TRASDUTTORI DI POSIZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TRASDUTTORI DI POSIZIONE"

Transcript

1 TRASDUTTORI DI POSIZIONE I trasduttori di posizione hanno moltissime applicazioni dovunque vi siano problemi di movimentazione, come ad esempio nelle macchine utensili e nei robot; possono infatti misurare rotazioni (trasduttori di tipo angolare) oppure spostamenti lineari (trasduttori di tipo lineare). I principali trasduttori di posizione sono: i potenziometri, gli encoder (incrementali e assoluti), i syncro, i resolver, i trasformatori differenziali. I potenziometri I potenziometri sono costituiti da un filo o da uno strato metallico, avvolto su un supporto isolante, e da un contatto mobile in grado di spostarsi lungo il conduttore. Il contatto mobile è solidale con l'elemento di cui si vuole misurare la posizione; qualunque spostamento del contatto mobile si traduce in una variazione del valore della resistenza. Si tratta evidentemente di un trasduttore di tipo analogico. II potenziometro è poi inserito in un circuito alimentato da una sorgente di tensione costante, in modo che ogni variazione della posizione si traduce in una variazione della tensione erogata. I potenziometri possono essere di tipo lineare o rettilineo oppure angolari o rotativi; nel primo caso misurano spostamenti lineari, nel secondo caso spostamenti angolari; a loro volta i potenziometri di tipo angolare si distinguono in monogiro e multigiro. Nei primi la rotazione ammissibile è limitata ad un solo giro (teoricamente 360, praticamente ); viceversa, nei potenziometri multigiro, è ammessa una 1

2 rotazione di più giri (per esempio dieci). Nel caso di potenziometro lineare, se i morsetti dello stesso sono collegati ad un carico di resistenza infinita (cioè nel caso non si abbia erogazione di corrente come in un circuito aperto), la tensione di uscita è data dalla formula: V u = X l V i dove: Vi = tensione di uscita, ai morsetti del potenziometro; X = spostamento lineare; l= massima escursione del potenziometro; vi = tensione di alimentazione del potenziometro. Nel caso di potenziometro angolare la precedente relazione si trasforma nella seguente: V u = V i max dove: Vu = tensione di uscita, ai morsetti del potenziometro; Φ = rotazione; Φmax = massima rotazione ammissibile del potenziometro; Vu= tensione di alimentazione del potenziometro. Come si nota dalle formule precedenti i potenziometri forniscono in uscita un segnale di tensione proporzionale allo spostamento subito dal contatto mobile si può dunque affermare che il potenziometro è un trasduttore lineare. In realtà la linearità, ossia la proporzionalità tra segnale di ingresso (= spostamento) e segnale di uscita (= tensione Vu), è assicurata se la resistenza dell'elemento conduttore si mantiene costante. Nella realtà si possono avere scostamenti dal comportamento lineare dovuti a: riscaldamento del conduttore, per effetto Joule provocato dalla corrente 2

3 circolante; disomogeneità dell'elemento conduttore (ad esempio filo non perfettamente calibrato). Parametri caratteristici dei potenziometri. I principali parametri caratteristici dei potenziometri che devono essere tenuti presenti per la loro scelta e impiego, sono i seguenti: resistenza in ohm: rappresenta la resistenza complessiva del potenziometro (può variare da pochi ohm sino al megaohm); potenza dissipabile: rappresenta la potenza che il trasduttore può dissipare senza danneggiarsi; risoluzione: è il minimo spostamento apprezzabile, cioè in grado di determinare una variazione della tensione di uscita; sensibilità: è la variazione di tensione determinata da uno spostamento unitario del cursore; la sensibilità è tanto più elevata quanto è maggiore la tensione di alimentazione U, (il cui limite massimo è imposto dalla massima potenza dissipabile); intervallo di temperatura: rappresenta l'intervallo di temperatura ambiente all'interno del quale il trasduttore può funzionare correttamente. 3

4 Encoder L'Encoder è un apparato elettromeccanico che converte la posizione angolare del suo asse rotante in un segnale elettrico digitale. Collegato ad opportuni circuiti elettronici e con appropriate connessioni meccaniche, l'encoder è in grado di misurare spostamenti angolari, movimenti rettilinei e circolari nonchè velocità di rotazione e accelerazioni. Esistono varie tecniche per il rilevamento del movimento angolare: capacitiva, induttiva, potenziometrica e fotoelettrica. I trasduttori sugli encoder impiegano quasi sempre il rilevamento fotoelettrico. Gli encoder possono essere di due tipi: Incrementali quando i segnali d'uscita sono proporzionali in modo incrementale allo spostamento effettuato. Assoluti quando ad ogni posizione dell'albero corrisponde un valore ben definito. Encoder incrementali: segnalano unicamente gli incrementi (variazioni) rilevabili rispetto a un'altra posizione assunta come riferimento. Questi incrementi sono indipendenti dal verso di rotazione il quale, non può essere rilevato da questo tipo di trasduttori. E' costituito da un disco di materiale plastico, sul quale sono stati ricavati dei fori o, più comunemente, alcune zone particolarmente trasparenti attraverso le quali e' possibile il passaggio di un fascio luminoso. Gli encoder incrementali sono composti da diverse parti: un disco: è generalmente di plastica ed è calettato sull'albero dell'organo da controllare, diviso in zone chiare (trasparenti) e scure (opache). fotoemettitori: danno il segnale di input attraverso un segnale luminoso che passa nelle zone trasparenti del disco. fotorilevatore che riceve il segnale luminoso e che a sua volta invierà un segnale di output (logico 1 se passa la luce, logico 0 se non passa). 4

5 Il disco viene calettato sull'albero dell'apparecchiatura di cui si vuole rilevare lo spostamento angolare. Di conseguenza ad ogni spostamento dell'albero si ha uno spostamento uguale dell'encoder.in corrispondenza dei fori, su una superficie del disco, viene applicato un dispositivo fotoemettitore, mentre sull'altra un dispositivo fotorilevatore. L'attraversamento del fascio luminoso nei fori comporta l'attivazione dell'uscita. La rilevazione dello spostamento angolare avviene mediante il "conteggio" degli impulsi generati dal fotorilevatore alla propria uscita. La rilevazione dello spostamento angolare può essere così descritta: Quando l'encoder si trova nella posizione di riferimento, il flusso luminoso attraversa il foro 0. In tal modo viene attivata l'uscita del fotorilevatore la quale si porta a livello alto, restandovi fino a quando il fascio luminoso viene interrotto. Quando l'encoder inizia a ruotare, il fascio luminoso viene interrotto. Il fotorilevatore, quindi, risulta diseccitato e la sua uscita diventa bassa. Questa rimane bassa fino a quando il foro 1 viene a trovarsi nella posizione occupata dal foro 0. Quando questo avviene il fascio luminoso attraversa il foro 1 eccitando nuovamente il fotorilevatore la cui uscita ridiventa alta. Di conseguenza risulta noto lo spostamento angolare 1 ( =360 /(numero di fori dell'encoder)) questo spostamento coincide con quello dell'encoder. 5

