frequenza Circuiti Elettrici ineari a.a. 89 Prof.

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Linee di trasmissione ordinarie (un conduttore più massa)

Linee di trasmissione ordinarie (un conduttore più massa) inee di trasmissione ordinarie (un conduttore più massa) Modello circuitale Si assumerà come postulato il circuito equivalente di un tronco di linea infinitesimo I(z) Rdz dz I(zdz) V(z) Gdz dz V(zdz) V(z)

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione el Problema Prima ell istante t 0 il circuito opera in regime stazionario e l inuttore si comporta come un corto circuito, come mostrato nella seguente figura: i(t) I 0 V V Poiché è cortocircuitata

Dettagli

Esercizio 1 Scrivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana. = q 2 2q 2. L = q 1 d L. = q 2. = q 1 2q 1.

Esercizio 1 Scrivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana. = q 2 2q 2. L = q 1 d L. = q 2. = q 1 2q 1. 1 4 o tutorato - FM210/MA - 17/4/2017 Eserizio 1 Srivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana L(q, q) = q 2 q 1 q 1 q 2 2q 1 q 2 e trovarne espliitamente la soluzione.

Dettagli

Linee di trasmissione

Linee di trasmissione Capitolo 2 Linee di trasmissione 2.1 Circuiti a costanti concentrate Nei circuiti a costanti concentrate le proprietà elettriche del circuito (resistenza, induttanza, capacità ecc.) si considerano tutte

Dettagli