Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.



Documenti analoghi
APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

Parte Seconda. Geometria

Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Elementi di Geometria. Lezione 03

GEOMETRIA DELLE MASSE

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

ABCD è un parallelogrammo 90. Dimostrazione

QUADRILATERI. È dunque possibile pensare ad un quadrilatero come alla parte di piano delimitata da quattro rette a due a due incidenti.

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

geometriche. Parte Sesta Trasformazioni isometriche

I TRIANGOLI Un triangolo è un poligono con tre lati e tre angoli.

Unità Didattica N 28 Punti notevoli di un triangolo

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)

Le caratteristiche generali di un quadrilatero

Principali Definizioni e Teoremi di Geometria

a b c d a. 4, b. 3, c. 4, d. nessuno dei precedenti valori a b c d.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

C6. Quadrilateri - Esercizi

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Relazione attività in classe sul Teorema di Pitagora

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Test di autovalutazione

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Osservazioni sulla prima prova intermedia

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Con carta e forbici alla scoperta del paese Geometria

Forze come grandezze vettoriali

RETTE, PIANI, SFERE, CIRCONFERENZE

Parallelogrammi 1 Parallelogrammi Nome: classe: data:

I teoremi di Euclide e di Pitagora

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

Anna Montemurro. 2Geometria. e misura

LICEO STATALE G. MAZZINI

Si chiama quadrilatero una figura piana con quattro lati e quattro angoli. La somma degli angoli interni di qualunque quadrilatero misura due angoli

Rilevazione degli apprendimenti

Geogebra. Numero lati: Numero angoli: Numero diagonali:

Gli angoli. In questa dispensa vengono presentati i concetti fondamentali relativi agli angoli.

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009

I TRIANGOLI I TRIANGOLI 1. IL TRIANGOLO. Il triangolo è un poligono avente tre lati. a) Proprietà di un triangolo

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

Unità Didattica N 25 Quadrilateri particolari

Punti notevoli di un triangolo

Qui cade sua altezza

Geometria analitica di base (prima parte)

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

SCHEMA RIASSUNTIVO SUI QUADRILATERI

Rette e piani con le matrici e i determinanti

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π

Funzioni continue. ) della funzione calcolata in x 0, ovvero:

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

INdAM QUESITI A RISPOSTA MULTIPLA

Capitolo 25: Lo scambio nel mercato delle assicurazioni

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI

1. PRIME PROPRIETÀ 2

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

IGiochidiArchimede--Soluzionibiennio

Piano Lauree Scientifiche

PROIEZIONI ORTOGONALI

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

UNIONE MATEMATICA ITALIANA. C. I. I. M. Commissione Italiana per l'insegnamento della Matematica

Liceo Scientifico G. Galilei Trebisacce

/H]LRQH,OFRQIURQWRGHOOHVXSHUILFL,O SUREOHPD GHO FRQIURQWR GL VXSHUILFL H OD WUDVIRUPD]LRQH GL SROLJRQLHTXLYDOHQWL

1 Alcuni criteri di convergenza per serie a termini non negativi

2 FUNZIONI REALI DI VARIABILE REALE

Liceo G.B. Vico Corsico

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

Andrea Pagano, Laura Tedeschini Lalli

LA RETTA. b) se l equazione si presente y=mx+q (dove q è un qualsiasi numero reale) si ha una retta generica del piano.

Appunti di Geometria

Basi di matematica per il corso di micro

PRIMA DI SVOLGERE GLI ESERCIZI RIPASSA GLI ARGOMENTI SUL LIBRO E GLI APPUNTI SUL QUADERNO.

CORSO DI LAUREA IN INGEGNERIA.