6 Proseguendo nella rotazione il disco interrompe nuovamente il fascio luminoso diseccitando il fotorilevatore la cui uscita ritorna bassa. Il processo descritto si ripete in modo perfettamente uguale consentendo la rivelazione degli spostamenti angolari. Il dispositivo digitale che rileva il numero di impulsi è un contatore il cui ingresso di conteggio risulta attivo sul fronte di salita. Di conseguenza si può concludere che il numero degli impulsi contati è direttamente proporzionale allo spostamento angolare dell encoder, vale a dire allo spostamento angolare dell organo a cui è calettato. La sorgente di luce Led all'arseniuro di gallio utilizzata sugli encoder assicura una vita di ore e sono dotati di un apposito circuito interno che compensa l'invecchiamento del led. L'encoder incrementale è adatto a rilevare rotazioni, velocità ed accelerazioni in base al conteggio degli impulsi inviati dal circuito in ouput. Non è capace di orientarsi dopo un black-out, di conseguenza ha bisogno di portarsi, in fase di avvio, allo zero macchina. Accoppiandolo con una memoria alimentata da batterie tampone, si riesce ad evitare la perdita di informazioni in caso di mancanza di alimentazione. Per poter rilevare il verso di rotazione, l'encoder presenta una seconda identica pista, ma sfasata di metà passo oppure due gruppi di elementi fotosensibili sfasati fra loro. Effettuando un controllo dei fronti di salita degli impulsi in uscita A e B, un sistema logico riesce stabilire il verso di rotazione del disco. La differenza di fase presente tra i due treni di impulsi delle due tracce è invece in grado di rilevare il senso di rotazione dell'asse dell'encoder. Infatti, a causa della diversa posizione relativa delle tacche, gli impulsi della seconda traccia saranno 6

7 sfasati, in anticipo di 1/4 di periodo rispetto a quelli della prima traccia se l'asse ruota in un senso, in ritardo di 1/4 di periodo se la rotazione è nel senso opposto. Il circuito della figura seguente è in grado di discriminare la fase dei due treni di impulsi e permettere il conteggio algebrico degli impulsi generati da una delle due tracce: nel caso in cui è presente anticipo di fase incrementa il contatore, nel caso opposto lo decrementa. Il valore finale del conteggio fornisce l'effettivo spostamento dell'asse. L'encoder incrementale è un dispositivo in grado di misurare spostamenti angolari dell'asse, ma non la sua posizione angolare. Se l'asse si sposta di un passo, infatti, in uscita sarà presente un impulso, qualunque sia la posizione angolare di partenza dell'asse. La terza traccia fornisce il riferimento di zero e permette quindi di utilizzare l'encoder incrementale per effettuare misure di posizione. In tal caso la misura deve essere preceduta da una fase iniziale di reset, nella quale si ruota l'asse dell'encoder fino a rilevare la presenza della tacca della terza traccia, azzerando così il contatore; completato il reset, la misura degli impulsi effettuata con il circuito di figura permette di conoscere sia la posizione dell'asse, con un conteggio assoluto, sia lo spostamento, utilizzando un conteggio relativo. Parametri degli encoder incrementali: 7

8 Risoluzione: la risoluzione è data dalla seguente relazione: = 360 /N dove N è il numero di fori praticati sul disco. La Risoluzione ci da la precisione della rilevazione degli spostamenti angolari. Linearità: questo parametro assume un valore decisamente elevato. Range di funzionamento: tra 0 e 360 Sensibilità: valore dipendente alla risoluzione che come sappiamo rappresenta la minima variazione rilevabile dal trasduttore. Tempo di risposta: dipende sostanzialmente dal fotorilevatore. Encoder assoluto: Le zone in colore nero indicano le areole che producono 0, mentre quelle di colore bianco indicano quelle che producono 1. Nel caso dell' encoder assoluto il disco è suddiviso in settori che andranno a comporre un codice (binario oppure Gray). Il disco è diviso in n corone circolari e in 2 n spicchi. Ogni settore (spicchio) avrà n areole che a seconda se opacizzate o trasparenti corrisponderanno a 1 logico o 0 logico. Ogni areola avrà quindi il valore di un bit. Il bit meno significativo sarà quello 8

9 della corona più interna. Per evitare errori di lettura invece del codice binario puro vengono utilizzati altri codici, tra i quali il più importante e il codice Gray. Nel codice Gray il passaggio da un numero al successivo avviene sempre variando un'unica cifra binaria, evitando così che nel passaggio tra la lettura di un numero e del successivo possano aversi letture casuali. In questo caso ci sarà un fotoemettitore e un corrispondente fotorilevatore per ogni corona circolare del disco. Il codice Gray è il codice più utilizzato per la decodificazione del segnale; questo codice presenta la variazione di 1 bit da un numero al suo successivo assicurando un elevato tasso di sicurezza e affidabilità per quanto riguarda la generazione e la decodificazione del codice. Trasformatori differenziali o LVDT Il trasformatore differenziale o LVTD (Linear Variable Differential Transformer) è uno dei dispositivi più utilizzati nelle applicazioni industriali per convertire uno spostamento meccanico in un segnale elettrico. 9

10 I trasformatori differenziali sono dispositivi di precisione utilizzati per rilevare spostamenti che vanno dal micron a qualche centimetro. La caratteristica di misurare con precisione piccoli spostamenti permette il loro impiego anche in campi diversi da quello della rilevazione di una posizione; infatti essi possono essere utilizzati per rilevare forze, pressioni o sollecitazioni meccaniche, vibrazioni, accelerazioni e inclinazioni. Il trasformatore differenziale è costituito da: un avvolgimento primario, alimentato da una tensione alternata di ampiezza costante; due avvolgimenti secondari connessi in controfase; un nucleo mobile di materiale ferromagnetico, generalmente ferro-nichel. Poiché i due avvolgimenti secondari sono collegati in opposizione, la tensione di uscita del dispositivo sarà la differenza tra le tensioni indotte in ciascun avvolgimento secondario: Vout = V1 - V2 II trasformatore ha una struttura simmetrica rispetto a un punto che può essere considerato il centro del sistema; se poniamo il nucleo mobile in tale posizione l'accoppiamento tra il primario e i due secondari è della stessa entità, per cui le due tensioni sono dello stesso valore e, di conseguenza, il valore della tensione di uscita è 10

