Elettrochimica. 1. Celle elettrolitiche. 2. Celle galvaniche o pile



Documenti analoghi
ELETTROCHIMICA. Uso di reazioni chimiche per produrre corrente elettrica (Pile)

... corso di chimica elettrochimica 1

La serie elettrochimica dei potenziali standard di riduzione (25 C)

Biosensori Sensori Chimici.

1 Me Me (s) Me + (aq) + e -

Esercizi di Chimica (2 a prova in itinere)

DETERMINAZIONE DEL PUNTO DI FINE TITOLAZIONE MEDIANTE METODI CHIMICO-FISICI

Cu 2+ ) + Zn(s) potere ossidante. potere ossidante. Cu 2+ Cu. Zn 2+ Consideriamo le due reazioni di ossido-riduzione:

Chimica. Ingegneria Meccanica, Elettrica e Civile Simulazione d'esame

Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse

ESERCIZI Tabella dei potenziali

LA CORROSIONE DEI METALLI

Celle a combustibile Fuel cells (FC)

OSSIDORIDUZIONI N H H. H ammoniaca. acido nitroso N = + 3. acido nitrico N = + 5

Fondamenti di chimica Raymond Chang Copyright 2009 The McGraw-Hill Companies srl CAPITOLO 18. Le reazioni redox e l elettrochimica

Equilibri di precipitazione

Pile e accumulatori. Approfondimento. "" Pile e vita quotidiana. Capitolo. elettrolisi e le leggi di Faraday

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro.

ELETTROCHIMICA. Celle Galvaniche o Pile

MPT Capitolo 12 Redox. Le ossidoriduzioni. Obiettivo. Definizioni di ossidazione e di riduzione

Elettrochimica. Studia la trasformazione dell energia chimica in energia elettrica e viceversa.

Studio delle trasformazioni dell energia chimica e dell energia elettrica

funzionamento degli accumulatori al piombo/acido.

Quesiti e problemi. 6 Quali tra le seguenti sono reazioni di ossido-riduzione? a) 2CrO 4 (aq) 2H 2

Capitolo 22 L elettrochimica

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria

Esempio Zn (s) + CuSO 4(aq) î Cu (s) + ZnSO 4(aq)

SCALA DEI PESI ATOMICI RELATIVI E MEDI

LABORATORIO DI CHIMICA GENERALE E INORGANICA

SISTEMI ELETTROCHIMICI

Elettrolisi del solfato di rame

L elettrochimica: le pile e l elettrolisi

Prevenzione della Corrosione

Elettrochimica. Studia la relazione fra variazione di energia libera e flussi di cariche in una reazione chimica.

DANNEGGIAMENTI IN ESERCIZIO FENOMENI DI DANNEGGIAMENTO IN ESERCIZIO IN COMPONENTI MECCANICI REALIZZATI CON MATERIALI METALLICI

Dissociazione elettrolitica

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

- l'elettrochimica studia i processi di trasformazione di energia chimica (di legame) in energia elettrica e viceversa;

Le reazioni redox e l elettrochimica Capitolo 18

SOLUBILITA EQUILIBRI ETEROGENEI

Esame di Chimica Generale (M-Z) A.A (25 gennaio 2012)

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Le reazioni di ossidoriduzione (redox)

Il riducente si ossida cedendo elettroni all agente ossidante

CENNI DI ELETTROCHIMICA

ELETTROCHIMICA: studia le relazioni tra energia chimica ed energia elettrica

ELETTROLISI TRASFORMAZIONE DI ENERGIA ELETTRICA IN ENERGIA CHIMICA

Le reazioni di ossidoriduzione

Corso di Chimica e Propedeutica Biochimica La chimica degli acidi e delle basi 3. Idrolisi salina Soluzioni tampone Titolazioni acido-base

L elettrochimica studia le variazioni chimiche prodotte dalla corrente elettrica e la produzione di elettricità ottenuta tramite reazioni chimiche.

