INFINITO & CARDINALITÀ



Documenti analoghi
Il fascino dell Infinito

L insieme N dei numeri naturali è infinito?

Matematica generale CTF

ci sono più problemi che programmi esiste un problema che non si può risolvere con un programma

Lezioni di Matematica 1 - I modulo

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

Corso di Analisi Matematica Serie numeriche

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Appunti sulla Macchina di Turing. Macchina di Turing

Relazione attività in classe sul Teorema di Pitagora

Corrispondenze e funzioni

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Il calcolo letterale per risolvere problemi e per dimostrare

1. PRIME PROPRIETÀ 2

Pitagora e la scoperta delle grandezze incommensurabili

1 Giochi a due, con informazione perfetta e somma zero

I NUMERI DECIMALI. che cosa sono, come si rappresentano

3 GRAFICI DI FUNZIONI

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA


u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

Infinito, scienza, e paradosso. G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

I sistemi di numerazione

Dimensione di uno Spazio vettoriale

Rappresentare i nessi logici con gli insiemi

Teoria dei Giochi. Anna Torre

IMMAGINANDO QUELLO CHE NON SI VEDE

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

LE FUNZIONI E LE LORO PROPRIETÀ

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Questionario per casa 6 Febbraio 2012

LEZIONE 23. Esempio Si consideri la matrice (si veda l Esempio ) A =

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Anno 1. Definizione di Logica e operazioni logiche

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

IL CONCETTO DI FUNZIONE

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

Capitolo 4 Probabilità

Fondamenti dei linguaggi di programmazione

( x) ( x) 0. Equazioni irrazionali

Cartella: L esperienza del contare. Attività: CONTIAMO I FAGIOLI

FINESTRE INTERCULTURALI

ASSOCIAZIONE ANFFAS ONLUS UDINE. presenta LA NOSTRA VISION. Questo documento è in versione facile da leggere

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Anno 3. Classificazione delle funzioni

I SISTEMI DI NUMERAZIONE

Ancora sugli insiemi. Simbologia

Lezione 10 Funzione di produzione ed

Cosa dobbiamo già conoscere?

Più processori uguale più velocità?

Capitolo 2. Operazione di limite

OSSERVAZIONI TEORICHE Lezione n. 4

Rilevazione degli apprendimenti

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

Centro di Documentazione per l Integrazione

Anno 5 4. Funzioni reali: il dominio

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

La verità sulle immissioni in ruolo del Ministro Moratti

*UDQGH]]HUDSSRUWLPLVXUH

LA MOLTIPLICAZIONE IN CLASSE SECONDA

LE FUNZIONI A DUE VARIABILI

4 3 4 = 4 x x x 10 0 aaa

Autismo e teoria della mente

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

FINESTRE INTERCULTURALI

1 Applicazioni Lineari tra Spazi Vettoriali

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

OGNI SPAZIO VETTORIALE HA BASE

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

Capitolo 5. Funzioni. Grafici.

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

Equilibrio bayesiano perfetto. Giochi di segnalazione

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2

Economia Applicata ai sistemi produttivi Lezione II Maria Luisa Venuta 1

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Corso di Sistemi di Gestione di Basi di Dati. Esercitazione sul controllo di concorrenza 12/02/2004

I sottoinsiemi di un insieme e il triangolo di Tartaglia

Il principio di induzione e i numeri naturali.

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Progetto Lauree Scientifiche - Matematica

I colloqui scuola-famiglia: le basi per una comunicazione efficace Dott.ssa Claudia Trombetta Psicologa e psicoterapeuta claudia.trombetta@ .