11 nullo (posizione di zero). Uno spostamento del nucleo rispetto alla posizione di zero modifica l'accoppiamento tra l'avvolgimento primario e i due avvolgimenti del secondario; in effetti si realizza l'aumento dell'accoppiamento con uno dei due e la diminuzione con l'altro. La variazione dell'accoppiamento determina la variazione della tensione indotta sui due avvolgimenti secondari e, quindi, della tensione di uscita del dispositivo che assume il valore Vout = Vl-V2; tale variazione è funzione dello spostamento del nucleo e quindi della sua posizione. Se il circuito magnetico e l'intensità dell'eccitazione sono tali da non introdurre distorsione nel segnale, la forma d'onda in uscita ha lo stesso andamento temporale della forma d'onda di eccitazione, che è sinusoidale. Ampiezza e fase della tensione sinusoidale di uscita dipendono dall'entità dello spostamento del nucleo e dalla direzione in cui esso si è spostato. La tensione di uscita ha infatti la stessa fase di quella d'ingresso se lo spostamento del nucleo è tale che risulti Vl > V2, nel caso in cui risulti V2 > Vl la tensione di uscita ha segno opposto al caso precedente ed è, quindi, in opposizione di fase rispetto alla tensione di eccitazione (ricordiamo infatti che per una grandezza sinusoidale il segno negativo indica una fase di 180 ). L'informazione che riguarda la posizione del nucleo rispetto alla posizione centrale dipende allora da due diversi parametri della grandezza di uscita: l'entità dello spostamento, legata all'ampiezza del segnale; la direzione in cui è avvenuto lo spostamento, legata alla fase presente tra segnale di uscita e di eccitazione. La caratteristica di funzionamento di un LVDT è riportata in figura seguente: in ascissa è indicato il valore dello spostamento del nucleo, in ordinata il valore massimo della tensione in uscita. Come si può notare, l'ampiezza del segnale di uscita non fornisce alcuna informazione sulla direzione dello spostamento in quanto le due curve sono 11

12 simmetriche rispetto all'asse delle ampiezze. È necessario, allora, modificare il segnale di uscita dell'lvdt per ottenere un segnale continuo la cui ampiezza contenga l'informazione della posizione. Questa operazione è realizzata da un raddrizzatore e da un discriminatore dì fase: il primo trasforma il segnale sinusoidale in un segnale continuo, il secondo decide il segno della tensione raddrizzata, positivo se le sinusoidi di uscita e di eccitazione sono in fase, negativo se sono in opposizione di fase. La relazione ingresso-uscita del trasduttore che comprende, oltre all'lvdt, il raddrizzatore e il discriminatore di fase è riportata in figura b; la tensione di uscita consente in tal caso di determinare la direzione dello spostamento, in quanto essa inverte di segno in seguito a un'inversione dello spostamento rispetto alla posizione centrale. Le operazioni di raddrizzamento e di discriminazione della fase non sono le uniche operazioni di condizionamento del segnale di uscita di un LVDT. Poiché la tensione di uscita è molto bassa in quanto il sensore ha sensibilità molto modesta, è necessario amplificarla. Un'ulteriore operazione di condizionamento è il filtraggio e si rende necessaria sia per 12

13 il basso livello della tensione di uscita sia per la presenza di disturbi determinati dall'accoppiamento degli avvolgimenti di secondario con campi magnetici esterni; la fonte maggiore di disturbo è in questo caso l'alimentazione di rete che ha frequenza di 50 Hz in Europa e di 60 Hz negli USA. Riassumendo, possiamo affermare che il segnale di uscita di un LVDT non può essere utilizzato direttamente, ma necessita di una serie di operazioni di condizionamento, che sono: - amplificazione; - filtraggio; - raddrizzamento; - discriminazione di fase. Il trasformatore differenziale è talmente diffuso nelle applicazioni industriali che alcune case produttrici di dispositivi a semiconduttore, come la Philips e la Analog Devices, hanno prodotto dispositivi integrati in grado di realizzare in un singolo chip sia le operazioni descritte, sia alcune funzioni aggiuntive quali quelle di fornire una forma d'onda sinusoidale per l'eccitazione o di convertire il segnale condizionato in un formato digitale. È il caso, ad esempio, dei dispositivi 2S54 e2s56 della Analog Device. Tali dispositivi integrano al loro interno un convertitore analogico digitale (A/D) che consente di fornire in uscita un codice digitale, a 14 bit nel caso del dispositivo 2S54 e a 16 bit per il 2S56, corrispondente alla posizione dell'elemento mobile del trasduttore rispetto alla posizione di riferimento. Caratteristiche e specifiche di funzionamento Le caratteristiche peculiari degli LVDT sono: - la possibilità di effettuare misure di spostamento senza che sia presente alcun contatto strisciante; ciò consente il loro utilizzo anche in alcune misure critiche che non tollerano la presenza di contatto strisciante, come ad esempio la misura di 13

14 deformazioni dinamiche o di vibrazioni; una vita meccanica infinita, determinata anch'essa dalla mancanza di contatti striscianti che, se presenti, determinano usura di alcune parti del dispositivo; una risoluzione infinita; l'accoppiamento magnetico permette infatti di realizzare in uscita variazioni di piccolissimo valore che consentono di rilevare anche piccolissime variazioni di posizione del nucleo; ripetitività del punto di zero determinato dalla simmetria del componente; questo fa del dispositivo un ottimo elemento di rilevazione di posizioni di zero e gli permette di essere utilizzato in tutte le misure che sfruttano tale tecnica; isolamento elettrico tra ingresso e uscita realizzato dall'accoppiamento magnetico. Le specifiche di funzionamento che sono fornite dal costruttore tengono conto dei parametri che seguono. Sensibilità :La sensibilità di un trasformatore differenziale viene indicata dal costruttore come il valore della tensione di uscita per un dato spostamento (normalmente un millesimo di pollice o un centesimo di millimetro) e per un'alimentazione unitaria (1 V); in genere è fornito anche il valore di frequenza. Valori tipici della sensibilità degli LVDT commerciali sono compresi tra qualche decimo di mv e qualche mv, per uno spostamento 0,025 mm. Linearità: I trasformatori differenziali in commercio presentano non linearità dovuta principalmente alla presenza nel circuito magnetico di materiali ferromagnetici (il nucleo). L'errore di non linearità NL% dei componenti presenti in commercio varia tra lo 0,1% e l'l%, con un valore tipico pari a 0,25%. La non linearità comporta la presenza nel segnale di componenti armoniche che hanno frequenza maggiore dell'eccitazione. Ciò introduce un ulteriore elemento di errore nel funzionamento del dispositivo. Infatti il trasformatore differenziale ideale è caratterizzato da un accoppiamento puramente induttivo fra l'avvolgimento primario e i secondari. Nei dispositivi reali, invece, sono presenti anche accoppiamenti capacitivi che enfatizzano le componenti del segnale a frequenza maggiore. 14

