La Magnitudo di riferimento

Documenti analoghi
Le categorie di sottosuolo delle NTC08: limiti di applicabilità di V s30

Angolo d attrito in termini di sforzi efficaci. Metodo NTH (Norvegian Institute of Technology) Sandven et al. (1995)

Ordine Geologi delle Marche Jesi (An)

Prevenzione Formazione ed Informazione

. conoscere il fenomeno sismico, LO STUDIO DI MICROZONAZIONE SISMICA DEL COMUNE DI NEGRAR. Dott. Geol. Enrico Castellaccio 13 febbraio 2012

VERIFICA A LIQUEFAZIONE

Liquefazione dei terreni in condizioni sismiche

RELAZIONE RISPOSTA A DOMANDA N. 2. Generalità. Fondazioni. Caratteristiche del terreno

Pali in ghiaia - Progetto

Prova penetrometrica dinamica: SPT (Standard Penetration Test)

I processi di tempra sono condotti sul manufatto finito per generare sforzi residui di compressione in superficie. Vengono sfruttate allo scopo

Rapporto dal Questionari Insegnanti

26 settembre ottobre 2012

APPLICAZIONI SOFTWARE PER LA PROGETTAZIONE GEOTECNICA CON LE NTC 2008

DETERMINAZIONE DI V S30 ReMi software

3. Azioni sismiche. Le probabilità di superamento P VR nel periodo V R di riferimento dell azione sismica sono riportate alla successiva tabella:

PIAE TIPOLOGIA DI POLO. LITOLOGIA DEL GIACIMENTO Sabbie fini. COMUNI INTERESSATI Ferrara INQUADRAMENTO DELL AREA

La verifica a liquefazione secondo le NTC Eros Aiello

PROGETTAZIONE DELL AMPLIAMENTO DELLA CASA DI RIPOSO DON BOSCO A BOLZANO RELAZIONE GEOLOGICO GEOTECNICA DI PROGETTO- INTEGRAZIONE

Geostru Software Sommario

0.00 m. 1,75 m. ghiaiosa); γ 3 = 14,5 kn/m 3 c = 0 kpa ϕ = m m

Vitantonio Roma Copyright riservato. Metodo HVSR (Nakamura)

RAPPORTO DI PROVA R 0874

(riprendendo un trasparente mostrato a proposito di indagini e campionamento) MEZZI D INDAGINE PROFILO STRATIGRAFICO PROPRIETÀ MECCANICHE

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI SOTTO AZIONI DINAMICHE CON PROVE IN SITO E DI LABORATORIO

REALIZZAZIONE DI FABBRICATO AD USO MAGAZZINI E PREDISPOSIZIONE POSA IMPIANTO PER GESTIONE E LAVORAZIONE INERTI. Merlet Fabrizio

SOMMARIO: LEGGI SU CUI SI BASANO LE ATTUALI NORME LE NUOVE NORME TECNICHE PER LE COSTRUZIONI E L AZIONE SISMICA

Indagine di Tomografia Elettrica

Pali di fondazione = elementi strutturali in grado di trasferire il carico applicato alla loro sommità a strati di terreno più profondi e resistenti

TRACCIA PER LA REDAZIONE DELLA RELAZIONE GEOLOGICA E DELLA RELAZIONE GEOTECNICA FACENTI PARTE DI UN PROGETTO PER COSTRUZIONI.

CONVENZIONE UNIVERSITÀ DI PERUGIA DELTATECH. Rapporto Attività di Ricerca. Prove ad impatto su laminati compositi con.

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Miscelatori e riduttori di pressione

Insegnamento di Progetto di Infrastrutture viarie

La microzonazione sismica, oggi, in Italia: uno strumento per la mitigazione del rischio. Giuseppe Naso DPC - Ufficio Rischio sismico e vulcanico

REGOLAMENTO (UE) N. 1235/2011 DELLA COMMISSIONE

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

ANALISI DI RISCHIO SEMIQUANTITATIVA IN SUPPORTO ALLE VALUTAZIONI IN PRESENZA DI ATMOSFERE ESPLOSIVE (ATEX)

TECNICA DELLE COSTRUZIONI: PROGETTO DI STRUTTURE LE FONDAZIONI

All.n.7 GAD PEC RI12 INDAGINE GEOFISICA TRAMITE TECNICA MASW

Fig.1 Mappa freatimetrica a scala regionale dell acquifero non confinato dell alta pianura friulana.