Fisica Medica x OPD. Angelo Scribano (ottobre 2006) Le scienze e il metodo scientifico Fisica Medica. A. Scribano pag.1

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Transcript:

SAPIENZA - UNIVERSITÀ DI ROMA TFA-A059 Didattica della Matematica II INFINITO & CARDINALITÀ A cura di: Andrei Catalioto Docente: Prof. Paolo Piccinni ANNO ACCADEMICO 2014-2015

Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. David Hilbert (1862 1943) La storia che raccontiamo narra del viaggio di Ion il Tranquillo, protagonista dell avventura nello spazio

Ion il Tranquillo cercava una camera. Pensò di trovarla all Hotel Infinito, noto per avere infinite stanze. Ion non ebbe fortuna perché l hotel ospitava i delegati del congresso di zoologia cosmica. Siccome gli zoologi cosmici venivano da tutte le galassie, e di galassie ne esiste un numero infinito, tutte le stanze erano occupate.

Soluzione del problema Il direttore decide di spostare lo zoologo della stanza 1 nella 2, quello della 2 nella 3 e così via così può mettere Ion nella stanza 1! In generale, viene spostato lo zoologo della stanza «n» nella stanza «n+1»

Il problema si complicò perché arrivò un rappresentante dei filatelici per ogni galassia per partecipare al congresso interstellare dei filatelici

Il direttore, come soluzione al problema, decise di spostare l ospite della 1 nella 2, quello della 2 nella 4, quello della 3 nella 6 e così via In generale mettere l ospite della stanza «n» nella stanza «2n» Così, gli zoologi occuparono l insieme delle stanze dei numeri pari e i filatelici occuparono l insieme delle stanze dei numeri dispari, visto che il filatelico n-esimo nella coda ottenne il numero di stanza «2n-1»

Povero lui, che dovrà arrivare alla stanza 26.813.836!

Il congresso degli zoologi terminò, e gli ospiti andarono via, lasciando vuote infinite stanze. Per lo stupore di Ion, il direttore si preoccupò perché non sarebbe più riuscito a raggiungere il preventivo di bilancio. Ion non capiva di che preventivo si parlasse, visto che i filatelici erano infiniti e quindi al direttore venivano pagate infinite stanze! Alla fine il direttore decise di lasciar stare l ospite della stanza numero 1 nella sua stanza e di spostare l ospite della stanza numero 3 nella stanza numero 2, l ospite della numero 5 nella 3 e così via Così l hotel risultò di nuovo pieno!

I costruttori dell Hotel Cosmos avevano smantellato tantissime galassie per costruire infiniti hotel con infinite stanze. Furono costretti, però, a rimettere tutto in ordine e a chiudere tutti gli hotel, eccetto l Hotel Cosmos

Quindi venne chiesto al direttore di mettere le infinite persone di infiniti hotel nel suo hotel, già pieno. COME FARE?

Un apprendista cuoco avanzò una proposta: Lasciare stare l ospite della stanza numero 1 nella sua stanza, spostare l ospite della stanza numero 2 nella stanza numero 1001, l ospite della stanza numero 3 nella stanza numero 2001 e così via. Fatto ciò mettere gli ospiti del secondo hotel nelle stanze 2, 1002, 2002 e così via. Gli ospiti del terzo hotel nelle stanze 3, 1003, 2003 e così via. Questa idea non risultò essere utile perché non ci sarebbero state stanze per gli ospiti degli hotel 1001 e seguenti.

Quindi un contabile propose di usare una delle proprietà delle progressioni geometriche: Mettere gli ospiti del primo hotel nelle stanze 2, 4, 8, 16, 32 e così via. Gli ospiti del secondo hotel andavano messi nelle stanze 3, 9, 27, 81 e così via. Ma arrivati al numero 4, questa proposta risultò irrealizzabile perché nella stanza numero 4 c era già un ospite

Ion propose di usare solo le progressioni dei numeri primi poiché se si prendono due numeri primi, nessuna delle potenze intere positive di uno può equivalere a quelle dell altro.

In questo modo nessuna stanza avrebbe avuto due occupanti!