15 Gli effetti dovuti alla presenza delle componenti armoniche possono essere ridotti scegliendo un buon generatore di eccitazione, in grado di realizzare un segnale sinusoidale in cui non siano presenti componenti armoniche, oltre quella fondamentale, e di ampiezza tale da fare lavorare il trasduttore nella zona maggiormente lineare e ben lontano dalla zona di saturazione magnetica. Tensione di alimentazione: I trasformatori differenziali possono funzionare a una frequenza compresa fra 50 Hz e 20 khz. Esiste un limite inferiore al valore di frequenza da utilizzare, determinato dalla velocità con cui varia l'ingresso (lo spostamento del nucleo). I limiti massimi della tensione di alimentazione sono determinati dalla temperatura massima ammissibile negli avvolgimenti, che dipende dal loro dimensionamento e dalla saturazione del nucleo magnetico: normalmente le tensioni di alimentazione massime sono di pochi volt se la frequenza è di 50 Hz, e possono salire al centinaio di volt per frequenze dell'ordine di qualche migliaio di Hz. Syncro Un syncro è un trasduttore rotativo che converte una posizione angolare in una tensione alternata. Il syncro è un trasduttore modulante e necessita quindi di un'eccitazione con andamento sinusoidale. Il dispositivo è reversibile, il suo principio di funzionamento è cioè tale che possono essere invertiti i principi di causa-effetto: se imponiamo un valore di tensione alternata in presenza di eccitazione, si realizza uno spostamento angolare dell'asse del syncro. Nelle applicazioni i syncro sono generalmente usati in coppia, secondo la disposizione indicata in figura seguente. Uno dei due syncro, detto trasmettitore, è alimentato con una tensione sinusoidale sull'avvolgimento di rotore, mentre gli avvolgimenti di statore sono collegati agli analoghi avvolgimenti del secondo syncro, detto trasformatore di controllo. 15

16 La tensione di uscita del trasformatore di controllo, prelevata sull'avvolgimento rotorico, è una tensione sinusoidale della stessa frequenza di quella di eccitazione, ma con ampiezza che è funzione della differenza fra le posizioni angolari degli assi del trasmettitore e del trasformatore di controllo. Se consideriamo allora l'angolo dell'asse del syncro trasformatore come riferimento, l'ampiezza della tensione di uscita è funzione dell'angolo che l'asse del syncro trasmettitore realizza rispetto al riferimento. La costruzione di un syncro è molto simile a quella di un piccolo alternatore trifase. Lo statore è costruito con lamierini scanalati contenenti un avvolgimento trifase che è generalmente collegato a stella. Sebbene il dispositivo sia, in linea di principio, reversibile, la tecnologia costruttiva del trasmettitore e quella del trasformatore di controllo sono diverse e per tale motivo i due dispositivi non possono essere scambiati. Infatti gli avvolgimenti di rotore e di statore nei trasformatori di controllo hanno un'impedenza maggiore degli analoghi 16

17 avvolgimenti dei trasmettitori; questo fatto consente di poter eccitare, con un unico trasmettitore, più trasformatori di controllo. Descriviamo ora il funzionamento di una coppia di syncro costituita da un trasmettitore e da un trasformatore di controllo. Uno dei due syncro, detto trasmettitore, è alimentato con una tensione sinusoidale sull'avvolgimento di rotore, mentre gli avvolgimenti di statore sono collegati agli analoghi avvolgimenti del secondo syncro, detto trasformatore di controllo. La tensione di uscita del trasformatore di controllo, prelevata sull'avvolgimento rotorico, è una tensione sinusoidale della stessa frequenza di quella di eccitazione, ma con ampiezza che è funzione della differenza fra le posizioni angolari degli assi del trasmettitore e del trasformatore di controllo. Se consideriamo allora l'angolo dell'asse del syncro trasformatore come riferimento, l'ampiezza della tensione di uscita è funzione dell'angolo che l'asse del syncro trasmettitore realizza rispetto al riferimento. La costruzione di un syncro è molto simile a quella di un piccolo alternatore trifase. Lo statore è costruito con lamierini scanalati contenenti un avvolgimento trifase che è generalmente collegato a stella. Sebbene il dispositivo sia, in linea di principio, reversibile, la tecnologia costruttiva del trasmettitore e quella del trasformatore di controllo sono diverse e per tale motivo i due dispositivi non possono essere scambiati. Infatti gli avvolgimenti di rotore e di statore nei trasformatori di controllo hanno un'impedenza maggiore degli analoghi avvolgimenti dei trasmettitori; questo fatto consente di poter eccitare, con un unico trasmettitore, più trasformatori di controllo. Descriviamo ora il funzionamento di una coppia di syncro costituita da un trasmettitore e da un trasformatore di controllo. L'avvolgimento retorico del trasmettitore è alimentato da una tensione sinusoidale e genera quindi un flusso con andamento temporale sinusoidale che interessa gli avvolgimenti di statore. 17

18 Per accoppiamento magnetico, nei tre avvolgimenti dello statore si generano tre tensioni sinusoidali indotte, della stessa frequenza e fase della tensione di eccitazione, ma di ampiezza diversa a seconda della posizione angolare relativa tra rotore e statore. Le tensioni indotte provocano la circolazione di corrente negli avvolgimenti statorici del trasformatore di controllo, con conseguente generazione di tre diversi campi magnetici, la cui somma genera un vettore flusso magnetico sinusoidale, avente teoricamente le stesse caratteristiche geometriche del corrispondente flusso nel trasmettitore. Tale flusso interessa il rotore, generando una tensione indotta. Se ipotizziamo che la tensione di eccitazione del syncro trasmettitore sia E*sen(ωt), la tensione di uscita del syncro trasformatore vale: E0 = (Emax*cos(θt))*senωt dove θ è la differenza tra gli angoli (misurati rispetto a uno stesso riferimento statorico) degli avvolgimenti rotorici del trasmettitore e del trasformatore di controllo ed Emax è il valore massimo della tensione di uscita, che dipende dal valore della tensione di eccitazione e dal rapporto di trasformazione globale esistente tra i due avvolgimenti rotorici considerati. La tensione di uscita ha la stessa frequenza dell'eccitazione, ma ha ampiezza che è funzione della differenza angolare degli assi dei due syncro. Dall'equazione precedente si può ricavare che, se i due rotori hanno posizione angolare relativa pari a 90, la tensione di uscita è nulla: si tratta cioè di una condizione di zero. La relazione ingresso-uscita è la curva rappresentata in figura seguente. 18