È importante quindi conoscere le proprietà chimiche dell acqua. Le reazioni acido base sono particolari esempi di equilibrio chimico in fase acquosa

Reazioni di ossido-riduzione (redox) - Come stabilire il verso di una redox? -

Elettrochimica. le trasformazioni redox spontanee (DG < 0) l energia elettrica in celle elettrolitiche per ottenere

NUMERI DI OSSIDAZIONE

Inizia presentazione

Elettrochimica. le trasformazioni redox spontanee (DG < 0) l energia elettrica in celle elettrolitiche per ottenere

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI

Capitolo 7. Le soluzioni

Reazioni di ossido-riduzione (redox) - Come stabilire il verso di una redox? -

1. Agli estremi di una resistenza di 30 ohm è applicata una tensione di 120 volt. Calcolare la quantità di elettricità passata in 12 ore.

Come proteggere il dispersore dalla corrosione

PILE ZINCO-CARBONE (Pile Leclanché)

Università di Pisa Facoltà di Ingegneria. Leghe non ferrose. Chimica Applicata. Prof. Cristiano Nicolella

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LEZIONE 12. Idrolisi salina Indicatori di ph Soluzioni tampone Titolazioni acido-base IDROLISI SALINA. Scaricato da Sunhope.it

COME CALCOLARE I NUMERI DI OSSIDAZIONE

Dipendenza della Solubilità dalla temperatura

Pb Pb e 2Ag + + 2e 2Ag

FENOMENI DI CORROSIONE ED OSSIDAZIONE La corrosione è un fenomeno di degrado dei metalli. E un fenomeno termodinamico (chiamato anche

Serie elettrochimica I

K [H 2 O] 2 = K w = [H 3 O + ][OH ]

Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni

Universita Degli Studi Di Roma La Sapienza Corso di Laurea Magistrale in Scienze e Tecnologie per la conservazione dei Beni Culturali A.A.

REGOLE PER L'ATTRIBUZIONE DEI COEFFICIENTI STECHIOMETRICI DI UNA REAZIONE

Franco Quaranta. La protezione catodica dello scafo, del propulsore e del timone

Brady Senese Pignocchino Chimica.blu Zanichelli 2014 Soluzione degli esercizi Capitolo 23

IMMAGAZZINARE ENERGIA: GLI ACCUMULATORI ELETTROCHIMICI Prof. Nerino Penazzi

Equilibri di Solubilità

corrosione corrosione chimica

Dispense per il Corso di Chimica (Prof. M. Tolazzi)

Indice. 1 La materia e la sua struttura. 2 La radioattività ed i processi nucleari

Elettroanalitica//Chimica Elettroanalitica

Elettrolisi. Legge di Ohm V = R I. Cella elettrolitica. conduttore di prima specie. conduttore di seconda specie. Potenziale di decomposizione

La corrente elettrica

Storia dei generatori di tensione e della corrente elettrica

materia atomi miscugli omogenei e eterogenei sostanze elementari composti

Liquidi, Solidi e Forze Intermolecolari

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

1. Un elemento Ä formato da particelle indivisibili chiamate atomi. 2. Gli atomi di uno specifico elemento hanno proprietå identiche. 3.

Soluzioni. B è spontanea nel senso opposto alla freccia. 12 Soluzione di HF in un contenitore di rame: C La soluzione rimane inalterata.