L'input geotecnico nella progettazione di. fondazioni speciali

Prova di autovalutazione Prof. Roberta Siciliano

Carichi unitari. Dimensionamento delle sezioni e verifica di massima. Dimensionamento travi a spessore. Altri carichi unitari. Esempio.

Lezione 1. Obiettivi prestazionali e normativa vigente. Laboratorio progettuale (Tecnica delle Costruzioni)

Introduzione all analisi dei segnali digitali.

DI IDROLOGIA TECNICA PARTE III

TEST DI VALIDAZIONE DEL SOFTWARE VEM NL


Stabilità geotecnica del sito di costruzione. Suscettibilità alla liquefazione. Carlo G. LAI, PhD. con importanti contributi di: Laura Scandella, PhD

LE FINESTRE E L ISOLAMENTO ACUSTICO

Calcolo della trasmittanza di una parete omogenea

TAVOLA TECNICA SUGLI SCAVI. Art. 100 comma 1 del D. Lgs. 81/2008

Indagine sismica. MASW - Multichannel Analysis of Surface Waves

1. PREMESSA 2. CALCOLI E VERIFICHE FOGNATURA ACQUE REFLUE

Università degli Studi di Bergamo Facoltà di Ingegneria

COMUNE DI AVEZZANO. (Provincia di L'Aquila) Via Pietragrossa, 82. Località Paterno. Committente:Bernardi Mauro. Geol.

I principali riferimenti normativi

Soluzione. Calcolo la frequenza di Brunt-Väisälä: Γ Γ= Calcolo il periodo: = 2 = Ricavo la velocità del vento: = = =20.

Guida all uso di RSL III

Prova di verifica parziale N Nov 2008

La valutazione del rischio chimico

Histogram of C1 Normal

ALLEGATO A ALLE NORME TECNICHE PER LE COSTRUZIONI: PERICOLOSITÀ SISMICA

VERIFICA DELLE IPOTESI

Risposta sismica dei terreni e spettro di risposta normativo

COMPARTO TURISTICO ALBERGHIERO EX. HOTEL VITTORIA AREA A TABULATI VERIFICHE PRELIMINARI LIQUEFAZIONE SISMICA

Analisi con due Velocità

RELAZIONE GEOTECNICA

Ristrutturazione del complesso ENAV di Roma ACC - Ciampino Roma Progetto definitivo delle strutture - RELAZIONE GEOTECNICA

PROGETTO ESECUTIVO PER LA MIGLIOR GESTIONE IRRIGUA INDICE

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Indici di dispersione

Statistica. Lezione 6

FONDAZIONI SU PALI TRIVELLATI

E mail: Web: Firenze, 12/03/2009

Effectiveness of Soil Parameters for Ground Response Characterization and Site Classification

PIAE TIPOLOGIA DI POLO. LITOLOGIA DEL GIACIMENTO Sabbie medie e fini COMUNE INTERESSATO Ostellato INQUADRAMENTO DELL AREA

Nel seguito sono riportati due esercizi che si possono risolvere con la formula di Erlang e le relative risoluzioni.

11. Criteri di analisi e di verifica

L età dei vincitori La presenza femminile. L età dei vincitori La presenza femminile. Confronto tra il concorso ordinario ed il concorso riservato

Studio di Geologia Tecnica dr. ANGELO ANGELI Cesena, via Padre Genocchi, 222 tel fax

LAN Liquefazione Terreni. Aztec Informatica LAN. Liquefazione Terreni MANUALE OPERATIVO

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]

valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale. *

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

COMUNE DI SOLBIATE ARNO

Termodinamica: legge zero e temperatura

PRINCIPI DI TRASMISSIONE DEL CALORE

PROVINCIA DI PERUGIA INTEGRAZIONE ALLA RELAZIONE GEOLOGICA PRELIMINARE GENERALE DI FATTIBILITA

Quadri fessurativi in situazioni particolari

SEMINARIO TECNICO INTERVENTI E METODI DI STABILIZZAZIONE PER RIDURRE IL RISCHIO LIQUEFAZIONE.

Indice. 1 Il settore reale

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

Ufficio Speciale per la Ricostruzione L Aquila

DISTART STRUTTURE, DEI TRASPORTI, DELLE ACQUE, DEL RILEVAMENTO, DEL TERRITORIO

4$5 (2% 1 (...* (.. ("2 2 (.." "")" ' 3 3.%.&( % ( (2%%.""".("2 % +.* %# ) <% "" " 3 3"". 0 %' 3'=..(' >6 6%4(5 ) <3 3"".