19 Si tratta di una caratteristica chiaramente non lineare; tuttavia, se limitiamo il funzionamento del trasduttore a un campo di angoli compreso tra 20 e 160, esso risulta ragionevolmente lineare. In effetti nelle applicazioni il punto di funzionamento è fissato in corrispondenza a un angolo di fase θ = 90 (condizione di zero) e si misurano angoli compresi nell'intervallo tra 20 e 160. Resolver II resolver è un trasduttore di posizione realizzato da un trasformatore rotante, dotato di due avvolgimenti di rotore sfasati tra loro di 90 e di due avvolgimenti di statore anch'essi sfasati di 90. Il sistema è perfettamente reversibile, per cui si possono utilizzare come primario sia gli avvolgimenti di rotore sia quelli di statore. Se utilizziamo come primario gli avvolgimenti di rotore e li alimentiamo con tensioni sinusoidali come mostrato in figura, sui due secondari saranno presenti tensioni sinusoidali con la stessa frequenza e fase della tensione di eccitazione, ma con ampiezze date dalle relazioni: V out1 =K V in1 cos V in2 sin V out2 =K V in2 cos V in1 sin 19

20 dove K è un fattore costante che dipende dal rapporto di trasformazione globale esistente tra gli avvolgimenti. Se è utilizzato come sensore di posizione angolare, il resolver deve essere alimentato da un solo avvolgimento, ponendo in cotto l'altro, come mostrato in figura. In tale situazione le due tensioni di uscita V out1 =K V in1 cos V out2 =K V in1 sin 20

21 Osserviamo che la tensione di uscita ha lo stesso andamento dell'eccitazione, ma il modulo è funzione dell'angolo del rotore rispetto al riferimento di statore. Delle due relazioni la seconda è la più interessante; si può dimostrare, infatti, che nel campo di angoli compresi tra - 35 e + 35 è possibile approssimare la funzione sen(θ) con una retta, ottenendo un errore percentuale relativo all'intervallo di 70 minore dell' 1%. Dunque, all'interno del campo di funzionamento 35 e 35, l'ampiezza del segnale di uscita è proporzionale all'angolo dell'asse. L'uscita ha andamento sinusoidale, perciò è necessario che essa sia raddrizzata per ottenere un segnale continuo la cui ampiezza sia proporzionale all'angolo dell'asse del revolver. Il circuito di condizionamento dovrà prevedere anche l'amplificazione e il filtraggio del segnale di uscita, per gli stessi motivi esaminati in precedenza per l'lvdt. TRASDUTTORE DI VELOCITÀ Il controllo e la misura della velocità rappresentano un elemento fondamentale molti processi industriali. La misura della velocità può essere effettuata con diversi dispositivi, analogici digitali. I principali trasduttori di velocità impiegati sono: la dinamo tachimetrica (analogico); l'encoder incrementale (digitale). La dinamo tachimetrica La dinamo tachimetrica è un generatore in corrente continua, con eccitazione a magnete permanente. 21

22 Il rotore è collegato all'albero di cui si vuole misurare la velocità. Una volta in rotazione alla velocità di in giri/min la dinamo genera ai suoi morsetti una tensione E data dalla: E=Kd*Φ*n dove: Kd rappresenta la costante di proporzionalità della dinamo (che dipende dalle caratteristiche costruttive); Φ il flusso magnetico (generato dal magnete permanente). Come si nota, nell'ipotesi che Kd e 0 rimangano costanti si ha proporzionalità ma la velocità di rotazione e la tensione generata. Si tenga presente che la costante tachimetrica Kd è espressa in V*s/rad, ma può essere assegnata anche in V/rpm o in V/1000 rpm; la conversione da ud unità di misura all'altra si ricava facilmente se si considera che 1 [rpm]=1[giro/minuto] = 2π/60 [rad/s] = 0,1047 [rad/s]. Dal punto di vista costruttivo le dinamo tachimetriche sono caratterizzate da i forma stretta ed allungata, al fine di ridurre il momento d'inerzia del rotore. Nei vantaggi delle dinamo tachimetriche è da considerare il fatto che la tensione generata (da 10 a 20 V ogni 1000 giri/min) non richiede amplificazione, tuttavia le dinamo tachimetriche presentano alcuni svantaggi notevoli: La caratteristica di uscita dipende dalla resistenza del carico; la tensione generata presenta una ondulazione («ripple») la cui frequenza aumenta all'aumentare della 22

23 velocità di rotazione; la massima velocità misurabile non è troppo elevata a causa dei vincoli elettrici e meccanici; presenta problemi di manutenzione ed usura meccanica. Trasduttori digitali di velocità. Un encoder incrementale è praticamente utilizzabile per misurare velocità di rotazione di un albero. A tal fine è necessario stabilire un intervallo tempo T (clock) espresso in secondi, e contare il numero m di impulsi generati nell'intervallo. Dalla seguente formula è possibile ricavare la velocità di rotazione: n= m 60 T R n= velocità in giri/min (rpm); m=numero impulsi generati nell'intervallo R = risoluzione dell'encoder (impulsi/giro). Il segnale di uscita dell'encoder è idealmente rappresentato da una sequenza i impulsi assimilabile ad una onda quadra; nella pratica, nel caso di velocità eleata, l'onda quadra subisce una deformazione; per tale motivo gli encoder qualità elevata contengono un circuito elettronico di correzione che consente ricostruire l'onda 23

24 quadra, importante per la corretta manipolazione del segnale. I segnale generato dall'encoder viene poi convenuto in una tensione continua proporzionale alla velocità di rotazione) tramite un convertitore frequenza/ tensione. Per ottenere elevata precisione nella misura della velocità occorre disporre di encoder ad elevata risoluzione( valori tipici da 100 a 600 impulsi a giro). 24

TRASDUTTORI DI POSIZIONE: ENCODER Generalità:

TRASDUTTORI DI POSIZIONE: ENCODER Generalità: TRASDUTTORI DI POSIZIONE: ENCODER Generalità: L'Encoder è un apparato elettromeccanico che converte la posizione angolare del suo asse rotante in un segnale elettrico digitale. Collegato ad opportuni circuiti

Dettagli

I trasduttori differenziali.