SIMULAZIONE QUARTA PROVA: MATEMATICA

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Le trasformazioni geometriche

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

LE FUNZIONI MATEMATICHE

7 - Esercitazione sulle derivate

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S A. Pisani, appunti di Matematica 1

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

Test di autovalutazione

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

GEOMETRIA. Congruenza, angoli e segmenti

Corso di ordinamento Sessione straordinaria - a.s ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

G3. Asintoti e continuità

*UDQGH]]HUDSSRUWLPLVXUH

I quesiti di Matematica per la classe di concorso A059

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

Transcript:

6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra loro sono detti opposti. ue vertici che appartengono allo stesso lato sono detti consecutivi. ue vertici che non appartengono allo stesso lato sono detti opposti. ue angoli che hanno un lato in comune sono detti adiacenti. ue angoli che non hanno un lato in comune sono detti opposti. Lati opposti Vertici opposti ngoli opposti Lati consecutivi 6.2 Trapezio Vertici consecutivi Fig. 6.1 efinizioni relative ai quadrilateri. ngoli adiacenti Un trapezio è un quadrilatero avente due lati paralleli. I lati paralleli sono detti base minore e base maggiore. Gli altri due lati sono detti lati obliqui. Un trapezio è scaleno se i lati obliqui non sono congruenti. Un trapezio è detto isoscele se i lati obliqui sono congruenti. Un trapezio è detto rettangolo se un lato obliquo è perpendicolare alle due basi. La distanza tra le basi è detta altezza. H Fig. 6.2 Trapezio isoscele. Fig. 6.3 Trapezio scaleno. Fig. 6.4 Trapezio rettangolo. Proprietà dei trapezi Gli angoli adiacenti ai lati obliqui sono supplementari. Tale proprietà è facilmente verificabile considerando che i due angoli adiacenti al lato obliquo sono coniugati interni, prendendo in considerazione le rette parallele su cui giacciono le basi, tagliate dalla retta trasversale ad esse su cui giace il lato obliquo. Si è visto precedentemente che gli angoli coniugati interni sono in questo caso supplementari. 6.3 Teorema degli angoli alla base del trapezio isoscele Teorema In un trapezio isoscele gli angoli alla base sono congruenti. IPOTESI: è parallelo a,. TESI: ˆ. ˆ IMOSTRZIONE: I metodo: la retta r è asse di simmetria del trapezio, per cui gli angoli ˆ e si ˆ corrispondono in una simmetria assiale, quindi sono congruenti. Si presenta anche un altra dimostrazione che utilizzi i criteri di congruenza dei triangoli. Teoria 6-1

r H K Fig. 6.5 Teorema degli angoli alla base del trapezio isoscele. II metodo: I triangoli H e K hanno: H K perché la distanza tra due rette parallele è costante. per ipotesi. H ˆ e K ˆ sono retti e quindi congruenti tra loro. Quindi, per i criteri di congruenza dei triangoli rettangoli, i triangoli H e K sono congruenti. In particolare, gli angoli = ˆ H ˆ e = ˆ Ksono ˆ congruenti. Osservazione In base al teorema precedente anche H e K sono congruenti. Ne segue che anche gli angoli ˆ e ˆ sono congruenti. Teorema In un trapezio isoscele le diagonali sono congruenti. IPOTESI: è parallelo a,. TESI:. H K Fig. 6.6 Teorema delle diagonali del trapezio isoscele. IMOSTRZIONE Si considerino i due triangoli e. Essi hanno congruenti: perché è in comune. per ipotesi. ˆ e ˆ sono congruenti per il teorema precedente. I due triangoli sono congruenti per il I criterio di congruenza. Hanno dunque congruenti tutti gli angoli e tutti i lati. In particolare. 6.4 Parallelogramma Un parallelogramma è un quadrilatero avente i lati opposti paralleli. L altezza di un parallelogramma è il segmento che ha come vertice un vertice del parallelogramma e che è perpendicolare al lato opposto. ltezza O Fig. 6.7 Parallelogramma. Teoria 6-2