INDICE 1. INTRODUZIONE DESCRIZIONE DEL SITO DI INTERESSE Ubicazione del sito ed estratti cartografici... 4

Politecnico di Torino. Esercitazioni di Protezione idraulica del territorio

Modelli di dimensionamento

Lezione. Tecnica delle Costruzioni

Transcript:

La Magnitudo di riferimento La sua importanza è legata (oltre che alla possibile esclusione della verifica) alla determinazione del fattore scala che compare nella valutazione della pericolosità della liquefazione. Per la sua valutazione non vi sono specifici riferimenti alla normativa Per la sua stima è però possibile e consigliabile ricorrere a quanto contenuto nelle Linee Guida del Gruppo di lavoro MS, 2008 (paragrafo 2,8.2), Indirizzi e criteri per la microzonazione sismica Conferenza delle Regioni e delle Provincie Autonome, Dipartimento della protezione civile, facendo riferimento alla zonazione sismogenetica ZS9 che suddivide il territorio italiano in 36 zone ad elevata sismicità.

La Magnitudo di riferimento Gruppo di Lavoro (2004), Redazione della mappa di pericolosità sismica prevista dall Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, appendice 2

La Magnitudo di riferimento (centro Italia) Gruppo di Lavoro (2004), Redazione della mappa di pericolosità sismica prevista dall Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, appendice 2

La Magnitudo di riferimento Le zone sismogenetiche Numero ZS Zone ZS Mw (max) 922, 936 Colli Albani, Etna 5,45 928 Ischia, Vesuvio 5,91 901, 902, 903, 904, 907, 908, 909, 911, 912, 913, 914, 916, 917, 920, 921, 926, 932, 933, 934 Savoia, Vallese, Grigioni-Valtellina, Trieste-Monte Nevoso, Bergamasco, Piemonte, Alpi Occidentali, Tortona- Bobbio, Dorsale Ferrarese, Appennino Emiliano-Romagnolo, Forlivese, Versilia-Chianti, Rimini-Ancona, Val di Chiana, Ciociaria, Etruria, Basento, Eolie-Patti, Sicilia settentrionale, Belice 6,14 Gruppo di Lavoro (2004), Redazione della mappa di pericolosità sismica prevista dall Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, appendice 2

La Magnitudo di riferimento Le zone sismogenetiche (segue) Numero ZS Zone ZS Mw (max) 918, 919, 910 Medio Marchigiana/Abruzzese, Appennino Umbro, Nizza-Sanremo 905, 906, 915, 930 Friuli-Veneto Orientale, Garda-Veronese, Garfagnana-Mugello, Calabria Ionica 6,37 6,60 924,925,931 Molise-Gargano, Ofanto, Canale d Otranto 6,83 923,927 Appennino Abruzzese, Sannio-Irpinia- Basilicata 7,06 929, 935 Calabria Tirrenica, Monti Iblei 7,29 Se il sito ricade in una di queste zone, la magnitudo di riferimento M w è quella massima indicata per la zone Gruppo di Lavoro (2004), Redazione della mappa di pericolosità sismica prevista dall Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, Rapporto Conclusivo e appendice 2

La Magnitudo di riferimento e se il sito non ricade in nessuna zona sismogenetica? Si ricorre al metodo della disaggregazione con l ausilio delle mappe di pericolosità sismica INGV (http://esse1-gis.mi.ingv.it/ mappe interattive della pericolosità sismica)

La disaggregazione Si ricerchi, ad esempio, la magnitudo di riferimento per il Comune di Santarcangelo di Romagna

La disaggregazione

La disaggregazione

La disaggregazione

La disaggregazione e = deviazione (log) massima dalla mediana predetta dalla legge di attenuazione

Se il sito è potenzialmente liquefacibile, come valuto la liquefacibilità? Le procedure si basano sulla valutazione del rapporto Resistenza/Domanda: Fs = Rapporto di resistenza ciclica (CRR)/Rapporto di taglio ciclico (CSR) La resistenza CRR è basata sui risultati delle prove in sito, normalizzati per la pressione litostatica effettiva esistente prima dello scuotimento sismico La domanda CSR è esprime l intensità dello scuotimento, anch esso normalizzato per la pressione litostatica Per definizione, se Fs < 1 si innesca la liquefazione In realtà un terreno è in genere considerato liquefacibile se Fs 1,25