Tutti gli insiemi hanno sottoinsiemi, formati da elementi dell insieme stesso. Consideriamo il caso di due insiemi con un numero finito di elementi: A= 1,2,3,4,5,6,7,8,9,10 B = 6,7,8,9,10 B è un sottoinsieme di A 1 6 2 7 8 3 4 9 5 10 B è una parte PROPRIA di A, cioè in B ci sono SOLO ALCUNI elementi di A. Quindi il numero di elementi di B è minore del numero di elementi di A, cioè la cardinalità di B è minore della cardinalità di A [ B (=5)< A (=10) ]

Questo concetto diventa più complesso quando operiamo con gli insiemi infiniti. Prendiamo il caso degli insiemi numerici che abbiamo studiato. Consideriamo l insieme N dei numeri naturali e l insieme P dei numeri pari. N = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;.. L insieme dei numeri pari P è un sottoinsieme proprio dell insieme dei numeri naturali N? N P 1 2 3 4 5 6 7 8 9 10 È vero che P è sottoinsieme proprio di N perché in P ci sono SOLO alcuni elementi di N.

Quale insieme ha più elementi? N o P? 1 2 2 4 3 6 4 8 5 10 La corrispondenza è biunivoca: ad ogni elemento di N possiamo associare uno e un solo elemento di P n 2 n

Il primo a comprendere ciò è stato il matematico tedesco Georg Cantor (1845-1918), che ha introdotto il concetto di EQUIPOTENZA Se due insiemi sono in corrispondenza biunivoca, questi si dicono equipotenti. In tal caso si dice che gli insiemi hanno la stessa cardinalità o la stessa potenza. Quindi possiamo dedurre che in un insieme infinito "una parte può essere equivalente al tutto". Questa teoria è in contrasto con l assioma di Antonio De Zolt (1881) sul confronto delle aree, che, riprendendo quanto già affermato da Euclide negli Elementi (300 a.c. circa) dice: «Il tutto non equivale (è maggiore ) a una (della) sua parte". Nel caso dell esempio dei numeri pari, abbiamo visto che P è una parte di N però i due insiemi sono equivalenti: ma N e P sono EQUIPOTENTI!

Prendendo in considerazione il postulato di De Zolt, cioè «Il tutto non può essere "uguale" a una sua parte» e operando con insiemi infiniti, si generano dei paradossi, che iniziarono a tormentare già Galileo Galilei nel XVI secolo. George Cantor capì l origine dei paradossi dell infinito Egli si chiese UGUALE RISPETTO A COSA? 1 SIGNIFICATO (ARISTOTELE) La parte non è uguale-identica al tutto che la contiene. LA PARTE È CONTENUTA PROPRIAMENTE NEL TUTTO 2 SIGNIFICATO (CANTOR) La parte può essere uguale PER NUMERO al tutto. LA PARTE PUÒ ESSERE EQUIPOTENTE AL TUTTO

Alla luce di queste considerazioni, il matematico tedesco Richard Dedekind nel 1874 introdusse la seguente definizione: un insieme S si dice infinito, se è equipotente a una sua parte; nel caso opposto si chiama finito. L infinito che abbiamo introdotto con il racconto dell Hotel Infinito è la cardinalità di N. Cantor denominò la cardinalità di N con il simbolo 0 (la lettera ebraica ALEF con pedice lo zero)

Dal racconto dell Hotel Infinito possiamo dedurre che l infinito si comporta in modo particolare con l addizione.. +1= +n= + = + + + =

A Cantor sorse un dubbio: CI SONO VARI GRADI DI INFINITO?

Ad esempio l insieme N (interi positivi) è una parte propria dell insieme Z (interi positivi e negativi), allora a Z dovrebbe corrispondere un infinito più grande di N? Ragionando sulla soluzione, Cantor ebbe un intuizione geniale: Mise in corrispondenza biunivoca N e Z, dimostrando che la cardinalità di uno è uguale alla cardinalità dell altro. Se N ha cardinalità 0, allora anche Z avrà cardinalità 0 cioè hanno la stessa numerosità. 0 si dice POTENZA DEL NUMERABILE!