SOLUZIONI COMPITO DI CHIMICA DEL

Concetti fondamentali su acidità e basicità delle soluzioni acquose

LA CORRENTE ELETTRICA CONTINUA

Trasformazione di energia chimica in energia elettrica: generatori (pile, accumulatori, celle a combustibile)

Esercitazione 8. Gli equilibri acido-base: Ka, Kb. L autoprotolisi dell acqua. Misura del ph Soluzioni tampone 1,

La Vita è una Reazione Chimica

Processi ossido-riduttivi chimici ed elettrochimici

Definizioni. X aumenta il numero di ossidazione. Y diminuisce il numero di ossidazione. e - Trasferimento di elettroni

Scritto Chimica generale Gruppo A

Indice. 1 La materia e la sua struttura. 2 La radioattività ed i processi nucleari

Transcript:

Elettrochimica L elettrochimica studia l impiego di energia elettrica per promuovere reazioni non spontanee e l impiego di reazioni spontanee per produrre energia elettrica, entrambi i processi coinvolgono reazioni redox. ENERGIA CHIMICA ENERGIA ELETTRICA 1. Celle elettrolitiche Processi ossidoriduttivi NON SPONTANEI trasformazione di energia elettrica in energia chimica 2. Celle galvaniche o pile Processi ossidoriduttivi SPONTANEI trasformazione di energia chimica in energia elettrica 1

Elettrolisi Energia elettrica Energia chimica Cella elettrolitica Reazioni di scarica agli elettrodi: catodo () semireazioni di RIDUZIONE A z z e A anodo () semireazioni di OSSIDAZIONE B z B z e Anodo: elettrodo positivo Catodo: elettrodo negativo Soluzione elettrolitica (o elettrolita fuso) 2

Sono chiamati elettroliti quelle sostanze che in fase liquida, allo stato puro, o in soluzione in solventi polari sono dissociati in ioni, positivi e negativi. In fase liquida, sotto l azione di un campo elettrico gli elettroliti conducono la corrente per migrazione ionica. Gli elettroliti possono presentare struttura ionica (NaCl, KBr, etc) o struttura molecolare (HCl, HBr, CH 3 COOH, etc). L elettrolisi, e quindi il passaggio di corrente, avviene solo se la differenza di potenziale applicata agli elettrodi supera un determinato valore di soglia, chiamato potenziale di decomposizione, dipendente dal tipo di elettrolita: I Pot. di soglia V 3

Se la differenza di potenziale applicata supera il potenziale di decomposizione, sulla superficie di separazione tra gli elettrodi e la soluzione iniziano processi di trasferimento di elettroni: Processo catodico: M z z e M il processo catodico è un processo di riduzione; l agente riducente è l elettrodo che dona elettroni ai cationi. Processo anodico: X z X z e il processo anodico è un processo di ossidazione; l agente ossidante è l elettrodo che sottrae elettroni agli anioni. 4

La conducibilità elettrica di una soluzione elettrolitica dipende dai seguenti fattori. concentrazione degli ioni carica degli ioni mobilità degli ioni temperatura della soluzione 5

Scarica delle specie agli elettrodi Difficilmente in una soluzione è presente una sola coppia redox. Allora, quale coppia si scarica per prima agli elettrodi? Ci si basa sui valori dei potenziali standard di riduzione della coppia redox ( E ). Al catodo si scarica per prima la coppia con il potenziale di riduzione meno negativo (più positivo). All anodo si scarica per prima quella che ha il potenziale di riduzione meno positivo (più negativo). Fenomeni di SOVRATENSIONE possono invertire l ordine di scarica. 6

Sovratensione La sovratensione ha origine cinetica Sovratensione di attivazione I processi elettrochimici sono notevolmente lenti e quindi spesso richiedono un aumento della tensione applicata. Elettrodo sovratensione H 2 (V) Pt platinato 0.05 Pt liscio 0.67 Au 0.80 Ag 1.09 Cu 1.25 Hg 1.11 Grafite 1.22 La sovratensione di H 2 è trascurabile solo su elettrodo di Pt platinato. 7

Elettrolisi dell acqua corrente elettrica 2 H 2 O 2 H 2 (g) O 2 (g) a) soluzione acida ([H 3 O ] >> 1,00 10 7 moli l 1 ) catodo () 2 H 3 O 2 e H 2 (g) 2 H 2 O anodo () 3 H 2 O 1/2 O 2 (g) 2 H 3 O 2 e b) soluzione basica ([H 3 O ] << 1,00 10 7 moli l 1 ) catodo () 2 H 2 O 2 e H 2 (g) 2 OH anodo () 2 OH 1/2 O 2 (g) H 2 O 2 e c) soluzione neutra ([H 3 O ] = 1,00 10 7 moli l 1 ) catodo () 2 H 2 O 2 e H 2 (g) 2 OH anodo () 3 H 2 O 1/2 O 2 (g) 2 H 3 O 2 e 8