I trasduttori differenziali. I trasduttori differenziali. I trasduttori differenziali sono dei dispositivi che consentono di convertire uno spostamento meccanico in un segnale elettrico. Sono utilizzati anche per piccoli spostamenti

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

TRASDUTTORI di POSIZIONE

TRASDUTTORI di POSIZIONE TRASDUTTORI di POSIZIONE Numerosi trasduttori sono stati messi a punto per il rilievo di posizione, in movimenti sia rettilinei sia rotatori. I potenziometri, rettilinei o circolari selezionano una quota

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA

PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA TECNICO DELLE INDUSTRIE ELETTRONICHE Misura n.3 A.s. 2012-13 PROGETTAZIONE DI UN CONTROLLO ON-OFF CON CRITERI E METODOLOGIA Ipsia E. Fermi Catania Laboratorio di Sistemi 2012-13 mis.lab. n.2 Pag. 0 Controllo

Dettagli

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche PREMESSA In questa lezione verranno illustrate la classificazione delle diverse tipologie di trasduttori utilizzati nei sistemi di controllo industriali ed i loro parametri caratteristici. CLASSIFICAZIONE

Dettagli

Classificazione dei Sensori. (raccolta di lucidi)

Classificazione dei Sensori. (raccolta di lucidi) Classificazione dei Sensori (raccolta di lucidi) 1 Le grandezze fisiche da rilevare nei processi industriali possono essere di varia natura; generalmente queste quantità sono difficili da trasmettere e

Dettagli

Le macchine elettriche

Le macchine elettriche Le macchine elettriche Cosa sono le macchine elettriche? Le macchine elettriche sono dispositivi atti a: convertire energia elettrica in energia meccanica; convertire energia meccanica in energia elettrica;

Dettagli

Sensori di posizione di tipo induttivo

Sensori di posizione di tipo induttivo I sensori induttivi a singolo avvolgimento sono composti da un avvolgimento fisso e da un nucleo ferromagnetico mobile. Il sensore converte la grandezza da misurare in una variazione dell induttanza L

Dettagli

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali.

Dispositivo di conversione di energia elettrica per aerogeneratori composto da componenti commerciali. Sede legale: Viale Vittorio Veneto 60, 59100 Prato P.IVA /CF 02110810971 Sede operativa: Via del Mandorlo 30, 59100 Prato tel. (+39) 0574 550493 fax (+39) 0574 577854 Web: www.aria-srl.it Email: info@aria-srl.it

Dettagli

Trasduttori di posizione e velocità.

Trasduttori di posizione e velocità. Trasduttori di posizione e velocità. Tra le innumerevoli categorie di trasduttori di posizione esistono gli encoder ottici digitali che si possono raggruppare in tre tipologie a seconda del segnale fornito

Dettagli

CONVERTITORI DIGITALE/ANALOGICO (DAC)

CONVERTITORI DIGITALE/ANALOGICO (DAC) CONVERTITORI DIGITALE/ANALOGICO (DAC) Un convertitore digitale/analogico (DAC: digital to analog converter) è un circuito che fornisce in uscita una grandezza analogica proporzionale alla parola di n bit

Dettagli

6 Cenni sulla dinamica dei motori in corrente continua

6 Cenni sulla dinamica dei motori in corrente continua 6 Cenni sulla dinamica dei motori in corrente continua L insieme di equazioni riportato di seguito, costituisce un modello matematico per il motore in corrente continua (CC) che può essere rappresentato

Dettagli

ELETTRONICA. L amplificatore Operazionale

ELETTRONICA. L amplificatore Operazionale ELETTRONICA L amplificatore Operazionale Amplificatore operazionale Un amplificatore operazionale è un amplificatore differenziale, accoppiato in continua e ad elevato guadagno (teoricamente infinito).

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Controllo di un Motore Elettrico in Corrente Continua

Controllo di un Motore Elettrico in Corrente Continua Controllo di un Motore Elettrico in Corrente Continua ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it Programmazione

Dettagli

Fondamenti di macchine elettriche Corso SSIS 2006/07

Fondamenti di macchine elettriche Corso SSIS 2006/07 9.13 Caratteristica meccanica del motore asincrono trifase Essa è un grafico cartesiano che rappresenta l andamento della coppia C sviluppata dal motore in funzione della sua velocità n. La coppia è legata

Dettagli

APPUNTI SUL CAMPO MAGNETICO ROTANTE

APPUNTI SUL CAMPO MAGNETICO ROTANTE APPUTI UL CAPO AGETICO ROTATE Campo agnetico Rotante ad una coppia polare Consideriamo la struttura in figura che rappresenta la vista, in sezione trasversale, di un cilindro cavo, costituito da un materiale

Dettagli

Generazione campo magnetico

Generazione campo magnetico ELETTRO-MAGNETISMO Fra magnetismo ed elettricità esistono stretti rapporti: La corrente elettrica genera un campo magnetico; Un campo magnetico può generare elettricità. Generazione campo magnetico Corrente

Dettagli

Tema di ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI

Tema di ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI ESAME DI STATO Istituto Professionale Industriale Anno 2004 Indirizzo TECNICO INDUSTRIE ELETTRICHE Tema di ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI Un impianto funicolare è alimentato, oltre che dalla

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

I SISTEMI TRIFASI B B A N B B

I SISTEMI TRIFASI B B A N B B I SISTEMI TRIFSI ITRODUZIOE Un sistema polifase consiste in due o più tensioni identiche, fra le quali esiste uno sfasamento fisso, che alimentano, attraverso delle linee di collegamento, dei carichi.

Dettagli

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC.

Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Gestione dei segnali analogici nei sistemi di automazione industriale con PLC. Nelle automazioni e nell industria di processo si presenta spesso il problema di gestire segnali analogici come temperature,

Dettagli

Sensori di Sensori di spost spos am ent ent a cont cont t at o Pot P enziom etri enziom

Sensori di Sensori di spost spos am ent ent a cont cont t at o Pot P enziom etri enziom Cap 8: SENSORI PER MISURE DI MOTO Per misure di moto intendiamo le misure di spostamenti, velocità ed accelerazioni di oggetti, di grandezze cinematiche sia lineari che angolari. Sensori di spostamento

Dettagli

IL CONTROLLO AUTOMATICO: TRASDUTTORI, ATTUATORI CONTROLLO DIGITALE, ON-OFF, DI POTENZA

IL CONTROLLO AUTOMATICO: TRASDUTTORI, ATTUATORI CONTROLLO DIGITALE, ON-OFF, DI POTENZA IL CONTROLLO AUTOMATICO: TRASDUTTORI, ATTUATORI CONTROLLO DIGITALE, ON-OFF, DI POTENZA TRASDUTTORI In un sistema di controllo automatico i trasduttori hanno il compito di misurare la grandezza in uscita

Dettagli

Motore passo passo: Laboratorio di Elettronica 1

Motore passo passo: Laboratorio di Elettronica 1 Motore passo passo: Laboratorio di Elettronica 1 Motore passo passo: Cuscinetto Rotore Cuscinetto Statore Laboratorio di Elettronica 2 Motore passo passo: Statore ( #8 bobine contrapposte a due a due:

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Circuiti amplificatori

Circuiti amplificatori Circuiti amplificatori G. Traversi Strumentazione e Misure Elettroniche Corso Integrato di Elettrotecnica e Strumentazione e Misure Elettroniche 1 Amplificatori 2 Amplificatori Se A V è negativo, l amplificatore

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Motori brushless. Alimentando il motore e pilotando opportunamente le correnti I in modo che siano come nella figura 2 si nota come

Motori brushless. Alimentando il motore e pilotando opportunamente le correnti I in modo che siano come nella figura 2 si nota come 49 Motori brushless 1. Generalità I motori brushless sono idealmente derivati dai motori in DC con il proposito di eliminare il collettore a lamelle e quindi le spazzole. Esistono due tipi di motore brushless:

Dettagli

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P39 10. Serie P42 12. Serie P57 14. Serie P60 16. Serie P85 18.

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P39 10. Serie P42 12. Serie P57 14. Serie P60 16. Serie P85 18. INDICE Introduzione 2 Serie P20 4 Serie P28 6 Serie P35 8 Serie P39 10 Serie P42 12 Serie P57 14 Serie P60 16 Serie P85 18 Serie P110 20 Schemi di connessione 22 Codifica 23 Note 24 Motori Passo Passo

Dettagli

Generatore radiologico

Generatore radiologico Generatore radiologico Radiazioni artificiali alimentazione: corrente elettrica www.med.unipg.it/ac/rad/ www.etsrm.it oscar fiorucci. laurea.tecn.radiol@ospedale.perugia.it Impianto radiologico trasformatore

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in

La caratteristica meccanica rappresenta l'andamento della coppia motrice C in MOTORI CORRENTE ALTERNATA: CARATTERISTICA MECCANICA La caratteristica meccanica rappresenta l'andamento della coppia motrice C in funzione della velocità di rotazione del rotore n r Alla partenza la C

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

MISURE DI GRANDEZZE ELETTRICHE

MISURE DI GRANDEZZE ELETTRICHE MISURE DI GRANDEZZE ELETTRICHE La tecnologia oggi permette di effettuare misure di grandezze elettriche molto accurate: precisioni dell ordine dello 0,1 0,2% sono piuttosto facilmente raggiungibili. corrente:

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso:

I sistemi di controllo possono essere distinti in due categorie: sistemi ad anello aperto e sistemi ad anello chiuso: 3.1 GENERALITÀ Per sistema di controllo si intende un qualsiasi sistema in grado di fare assumere alla grandezza duscita un prefissato andamento in funzione della grandezza di ingresso, anche in presenza

Dettagli

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere

Dettagli

Estensimetro. in variazioni di resistenza.

Estensimetro. in variazioni di resistenza. Estensimetro La misura di una forza incidente su di un oggetto può essere ottenuta misurando la deformazione o la variazione di geometria che l oggetto in questione subisce. L estensimetro estensimetro,

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Gamma BRUSHLESS CROUZET

Gamma BRUSHLESS CROUZET Gamma BRUSHLESS CROUZET - Presentazione La ITE Industrialtecnoelettrica Srl di Bologna (tel.5.386.6) presenta la nuova gamma Crouzet di micromotori brushless di elevata qualità con coppie da 6 e 85 mnm

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE

DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE DIMENSIONAMENTO DEL MARTINETTO PER RICIRCOLO DI SFERE Per un corretto dimensionamento del martinetto a ricircolo di sfere è necessario operare come segue: definizione dei dati del dell applicazione (A)

Dettagli

PRINCIPI DI TRASDUZIONE

PRINCIPI DI TRASDUZIONE PRINCIPI DI TRASDUZIONE Passiva Trasduzione resistiva Trasduzione capacitiva Trasduzione induttiva Attiva Trasduzione fotovoltaica Trasduzione piezoelettrica Trasduzione elettromagnetica Trasduzione fotoconduttiva

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

MISURE CON L OSCILLOSCOPIO

MISURE CON L OSCILLOSCOPIO MISURE CON L OSCILLOSCOPIO Misure di ampiezza (1/4) Per effettuare misure di ampiezza con l oscilloscopio l di norma si eseguono in sequenza i seguenti passi: 1. Si procede innanzitutto alla predisposizione

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

ITI M. FARADAY Programmazione modulare

ITI M. FARADAY Programmazione modulare ITI M. FARADAY Programmazione modulare A.S. 2015/16 Indirizzo: ELETTROTECNICA ed ELETTRONICA Disciplina: ELETTROTECNICA ed ELETTRONICA Classe: V A elettrotecnica settimanali previste: 6 INSEGNANTI: ERBAGGIO

Dettagli

Cenni sui trasduttori. Con particolare attenzione al settore marittimo

Cenni sui trasduttori. Con particolare attenzione al settore marittimo Cenni sui trasduttori Con particolare attenzione al settore marittimo DEFINIZIONI Un Trasduttore è un dispositivo che converte una grandezza fisica in un segnale di natura elettrica Un Sensore è l elemento

Dettagli

PROVE SULLA MACCHINA A CORRENTE CONTINUA

PROVE SULLA MACCHINA A CORRENTE CONTINUA LABORATORIO DI MACCHINE ELETTRICHE PROVE SULLA MACCHINA A CORRENTE CONTINUA PROVE SULLA MACCHINA A C. C. Contenuti Le prove di laboratorio che verranno prese in esame riguardano: la misura a freddo, in

Dettagli

Macchina sincrona (alternatore)

Macchina sincrona (alternatore) Macchina sincrona (alternatore) Principio di funzionamento Le macchine sincrone si dividono in: macchina sincrona isotropa, se è realizzata la simmetria del flusso; macchina sincrona anisotropa, quanto

Dettagli

I.P.S.I.A. BOCCHIGLIERO

I.P.S.I.A. BOCCHIGLIERO I.P.S.I.A. di BOCCHIGLIERO a.s. 2012/2013 -classe V- Materia: Sistemi Automazione e Organizzazione della Produzione ----Trasduttori e sensori---- Alunna: Rossella Serafini prof. Ing. Zumpano Luigi TRASDUTTORI