Come determino il rapporto CSR Tutti i metodi di calcolo, indipendentemente dalla prova in sito utilizzata, calcolano CSR con la formula dovuta originariamente a Seed & Idriss (1971) e aggiornata dalla comunità accademica internazionale negli anni successivi: amax = accelerazione massima al suolo g = accelerazione di gravità = 9,81 m/s sv = pressione litostatica totale s v = pressione litostatica effettiva rd = coefficiente di riduzione della rigidezza con l aumentare della profondità z MSF = fattore di correzione per la magnitudo del sito in analisi Ks = coefficiente di correzione per la pressione litostatica

NCEER (Youd et al. 2001) Il coefficiente r d Golesorkhi (1989) -Idriss (1999) - Idriss & Boulanger (2010) Introducono nella valutazione di r d anche il valore della magnitudine del terremoto al sito: Le equazioni devono essere considerate valide per profondità non superiori a 20 metri i termini in parentesi sono espressi in radianti

Il fattore MSF Idriss (1997) Per M > 7,5 Andrus & Stokoe (1997) Per M 7,5 NCEER (National Center for Earthquake Engineering Research - 1997) raccomandata Per M 7,5 Idriss & Boulanger (2008) raccomandata MSF 1,8

Il fattore MSF

Il coefficiente Ks Il valore di Cs è funzione del tipo di prova in sito utilizzata: SPT CPT Vs

Il rapporto CRR dalla prova SPT Parametro Indice = N1,60,cs Tutti i metodi semplificati fanno riferimento al parametro indice N,1,60,cs a partire dal valore di N misurato attraverso le: N 60 = N *CE*CR*CS*CB N 1,60 = N 60 * CN N1,60,cs = N 1,60 + D N 1,60 N = numero dei colpi misurato CE = correzione per l energia trasmessa alle aste (fondamentale) CR = correzione per la lunghezza delle aste (poco influente) Cs = correzione per il metodo di campionamento (poco influente) CB = correzione per il diametro del foro (poco influente) CN = N 60 normalizzato per la pressione litostatica (importante) D N 1,60 = correzione per il contenuto di fini ergo: Obbligatorio utilizzare il campionatore Raymond ed eseguire analisi granulometriche

Fattori di correzione al valore di N CE = ER/60 ER = energia trasmessa dal maglio alle aste misurata attraverso degli strain gauges; i dati vengono inviati ad una centralina di elaborazione dati che riceve i segnali ad ogni colpo di maglio e li elabora restituendo i valori dell energia corrispondente (generalmente intorno al 50-80%)

Fattori di correzione al valore di N CN CN riporta il valore di N 60 al valore che si avrebbe se la pressione litostatica efficace alla profondità di misura di N 60 fosse pari alla pressione atmosferica Pa (1 atm, 1 Kg/cm 2, 101 kpa)

Fattori di correzione al valore di N per la % di fini D N 1,60 = CF Autore CF Seed (1997) Idriss & Boulanger (2004) CF = a + b (N1,60) a = 0 per FC 5% a = exp(1,76 (190/FC 2 )) per 5% < FC < 35% a = 5 per FC 35% b = 1 per FC 5% b = 0,99 + (FC 1,5 /1000) b = 1,2 per FC 35% CF = exp [1,63 + (9,7/FC) (15,7/FC)^2] FC = contenuto di fine (% passante al setaccio 0,074 mm -(n. 200 ASTM)

Fattore di correzione CF al valore di N (e se non si esegue una granulometria sul campione?)

Le curve di soglia [SPT] L utilizzo del metodo di Cetin è attualmente sconsigliato ed è oggetto di discussione negli Stati Uniti per la sua revisione; una nota definitiva è attesa per il 2015

Metodo di Idriss & Boulanger (2004)

Il rapporto CRR dalla prova CPT Parametro Indice = qc1,n,cs Il parametro indice qc1,n,cs rappresenta la resistenza alla punta normalizzata per la pressione litostatica e corretta per la presenza di fini. I metodi di calcolo di CRR proposti da vari Autori presentano percorsi di calcolo diversi, propri ad ogni metodo. Di seguito si prenderanno in considerazione due metodi Quello di Robertson et al. Quello di Idriss e Boulanger

L importanza di Ic Negli anni 90 Robertson, introduce il concetto dell Indice di Comportamento del terreno I c grazie al quale è possibile assegnare il comportamento del terreno attraversato dalla prova. Tale indice è calcolato con la I c Comportamento assimilabile litologicamente a < 1,31 Sabbie ghiaiose e sabbie addensate 1,31 2,05 Sabbie da pulite a limose 2,06 2,60 Sabbie limose e/o limi sabbiosi 2,60 2,95 Limi argillosi e/o argille limose 2,95 3,60 Argille > 3,60 Torbe, suoli organici