Elettrolisi di soluzioni acquose Lo Zn può essere ottenuto per elettrolisi di soluzioni acquose di ZnSO 4 (in presenza di H 2 SO 4 per impedire l idrolisi degli ioni Zn 2 ). Come catodo si utilizza un elettrodo di Zn e come anodo un elettrodo di Pb: catodo () Zn : Zn 2 2 e Zn anodo () Pb : 3 H 2 O 1/2 O 2 (g) 2 H 3 O 2 e Al catodo avviene la riduzione degli ioni Zn 2 e non quella degli ioni H 3 O come dovrebbe essere in base ai valori di E ( E Zn 2/Zn = 0,763 V), ciò è dovuto all elevata sovratensione di H 2 sull elettrodo di Zn. All anodo si ha l ossidazione di H 2 O e non dello ione SO 2 4 dato che: E O 2/H2O = 1,23 V; E S 2O8/SO4 2 = 2,01V Elettrolisi di sali fusi Si utilizzano sali fusi per la produzione di metalli come Na, Mg, ecc., (a causa dei loro potenziali di riduzione negativi non si possono usare soluzioni acquose perché si avrebbe la riduzione di acqua). Il Na si prepara per elettrolisi di un fuso costituito da NaCl (~40%) e CaCl 2 (~60%) a 600 C. catodo () acciaio : Na e Na (l) anodo () grafite : 2 Cl Cl 2 (g) 2 e Il Na (l) galleggia sul fuso e viene raccolto su kerosene per evitare il contatto con l aria o l umidità (il Na reagisce rapidamente con ossigeno e violentemente con acqua). 9

L alluminio metallico viene prodotto per trattamento dell allumina per via elettrolitica. Per mescolamento della criolite, Na 3 AlF 6, con l allumina si ottiene la fusione della miscela a circa 930 C (contro i 2050 C dell allumina pura). La miscela, allo stato fuso, viene sottoposta ad elettrolisi in una cella avente anodi di grafite e catodi di acciaio: reazione catodica: Al 3 (fus) 3e Al (l) reazione anodica: 2O 2 (fus) C (s,gr) CO 2 (g) 4ela reazione complessiva è: 4Al 3 (fus) 6O 2 (fus) 3C (s,gr) 4Al (l) 3CO 2 (g) Il processo è condotto a 940980 C; la produzione di una tonnellata di Al richiede 1,89 tonnellate di Al 2 O 3, circa 0,45 tonnellate di C (derivante dall anodo), 0,07 tonnellate di Na 3 AlF 6 e circa 15000 KWh di energia elettrica. Si noti che la produzione di una tonnellata di Al è accompagnata dalla formazione diretta di 1,45 tonnellate di CO 2, oltre a quella derivanti eventualmente dalla produzione dell energia elettrica necessaria. È quindi una produzione ad altissimo consumo di energia, che rende importantissimo il riciclo del metallo; il processo completo di riciclo richiede solo il 5% dell energia necessaria ad 10 estrarre l alluminio dalla bauxite.