Teorema Un parallelogramma possiede un centro di simmetria. IMOSTRZIONE: Si traccia la diagonale e se ne prende il punto medio O. Il punto medio è il centro di simmetria. Si consideri la simmetria di centro O. In tale simmetria a corrisponde e a corrisponde. lla retta corrisponde la retta e viceversa. lla retta corrisponde la retta e viceversa. Le dimostrazioni che fanno uso delle simmetrie erano molto in voga nella didattica degli anni novanta, ma sono oggi considerate carenti dal punto di vista del rigore logico, quindi si ritiene opportuno evitarle. Osservazione Nella proprietà precedente anche la diagonale ha lo stesso punto medio della diagonale. 6.5 Teoremi sui parallelogrammi Teorema 6.5a I lati opposti di un parallelogramma sono congruenti. IPOTESI: \\, \\. TESI:,. Fig. 6.8 IMOSTRZIONE Si considerino i triangoli e. Essi hanno congruenti: perché è in comune ˆ ˆ perché alterni interni delle rette e tagliate dalla trasversale. ˆ ˆ perché alterni interni delle rette e tagliate dalla trasversale. Per il secondo criterio di congruenza i triangoli e sono congruenti, quindi hanno congruenti tutti i lati e tutti gli angoli. In particolare e. Teorema 6.5b Gli angoli opposti di un parallelogramma sono congruenti. IPOTESI: \\, \\. TESI: ˆ ˆ, ˆ ˆ. Fig. 6.9 IMOSTRZIONE al teorema precedente risulta che i triangoli e sono congruenti, quindi sono congruenti in particolare gli angoli ˆ ˆ. Resta da dimostrare che ˆ ˆ. Ricordando che e sono congruenti, quindi sono congruenti in particolare gli angoli ˆ ˆ e ˆ ˆ. a ciò segue che ˆ ˆ + ˆ ˆ + ˆ ˆ. Teorema 6.5c Gli angoli adiacenti di un parallelogramma sono supplementari. IPOTESI: \\, \\. TESI: ˆ ˆ, ˆ ˆ. IMOSTRZIONE onsiderando le rette parallele e e la trasversale gli angoli Ĉ e ˆ sono angoli coniugati interni, quindi sono supplementari. Teoria 6-3 Fig. 6.10

Teorema 6.5d Le diagonali di un parallelogramma si incontrano nel loro punto medio. IPOTESI: \\, \\. TESI: O O, O O. O Fig. 6.11 IMOSTRZIONE Si considerino i triangoli O e O. Essi hanno congruenti: perché i lati opposti di un parallelogramma sono congruenti per il primo teorema del paragrafo. ˆ ˆ perché alterni interni delle rette e tagliate dalla trasversale. ˆ ˆ perché alterni interni delle rette e tagliate dalla trasversale. Per il secondo criterio di congruenza i triangoli O e O sono congruenti, quindi hanno congruenti tutti i lati e tutti gli angoli. In particolare O O e O O. 6.6 ondizioni sufficienti affinché un quadrilatero sia un parallelogramma Tutti i parallelogrammi sono quadrilateri. Il viceversa non è vero. Esistono quadrilateri che non sono parallelogrammi. Il problema è: come si fa a riconoscere se un quadrilatero è un parallelogramma? Si tratta di trovarne le condizioni sufficienti. Prima di esporre le condizioni sufficienti affinché un quadrilatero sia un parallelogramma spieghiamo bene cosa significa condizione sufficiente. Si può dire che, visto che se mi tagliano la testa allora muoio, che è condizione sufficiente che mi taglino la testa per morire. Una condizione sufficiente affinché sia vero qualcos altro è dunque un qualcosa che, se è vero, implica che è vero anche il qualcos altro. Per i teoremi di questo paragrafo si esporrà la dimostrazione solo del primo. Teorema 6.6a Un quadrilatero è un parallelogramma se entrambe le coppie di lati opposti sono congruenti. IPOTESI:,. TESI: \\, \\. Fig. 6.12 IMOSTRZIONE Si considerino i triangoli e. Essi hanno congruenti: per ipotesi. per ipotesi. perché è in comune. Per il terzo criterio essi sono dunque congruenti, e in particolare lo sono gli angoli ˆ ˆ, che sono alterni interni delle due rette e tagliate dalla trasversale. Essendo gli angoli alterni interni congruenti le rette su cui giacciono i lati e sono parallele. E analoga la dimostrazione per i lati e considerando gli angoli ˆ ˆ. a questo teorema si può capire se un quadrilatero è effettivamente un parallelogramma senza bisogno di verificare che i lati opposti siano paralleli. Se infatti sappiamo che le coppie di lati opposti sono entrambi congruenti allora siamo sicuri che il quadrilatero è un parallelogramma. Teorema 6.6b Un quadrilatero è un parallelogramma se entrambe le coppie di angoli opposti sono congruenti. IPOTESI: ˆ ˆ, ˆ ˆ. TESI: \\, \\. a questo teorema si può capire se un quadrilatero è effettivamente un parallelogramma senza bisogno di verificare che i lati opposti siano paralleli. Se infatti sappiamo che le coppie di angoli opposti sono entrambi congruenti allora siamo sicuri che il quadrilatero è un parallelogramma. Teoria 6-4