Metodo di Robertson & al. (1997-1998-2009) 1. Calcolare Ic utilizzando per l esponente n al termine Q la formula esplicitata di seguito al punto 2. 2. Robertson 2009 3. Normalizzare la resistenza alla punta con la:

Metodo di Robertson & al. (segue) Calcolo della correzione per il contenuto di fini: Calcolo di CRR: Se Ic 2,50 (Robertson 1997-2009)

Metodo di Robertson & al. (segue) Calcolo di CRR: Se 2,50 < Ic < 2,70 (Robertson 2009) Se Ic > 2,70 (Robertson 2009)

Metodo di Idriss & Boulanger (2004-2014) Normalizzazione della resistenza alla punta: Correzione per il contenuto di fine (Boulanger, 2014): Stima del contenuto di fini (Boulanger, 2014; I c è calcolato in accordo al metodo di Robertson) (C FC = 0 ± 0,29)

Metodo di Idriss & Boulanger (2004-2014) Calcolo di qc1,n,cs Calcolo di CRR (Boulanger, 2014):

Il rapporto CRR dalla velocità delle onde sismiche di taglio Vs (m/s) Parametro indice Vs1 Il parametro indice è rappresentato dal valore della velocità delle onde sismiche di taglio ricavata da prove geofisiche in situ Vs, normalizzata per la pressione litostatica (Vs1), corretta per la presenza di fini e per l età del deposito in esame (coefficiente Ka1). La formula più nota (e accreditata) è quella dovuta agli studi di Andrus Stokoe (2000) e, nella sua formulazione più recente, da Hayati & Andrus, 2008 Andrus, Hayati, Mohanan, 2009 in cui è stata inserita la correzione per l età del deposito.

CRR dove 7.5cs Equazioni V S CRR (Andrus & Stokoe 2000) 2 VS1 csa1 0.022 100 2.8 215 CRR 7.5cs = curva CRR per M W = 7.5 e FC 5 % Vs1 = [Vs (p a /s v ) 0,25 ] /K a1 1 1 215 V S1 csa1 (V S1 ) csa1 = V S corretto per l età del deposito = V s1 /K a1

La correzione per l età del deposito Tempo (anni) Fattore di correzione K a1 ( 1/ASF) 1 1.09 10 1.01 100 0.94 1,000 0.88 10,000 0.83 100,000 0.78

La curva di soglia [Vs]

I metodi probabilistici L avere a disposizione un grande numero di case histories, unitamente alle migliorie apportate nella valutazione di CSR attraverso back analysis dei dati a disposizione e a una migliore stima della variabilità dei parametri principali interessati dal fenomeno liquefacibilità ha portato, attraverso l utilizzo del teorema di Bayes (teorema della probabilità delle cause: permette dopo aver osservato un evento di migliorare la stima dell evento stesso), allo sviluppo di metodi probabilistici nella valutazione della liquefazione da prove SPT e CPT. A oggi, i due metodi più conosciuti sono quello di Cetin (ed altri) per le prove SPT e di Moss (ed altri) per le prove CPT (che tratteremo qui).

I metodi probabilistici Cetin et al. (2004): Moss et al. (2004): c è un esponente di normalizzazione della punta che, in prima approssimazione, per i terreni sabbiosi è pari a 0,5 0,6 Nei due metodi, il simbolo F 1 indica l inversa della distribuzione standard normale cumulativa (media = 0 ; deviazione standard =1) [In Excel INV.NORM.ST() sotto Windows 7 e Windows XP ]

I metodi probabilistici Il concetto di PL (probabilità di liquefazione) nasce dalla considerazione che nei metodi semplificati il coefficiente di sicurezza teorico (CRR/CSR) non implica in pratica che se FS 1 si ha liquefazione e se FS > 1 non si ha liquefazione (approccio deterministico) Negli anni recenti vi è stato un continuo sforzo per diminuire il grado di conservatorismo esistente nelle curve di soglia e valutare quindi il potenziale di liquefazione in termini probabilistici. Il suo utilizzo è particolarmente indicato nelle applicazioni di ingegneria sismica. La sua valutazione è stata oggetto di numerosi studi da parte di vari Autori (in particolare di Juang C.H., oggi professore alla Università di Clemson, Carolina del Sud)