Leggi di Faraday La decomposizione elettrolitica è determinata dal passaggio di corrente continua attraverso la soluzione; la prima legge di Faraday precisa la relazione tra quantità di corrente fatta passare attraverso la cella e la quantità di elettrolita decomposto: La quantità di sostanza che si deposita agli elettrodi è proporzionale alla quantità di corrente fatta passre attraverso la cella La seconda legge di Faraday afferma che: Per depositare una mole di un elettrolita monovalente occorrono 96485 coulomb (1 Faraday) 11

Pile (celle galvaniche) Energia chimica Energia elettrica Pile chimiche: coinvolgono reazioni di ossidoriduzione Pile di concentrazione: coinvolgono un processo di diluizione di una soluzione o di espansione di un gas Me. M z (aq) z e M () M M z (aq) z e () Me z (aq) Semielemento M z (aq) z e M atomi e cationi del metallo anioni dell elettrolita elettroni M M z (aq) z e All equilibrio: formazione di un doppio strato elettrico all interfaccia (d.d.p. fra metallo e soluzione) potenziale assoluto dell elettrodo 12

Pila Daniell Zn V () () Setto poroso e e Cu Zn V () () Ponte salino Cu Zn 2 (aq) SO 4 2 (aq) Cu 2 (aq) SO 4 2 (aq) Zn 2 (aq) SO 4 2 (aq) Cu 2 (aq) SO 4 2 (aq) All interfase metallosoluzione: Zn 2 (aq) 2 e Cu 2 (aq) 2 e Zn (s) Cu (s) Cu 2 (aq) 2 e Cu (s) Riduzione Catodo (polo ) Zn (s) Zn 2 (aq) 2 e Ossidazione Anodo (polo ) Zn Zn (s) Cu 2 (aq) Zn2 (aq) Cu (s) Reazione totale della pila Cu 2 (aq) 13

Pila Daniell Zn (s) Cu 2 (aq) Zn 2 (aq) Cu (s) Funzione del SETTO POROSO o del PONTE SALINO V () () V () () Zn 2 SO 2 4 Anodo () Catodo () Zn (s) Zn 2 (aq) 2 e Cu 2 (aq) 2 e Cu (s) NO 3 K Movimento di elettroni nel circuito esterno Migrazione di ioni all interno della pila 14

Rappresentazione schematica di un semielemento specie ossidata specie ridotta Rappresentazione schematica di una pila Zn ZnSO 4 (aq, M ) A sinistra si indica l elettrodo () e il semielemento dove avviene l ossidazione a destra il semielemento dove avviene la riduzione, poi l elettrodo (). Il ponte salino viene indicato Pila Daniell () Zn ZnSO 4 (aq,..m) CuSO 4 (aq,.m) Cu () Anodo (): Zn Zn 2 (aq) 2 e Catodo (): Cu 2 (aq) 2 e Cu Reazione totale: Zn Cu 2 (aq) Zn2 (aq) Cu 15

Tipi di semielementi Semielementi di prima specie Sono costituiti da elettrodo metallico immerso in una soluzione elettrolitica contenente i suoi ioni (pila Daniell); l equilibrio elettrochimco riguarda il metallo e i suoi cationi. Me Semielemento di prima specie Me z (aq) 16

Semielementi di seconda specie Sono formati da un elettrodo metallico ricoperto (a contatto) con una fase solida costituta da un suo sale poco solubile e da una soluzione di un elettrolita avente l anione in comune con il sale insolubile. All equilibrio elettrochimico partecipa il metallo dell elettrodo, il sale indisciolto e l elettrolita della soluzione. Esempi di questo tipo di semielementi sono: elettrodo ad argentocloruro di argento elettrodo a calomelano 17

Hg 2 Cl 2(s) n H 2 O 2e 2 Hg (l) 2 Cl (aq) AgCl (s) n H 2 O e Ag (s) Cl (aq) 18

Semielementi redox Sono costituiti da una coppia redox di ossidoriduzione, entrambe le specie sono in soluzione e sono caratterizzate dall equilibrio di scambio elettronico fra i due membri della coppia; nella soluzione è immerso un elettrodo inerte che ha solo la funzione di tasportare gli elettroni: Fe 3 (aq) e Fe 2 (aq) Semielementi a gas Sono costituti da un elettrodo metallico inerte (Pt, Au) a contatto con un gas e immerso in una soluzione elettrolitica contenente l anione o il catione corrispondente al gas (semielementi ad idrogeno, ad ossigeno, a cloro). L elettrodo adsorbe il gas, il quale partecipa all equilibrio con un altra specie presente in soluzione: ½ Cl 2 (g) elettrodo a cloro nh 2 O e Cl (aq) 19