Ma Cantor non si è fermato a Z, si è interrogato anche sulla numerosità dell insieme dei numeri razionali Q, che è un insieme più fitto di Z dovendo contenere anche numeri con la virgola. Egli è riuscito a dimostrare che c è una corrispondenza biunivoca anche tra N e Q e di conseguenza la cardinalità di uno è uguale alla cardinalità dell altro. Siccome Z e Q si possono mettere in corrispondenza biunivoca con N, questi si dicono numerabili.

1 PROCEDIMENTO (O ARGOMENTO) DIAGONALE DI CANTOR

E cosa succede se consideriamo l insieme dei numeri reali R? E anch esso numerabile? Cantor, ha dimostrato che R non è numerabile e che quindi la cardinalità di R non è 0. Egli indicò con "c" la cardinalità di R! c si dice POTENZA DEL CONTINUO!

2 PROCEDIMENTO (O ARGOMENTO) DIAGONALE DI CANTOR

TEOREMA DI CANTOR A ( A) Cantor, dato un generico (vuoto o non) insieme A, costruì l insieme P(A) come l insieme di tutti i possibili sottoinsiemi di A che chiamò insieme delle parti o insieme potenza di A e che indicò in simboli con P(A) X : X A dimostrò che esso non risulta essere mai equipotente ad A stesso costruendo un opportuna funzione iniettiva da A a P(A) che non fosse suriettiva (quest ultimo fatto lo provò per assurdo!) Anzi, provò qualcosa di più interessante Cioè ( A) 2 A

IL TEOREMA DI CANTOR DI LEGAME TRA LA CARDINALITA DEL CONTINUO E DEL NUMERABILE c 2 0 2 Il famoso matematico tedesco Georg Cantor (1845-1918) introdusse il concetto di cardinalità per confrontare le dimensioni di insiemi infiniti. Egli dimostrò infatti, che l insieme R dei numeri reali è non numerabile (in particolare ha la cosiddetta potenza del continuo indicata con c), cioè che la sua cardinalità è maggiore della cardinalità dell insieme N dei numeri naturali, indicata con 0 (alefzero) e detta del numerabile. Ciò, di fatto asserisce che non esiste alcuna funzione biunivoca tra l insieme dei numeri reali e l insieme dei numeri naturali. Si desume invece dal Teorema di Cantor-Schröder-Bernstein relazione fra le due cardinalità esposta come incipit.

CARDINALITÀ DEGLI INSIEMI NUMERI FONDAMENTALI 0 c 2 0

CENNI DI ARITMETICA CARDINALE TRANSFINITA PROPRIETÀ DI 0 E c 0 0 0 0 0 n ( ) n 0 0 0 c c max(, c) c 0 0 0 0 c 0 0 c c c c c 2 0

Cantor dimostrò anche che la potenza del numerabile è la minima cardinalità degli insiemi infiniti; esistono insiemi infiniti aventi una cardinalità superiore al numerabile e alla potenza del continuo (numeri transfiniti 0, 1, 2, ). Tuttavia ipotizzò che non esistono insiemi infiniti con cardinalità intermedia tra 0 e c, cioè il grado di infinito successivo al numerabile è il continuo. Ainsieme : A c c 0 1 0 Questa ipotesi prende il nome di IPOTESI DEL CONTINUO (CH)!

Nel 1940 il matematico americano di origine austriaca KURT GÖDEL dimostrò che non si può dimostrare né che l ipotesi del continuo sia vera né che l ipotesi del continuo sia falsa. ( incompletezza di CH) In realtà nel 1963 il matematico americano PAUL COHEN dimostrò che esistono teorie matematiche in cui si accetta che l ipotesi sia vera e altre teorie in cui si accetta che l ipotesi sia falsa. ( indipendenza di CH)

4 3 2 1 0