I metodi probabilistici Il significato di PL in termini probabilistici è: Valori di PL Classe Probabilità di liquefazione 0,85 PL < 1,00 5 Liquefazione quasi certa 0,65 PL < 0,85 4 Liquefazione probabile 0,35 PL < 0,65 3 Liquefazione incerta 0,15 PL < 0,35 2 Liquefazione improbabile 0,00 PL < 0,15 1 Non liquefazione quasi certa Da Juang 2000, 2008 modificato

I metodi probabilistici La valutazione di PL nella sua più recente formulazione (Juang & Ching, 2011): Per definizione il termine [CRR(q*)/CSR] equivale al coefficiente di sicurezza Fs

I metodi probabilistici La funzione di mappatura di PL in funzione di Fs è calcolata con la:

L indice del Potenziale di Liquefazione LPI Nel 1982 Iwasaki, Tokida ed altri hanno introdotto per una stima del grado di pericolosità dovuto alla liquefazione in un sito la valutazione del potenziale di liquefazione attraverso un indice (LPI) basato sul coefficiente di sicurezza calcolato con uno dei metodi semplificati visti prima e considerando il profilo del terreno nei suoi primi 20 metri. Il valore di LPI o, espresso in forma di sommatoria:

L indice del Potenziale di Liquefazione LPI F = funzione che esprime il potenziale di liquefazione di ogni strato in rapporto al coefficiente di sicurezza calcolato w(z) = funzione che tiene conto della profondità dello strato H = spessore dello strato Adottando la metodologia proposta da Sonmez (2003), diventata in questi ultimi anni di uso comune: F = 0 per FS 1,2 F = 1 Fs per FS < 0,95 F = 2*0,000001 exp(-18.427 FS) w(z) = 10 0,5 z H = spessore dello strato in esame

L indice del Potenziale di Liquefazione LPI Per le prove di tipo continuo, come le CPT e le CPTU si può utilizzare nella valutazione di LPI un forma discretizzata (Lunna & Frost) (NL = numero dei punti di misura, H distanza tra i punti): Le classi di pericolosità di liquefazione sono: Indice del potenziale di liquefazione Pericolosità di liquefazione 0 Nulla 0 2 Bassa 2 5 Moderata 5 15 Alta > 15 Molto alta

Il grado di danno Dall indice del potenziale di liquefazione è possibile anche valutare la severità della rottura del terreno indotta dalla liquefazione Tale valutazione è presentata nella seguente tabella: Indice del potenziale di liquefazione Grado di danno < 11,5 Non vi sono danni apparenti 11,5 < LPI < 32 Spostamenti da piccoli a moderati: cedimenti e sand boils > 32 Elevati rifluimenti laterali

Cedimenti Deformazioni dovute alla liquefazione ciclica

Cedimenti Deformazioni dovute alla liquefazione ciclica Le tipiche manifestazione della liquefazione ciclica: vulcanelli di sabbia (sand boils) e fratture del terreno, possono portare a danneggiamenti sia di edifici in appoggio diretto che di altri manufatti antropici (strade, ponti, sottoservizi di pubblica utilità), sia per trasporto e perdita di materiale con conseguente cedimento dello strato più superficiale che per sovrappressioni indotte dalla risalita verticale della sabbia verso la superficie. Ishihara (1985), sulla base di numerosi casi, ha individuato tre situazioni possibili generalizzando il problema come sistema bistrato strato superiore strato inferiore

Esempio: presenza di uno strato liquefacibile (Fs < 1,1) da 1,2 a 6,7 metri; al disotto strati non liquefacibili. strato superiore H 1 (limo sabbioso argilloso): spessore pari a 1,2 metri; lo spessore H 2 sarà di conseguenza (6,7 1,2) = 5,5 metri. ag = 0,2 g; entrando nell abaco con ordinata 5,5 (H 2 ) lo spessore minimo richiesto allo strato superiore per impedire il propagarsi della liquefazione verso l alto è di 3 metri, poiché tale spessore risulta maggiore di quello dello strato superiore (H 1 ), ci si dovranno aspettare dei danni da liquefazione indotta.

Cedimenti dovuti alla mobilità ciclica (Ishihara & Yoshimine, 1992) Attenzione Stima solo i cedimenti dovuti al consolidamento post liquefazione NON considera gli spostamenti dovuti al taglio NON STIMA I CEDIMENTI DI UN EDIFICIO VALIDA SOLO IN CONDIZIONI DI FREE FIELD

Cedimenti dovuti alla mobilità ciclica (Zhang et al, 2003)