H 3 O (aq) e ½ H 2 (g) n H 2 O 20

OX RED 21

La serie elettrochimica dei potenziali standard di riduzione (25 C) Semireazione E (V) F 2(g) 2e 2F 2.87 PbO 2(s) SO 2 4 (aq) 4H 2e PbSO 4(s) H 2 O 1.69 2HOCl (aq) 2H (aq) 2e Cl 2(g) 2H 2 0 1.63 MnO 4 (aq) 8H (aq) 5e Mn 2 (aq) 4H 2 0 1.51 PbO 2(s) 4H (aq) 2e Pb 2 (aq) 2H 2 O 1.46 BrO 3 (aq) 6H (aq) 6e Br (aq) 3H 2 O 1.44 Au 3 (aq) 3e Au (s) 1.42 Cl 2 (g) 2e Cl (aq) 1.36 O 2(g) 4H (aq) 4e 2H 2 O 1.23 Br 2 (aq) 2e 2Br (aq) 1.07 NO 3 (aq) 4H (aq) 3e NO (g) 2H 2 O 0.96 Ag (aq) e Ag (s) 0.80 Fe 3 (aq) e Fe 2 (aq) 0.77 I 2(s) 2e 2I (aq) 0.54 NiO 2(aq) 4H (aq) 3e Ni(OH) 2(s) 2OH (aq) 0.49 Cu 2 (aq) 2e Cu (s) 0.34 SO 2 4 (aq) 4H (aq) 2e H 2 SO 3(aq) H 2 O 0.17 Semireazione E (V) 2H (aq) 2e H 2(g) 0.00 Sn 2 (aq) 2e Ni (s) 0.14 Ni 2 (aq) 2e Ni (s) 0.25 Co 2 (aq) 2e Co (s) 0.28 PbSO 4(s) 2e Pb (s) SO 2 4 (aq) 0.36 Cd 2 (aq) 2e Cd (s) 0.40 Fe 2 (aq) 2e Fe (s) 0.44 Cr 3 (aq) 3e Cr (s) 0.74 Zn 2 (aq) 2e Zn (s) 0.83 2H 2 O (aq) 2e H 2(g) 2OH (aq) 1.66 Mg 2 (aq) 2e Mg (s) 2.37 Na (aq) e Na (s) 2.71 Ca 2 (aq) 2e Ca (s) 2.76 K (aq) e K (s) 2.92 Li (aq) e Li (s) 3.05 22

Forza elettromotrice di una pila Forza elettromotrice (f.e.m., E) di una pila: differenza di potenziale (d.d.p.) massima che può esistere tra i due elettrodi di quella pila, cioè a circuito aperto e quindi quando NON vi è circolazione di corrente (per la misura della f.e.m. di una pila si utilizza un circuito potenziometrico) La f.e.m. di una pila è per definizione una grandezza POSITIVA ed è correlata al potenziale (assoluto) di ciascun semielemento dalla relazione: E = E Catodo E Anodo = E C E A E C > E A il catodo (semireazione di riduzione) si trova ad un potenziale maggiore rispetto all anodo. 23

24

Elettrodo standard (o normale) ad idrogeno Il valore assoluto del potenziale di un semielemento (espresso dall equazione di Nernst) non può essere misurato sperimentalmente. È necessario scegliere un elettrodo di riferimento a cui assegnare arbitrariamente un valore al potenziale standard. Elettrodo standard (o normale) ad idrogeno (ESI): H 3 O (aq, 1 M) H 2 (g, 1 atm) Pt 2 H 3 O (aq) 2e H 2(g) 2 H 2 O E H3 O / H 2 = 0 (P H2 = 1, [H 3 O ] = 1) L elettrodo standard ad idrogeno è reversibile, dato che in una pila può comportarsi da catodo o da anodo. 25