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

I.T.I.S. M. FARADAY - Programmazione modulare

I.T.I.S. M. FARADAY - Programmazione modulare I.T.I.S. M. FARADAY - Programmazione modulare A.S. 2015/2016 Indirizzo: ELETTROTECNICA Disciplina: ELETTROTECNICA E ELETTRONICA Classe: 5Aes Ore settimanali previste: 5 (2) INSEGNANTI: SCIARRA MAURIZIO

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Minicorso Regole di Disegno Meccanico

Minicorso Regole di Disegno Meccanico Parte 3 Minicorso Regole di Disegno Meccanico di Andrea Saviano Tolleranze dimensionali di lavorazione Accoppiamenti mobili, stabili e incerti Giochi e interferenze Posizione della zona di tolleranza e

Dettagli

INTRODUZIONE ALLA CONVERSIONE ELETTROMECCANICA

INTRODUZIONE ALLA CONVERSIONE ELETTROMECCANICA INTRODUZIONE ALLA CONVERSIONE ELETTROMECCANICA Il trasferimento dell energia dalle fonti primarie (petrolio, metano, risorse idriche, eoliche, solari, ecc.) agli utilizzatori passa attraverso molteplici

Dettagli

OSCILLATORI AL QUARZO: CONTASECONDI

OSCILLATORI AL QUARZO: CONTASECONDI ... OSCILLATORI AL QUARZO: CONTASECONDI di Maurizio Del Corso m.delcorso@farelettronica.com Come può un cristallo di quarzo oscillare ad una determinata frequenza? Quale spiegazione fisica c è dietro a

Dettagli

LIUC - Castellanza Maggio 2005. Sensori di Spostamento

LIUC - Castellanza Maggio 2005. Sensori di Spostamento Esempi: Sensori di Spostamento Potenziometri Resistivi Resistore a tre terminali con contatto intermedio (cursore) che fa capo a un tastatore mobile o a un filo avvolto a molla Uscita proporzionale allo

Dettagli

Retroazione In lavorazione

Retroazione In lavorazione Retroazione 1 In lavorazione. Retroazione - introduzione La reazione negativa (o retroazione), consiste sostanzialmente nel confrontare il segnale di uscita e quello di ingresso di un dispositivo / circuito,

Dettagli

Convertitori elettronici di potenza per i veicoli elettrici

Convertitori elettronici di potenza per i veicoli elettrici Trazione elettrica veicolare: stato dell arte ed evoluzioni future Convertitori elettronici di potenza per i veicoli elettrici Veicoli elettrici L aumento crescente del costo del combustibile e il problema

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

CAPACITÀ DI PROCESSO (PROCESS CAPABILITY)

CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) CICLO DI LEZIONI per Progetto e Gestione della Qualità Facoltà di Ingegneria CAPACITÀ DI PROCESSO (PROCESS CAPABILITY) Carlo Noè Università Carlo Cattaneo e-mail: cnoe@liuc.it 1 CAPACITÀ DI PROCESSO Il

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

AMPLIFICATORI DI POTENZA

AMPLIFICATORI DI POTENZA AMPLIFICATORI DI POTENZA I segnali applicati ad utilizzatori, quali servo-motori e impianti audio, sono associati generalmente ad elevati livelli di potenza; questo significa alti valori di corrente oltre

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

TX Figura 1: collegamento tra due antenne nello spazio libero.

TX Figura 1: collegamento tra due antenne nello spazio libero. Collegamenti Supponiamo di avere due antenne, una trasmittente X e una ricevente X e consideriamo il collegamento tra queste due antenne distanti X X Figura : collegamento tra due antenne nello spazio

Dettagli

Impianti navali B. Parte 4. II semestre 2013. giulio.barabino@unige.it. danilo.tigano@unige.it

Impianti navali B. Parte 4. II semestre 2013. giulio.barabino@unige.it. danilo.tigano@unige.it Impianti navali B Parte 4 II semestre 2013 giulio.barabino@unige.it danilo.tigano@unige.it 1 Convertitore CA-CC monofase controllato 2 Convertitore CA-CC trifase controllato 3 Tiristore 4 Convertitore

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

SISTEMA DI ATTUAZIONE DEI GIUNTI

SISTEMA DI ATTUAZIONE DEI GIUNTI SISTEMA DI ATTUAZIONE DEI GIUNTI Organi di trasmissione Moto dei giunti basse velocità elevate coppie Ruote dentate variano l asse di rotazione e/o traslano il punto di applicazione denti a sezione larga

Dettagli

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica Docenti: Coppola Filippo Sergio Sacco Giuseppe Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Classe 3A2 Elettrotecnica ed Elettronica Modulo

Dettagli

Sensori a effetto Hall bipolari con ritenuta stabilizzati e non stabilizzati con circuito chopper

Sensori a effetto Hall bipolari con ritenuta stabilizzati e non stabilizzati con circuito chopper Sensori a effetto Hall bipolari con ritenuta stabilizzati e non stabilizzati con circuito chopper I risultati dei test mostrano che è possibile ottenere prestazioni significativamente maggiori impiegando

Dettagli

Motori Sincroni. Motori Sincroni

Motori Sincroni. Motori Sincroni Motori Sincroni Motori Sincroni Se ad un generatore sincrono, funzionante in parallelo su una linea, anziché alimentarlo con una potenza meccanica, gli si applica una coppia resistente, esso continuerà

Dettagli

Figura 1: Schema di misurazione della potenza con il metodo Barbagelata.

Figura 1: Schema di misurazione della potenza con il metodo Barbagelata. Richiami sulla misurazione di potenza elettrica in un sistema trifase simmetrico e squilibrato e traccia delle operazioni da svolgere in laboratorio Alberto Vallan - 005 1. Il metodo Barbagelata In un

Dettagli

Termodinamica: legge zero e temperatura

Termodinamica: legge zero e temperatura Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N. 6 ARGOMENTO: Grafici di funzioni sottoposte a trasformazioni elementari.

Dettagli

Sistemi Trifase. invece è nel senso degli anticipi (+) il sistema è denominato simmetrico inverso.

Sistemi Trifase. invece è nel senso degli anticipi (+) il sistema è denominato simmetrico inverso. Sistemi Trifase Un insieme di m generatori che producono f.e.m. sinusoidali di eguale valore massimo e sfasate tra di loro dello stesso angolo (2π/m) è un sistema polifase simmetrico ad m fasi. Se lo sfasamento

Dettagli