Teorema 6.6c Un quadrilatero è un parallelogramma se ha una coppia di lati opposti paralleli e congruenti. IPOTESI:, \\. TESI: \\. a questo teorema si può capire se un quadrilatero è effettivamente un parallelogramma senza bisogno di verificare che i lati opposti siano paralleli. Se infatti sappiamo che una coppia di lati opposti sono paralleli e congruenti allora siamo sicuri che il quadrilatero è un parallelogramma. Teorema 6.6d Un quadrilatero è un parallelogramma se le diagonali si intersecano nel loro punto medio. IPOTESI: O O, O O. TESI: \\, \\. a questo teorema si può capire se un quadrilatero è effettivamente un parallelogramma senza bisogno di verificare che i lati opposti siano paralleli. Se infatti sappiamo che le diagonali si intersecano entrambe nel loro punto medio allora siamo sicuri che il quadrilatero è un parallelogramma. Teorema 6.6e Un quadrilatero è un parallelogramma se tutte le coppie di angoli adiacenti sono supplementari. IPOTESI: ˆ + ˆ π, ˆ + ˆ π, ˆ + ˆ π, ˆ + ˆ π. TESI: \\, \\. a questo teorema si può capire se un quadrilatero è effettivamente un parallelogramma senza bisogno di verificare che i lati opposti siano paralleli. Se infatti sappiamo che gli angoli consecutivi sono supplementari allora siamo sicuri che il quadrilatero è un parallelogramma. 6.7 Rettangolo Un rettangolo è un quadrilatero con i 4 angoli congruenti. Fig. 6.13 Rettangolo. I rettangoli sono trapezi, per cui valgono per essi tutte le proprietà che si sono finora elencate per i trapezi, e sono anche parallelogrammi, per cui valgono per essi tutte le proprietà che si sono finora elencate per i parallelogrammi. Sono però un caso particolare di parallelogrammi, e per questa loro particolarità valgono delle proprietà che verranno ora elencate che non valgono per tutti i parallelogrammi. Simmetria I rettangoli hanno due assi di simmetria. Infatti le rette r ed s nella figura 6.14 sono assi di simmetria del rettangolo. r s Teorema delle diagonali di un rettangolo I rettangoli hanno le diagonali congruenti. IPOTESI: è un rettangolo. TESI:. Fig.6.14 ssi di simmetria di un rettangolo. Teoria 6-5

Fig. 6.15 Teorema delle diagonali di un rettangolo. IMOSTRZIONE: Si considerino i triangoli e. Essi hanno congruenti: ˆ ˆ perché sono angoli retti. perché lati opposti di un rettangolo (che, essendo un parallelogramma, ha i lati opposti congruenti). perché è in comune. Per il primo criterio essi sono dunque congruenti, e in particolare lo sono i lati e, e quindi. Vale anche il teorema inverso, ossia se un parallelogramma ha le diagonali congruenti allora è un rettangolo. ondizione sufficiente affinché un parallelogramma sia un rettangolo Un parallelogramma con le diagonali congruenti è un rettangolo. IPOTESI:, è un parallelogramma. TESI: è un rettangolo. Per determinare se un parallelogramma è un rettangolo in base alla definizione si deve verificare che tutti gli angoli siano retti. In base a quest ultimo teorema abbiamo un altro criterio per stabilire se un parallelogramma è un rettangolo: se sappiamo che un parallelogramma ha le diagonali congruenti allora siamo certi che è un rettangolo. 6.8 Rombo Il rombo è un parallelogramma con i 4 lati congruenti. Fig.6.16 Rombo. I rombi si rappresentano in due modi distinti, con le diagonali perpendicolari ai margini del foglio o due lati paralleli alla base del foglio, come le due figure 6.16 e 6.17. I rombi sono parallelogrammi, per cui valgono tutte le proprietà che si sono finora elencate per i parallelogrammi. Per la loro particolarità di avere 4 lati congruenti valgono per essi delle proprietà che non valgono per tutti i parallelogrammi. imostriamo adesso due proprietà dei rombi, ossia che essi hanno le diagonali che sono perpendicolari tra loro e sono anche bisettrici degli angoli interni. Teorema Le diagonali di un rombo sono perpendicolari. IPOTESI: è un rombo. TESI:. Fig.6.17 Rombo. Teoria 6-6