La serie elettrochimica dei potenziali standard I valori sono tabulati come potenziali standard di riduzione; ogni semireazione elettrodica è riportata come riduzione. Il potenziale standard di riduzione di una certa coppia redox indica la capacità di questa coppia a comportarsi da ossidante o da riducente rispetto alla coppia H 3 O /H 2. Lo stesso criterio può essere facilmente esteso a qualsiasi altra coppia redox, confrontando i relativi potenziali standard. Calcolo immediato della f.e.m. standard (E ) di una cella formata da due semielementi qualsiasi. () Zn Zn 2 (aq, 1M) Cu 2 (aq, 1 M) Cu () E = E C E A = E Cu 2/Cu E Zn2/Zn = 0.337 (0.763) = 1.100 V 26

La corrosione dei metalli Insieme di fenomeni chimici che risultano nella degradazione di un metallo (peggioramento delle proprietà chimiche e fisiche). Alla base c è sempre un processo di ossidazione del metallo che si corrode. Corrosione di origine chimica: azione di sostanze come: CO, CO 2, SO 2, H 2 S, NH 3, H 2 SO 4, HNO 3, ecc. Corrosione dovuta alle correnti elettriche vaganti nel terreno; l acqua e i sali funzionano come elettroliti, fenomeni di elettrolisi nei quali le strutture metalliche interrate fungono da elettrodi. Fenomeni di corrosione dovuti alla presenza contemporanea di ossigeno e acqua. 27

La corrosione dei metalli 28

La corrosione dei metalli In generale, metalli con potenziale di riduzione molto alto resistono molto bene alla corrosione (Cu, E = 0.337 V; Au, E = 1.42 V). Alcuni metalli che hanno un potenziale di riduzione molto negativo (Al, E = 1.66 V; Ti, E = 0.89 V; Cr, E = 0.74 V) resistono meglio alla corrosione di altri metalli che hanno un E molto meno negativo (Fe, E = 0.45 V). Questo diverso comportamento è dovuto al fatto che questi metalli a contatto con l atmosfera si ricoprono rapidamente, per inizio della corrosione, di un sottilissimo velo di ossido, molto aderente, insolubile che costituisce una barriera.. Questo fenomeno è chiamato PASSIVAZIONE DEI METALLI. 29

La corrosione dei metalli Condizioni per la PASSIVAZIONE: E molto negativo, rapida corrosione iniziale del metallo; formazione di uno strato molto sottile di ossido, insolubile e poco reattivo (barriera cinetica) dimensioni reticolari dell ossido poco diverse (1015%) da quelle del metallo: buona adesione tra strato di ossido e metallo. Passivazione spontanea: migliore protezione contro la corrosione 30

Corrosione galvanica 31

La corrosione per aerazione differenziale 32

Riepilogo del meccanismo di corrosione 33

Protezione dalla corrosione Esistono numerose tecniche per proteggere i metalli (Fe) dalla corrosione: Rivestimenti con strati impermeabili (vernici, materie plastiche, vetro, ecc.); lo strato non deve presentare difetti. Elettrodeposizione: si forma un rivestimento con un metallo avente E più negativo (Zn, Cr, Ni) che tende a passivarsi. Con metalli aventi E maggiore del Fe, lo strato deve essere assolutamente continuo per evitare la corrosione galvanica. Corrente impressa: l oggetto di Fe da proteggere è collegato al polo () di una sorgente esterna di corrente continua mentre un altro blocco di lega ferrosa è collegato al polo (). L oggetto di Fe funziona da catodo di una cella elettrolitica e quindi non si ossida Protezione catodica: l oggetto di Fe viene collegato ad un altro metallo avente E più negativo (es. Mg) che si comporta da anodo sacrificale ossidandosi al posto del Fe. 34

Protezione dalla corrosione 35