O Fig. 6.18 Teorema delle diagonali del rombo. IMOSTRZIONE Si considerino i triangoli O e O. Essi hanno congruenti: O in comune perché è un rombo e i rombi hanno i lati uguali. O O perché è un parallelogramma, e nei parallelogrammi le diagonali si incontrano nel punto medio. Quindi, per il terzo criterio di congruenza dei triangoli, i triangoli O e O sono congruenti. In particolare gli angoli O ˆ e O ˆ sono congruenti e supplementari, dunque sono retti. Teorema Le diagonali di un rombo sono bisettrici degli angoli interni del rombo. IPOTESI: è un rombo. TESI: O ˆ O ˆ. O IMOSTRZIONE Si considerino i triangoli O e O. Essi hanno congruenti: O in comune perché è un rombo e i rombi hanno i lati uguali. O O perché è un parallelogramma, e nei parallelogrammi le diagonali si incontrano nel punto medio. Quindi, per il terzo criterio di congruenza dei triangoli, i triangoli O e O sono congruenti. In particolare sono congruenti gli angoli O ˆ O ˆ. E possibile anche in questo caso stabilire delle condizioni sufficienti affinché un parallelogramma sia un rombo, e si dimostrano in maniera analoga alle dimostrazioni precedenti. ondizioni sufficienti affinché un parallelogramma sia un rombo: Un parallelogramma è un rombo se ha le diagonali perpendicolari. Un parallelogramma è un rombo se ha una diagonale bisettrice di un angolo interno. 6.9 Quadrato Fig. 6.19 Teorema delle diagonali del rombo. Un quadrato è un parallelogramma con tutti i lati e tutti gli angoli congruenti. Un quadrato è un parallelogramma, per cui valgono per i quadrati tutte le proprietà dei parallelogrammi. Un quadrato è un rettangolo, quindi valgono per i quadrati tutte le proprietà dei rettangoli. Un quadrato è un rombo, per cui valgono per i quadrati tutte le proprietà dei rombi. In particolare si può dire che un quadrato ha 4 assi di simmetria e un centro di simmetria. Fig. 6.20 ssi si simmetria di un quadrato. Teoria 6-7

Vale quindi la seguente serie di relazioni: Un QURTO è un ROMO, che è un RETTNGOLO, che è un PRLLELOGRMM, che è un QURILTERO. Fig. 6.21 Relazioni tra quadrilateri. al punto di vista insiemistico si può considerare il seguente diagramma di Venn. Quadrilateri Trapezi Parallelogrammi Rettangoli Quadrati Rombi Fig. 6.22 Relazione insiemistica tra quadrilateri. al fatto che il quadrato sia un parallelogramma, un rettangolo e un rombo possiamo dedurre dunque alcune ovvie proprietà: Le diagonali del quadrato sono congruenti. Le diagonali del quadrato sono perpendicolari. Le diagonali del quadrato sono bisettrici degli angoli interni del quadrato. Si possono anche trovare facilmente le condizioni sufficienti affinché un parallelogramma sia un quadrato. Un parallelogramma è un quadrato se: Le diagonali sono congruenti e una di esse è bisettrice di un angolo interno. Le diagonali sono congruenti e perpendicolari. Tutte le proprietà precedenti devono essere dimostrate, ma si lasciano tale dimostrazioni come esercizi (nella parte di esercizi). Teoria 6-8