Soluzione degli esercizi sul moto parabolico - 31/01/2011



Documenti analoghi
Esercizi sul moto parabolico (3 a B Scientifico) - 31/01/2011

Esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

ESERCIZI CINEMATICA IN UNA DIMENSIONE

2. Moto uniformemente accelerato. Soluzione

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

I ESERCITAZIONE. Soluzione

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

F 2 F 1. r R F A. fig.1. fig.2

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

CONSERVAZIONE DELL ENERGIA MECCANICA

Nome..Cognome.. Classe 4G 4 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome e Cognome. Nella copia da riconsegnare si scrivano solo il risultato numerico e la formula finale. Non riportare tutto il procedimento.

Esercitazione VIII - Lavoro ed energia II

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x x2. 2, x3 +2x +3.

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.

Esercizi svolti sui numeri complessi

Esercitazione 5 Dinamica del punto materiale

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

FUNZIONE REALE DI UNA VARIABILE

Forze come grandezze vettoriali

Questionario. figura il filo si rompe. Quale traiettoria segue la boccia?

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, Settembre 2005 p.

FUNZIONI / ESERCIZI SVOLTI

Il moto parabolico con lancio obliquo. senα. 0x 2. 2v 2 0x

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

Fisica Generale I (primo modulo) A.A , 19 Novembre 2013

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

Anno 4 Grafico di funzione

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

Capitolo 13: L offerta dell impresa e il surplus del produttore

9. Urti e conservazione della quantità di moto.

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/ Esercizi: lezione 24/11/2015

distanza percorsa in 12s x-x 0 =v i t+1/2 at 2 =(70/3.6)*12 +1/2*(-1.41)*12 2 =1.3*10 2 m

Esempi di funzione. Scheda Tre

Liceo Scientifico Statale Leonardo Da Vinci

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

3 GRAFICI DI FUNZIONI

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

EQUILIBRIO DI MERCATO

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

SOLUZIONI D = (-1,+ ).

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

Consideriamo due polinomi

Massimi e minimi vincolati

19 Il campo elettrico - 3. Le linee del campo elettrico

Prove di Valutazione parallele di Scienze Motorie e Sportive - Liceo Classico Liceo Classico Musicale ed Europeo Liceo Scientifico Sportivo

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

Esercitazione del Analisi I

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

G3. Asintoti e continuità

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

Studio di funzioni ( )

Bartoccini Marco 3 A

Modulo di Meccanica e Termodinamica

Esercizi svolti di Elettrotecnica

LE FUNZIONI A DUE VARIABILI

Soluzione del tema d esame di matematica, A.S. 2005/2006

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Matematica e Statistica

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

1 Principali funzioni e loro domini

a) In concorrenza perfetta il ricavo totale è dato dal prodotto tra il prezzo e la quantità venduta:

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

Esercitazione numeri

4 3 4 = 4 x x x 10 0 aaa

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

ANDREA FARALLI 2 C IL BARICENTRO

Esercitazioni di fisica per biotecnologie

I quesiti di Matematica per la classe di concorso A059

L influenza della corrente sulla barca si manifesta in due effetti principali: uno sul vento e uno sulla rotta percorsa.

Esercitazione n 1: Circuiti di polarizzazione (1/2)

Note di fisica. Mauro Saita Versione provvisoria, luglio Quantità di moto.

MODULO O VALORE ASSOLUTO

GEOMETRIA DELLE MASSE

Lezione 6 (16/10/2014)

Misure di base su una carta. Calcoli di distanze

Vademecum studio funzione

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

LA RETTA. Retta per l'origine, rette orizzontali e verticali

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

risulta (x) = 1 se x < 0.

Transcript:

Liceo Carducci Volterra - 3 a B Scientifico - Prof. Francesco Daddi Soluzione degli esercizi sul moto parabolico - 31/01/011 Esercizio 1. Un ragazzo lancia un pallone orizzontalmente da un tetto con una velocità iniziale di 15 m/s; sapendo che atterra a 0 m dalla base della casa, si determini: a) il tempo di volo; b) l altezza dell edificio. Soluzione. a) In generale, la legge oraria è x = x o + v o,x t y = y o + v o,y t 1 (1) gt indicata con h l altezza dell edificio, tenendo conto che v o,x =15m/s e v o,y =0m/s, abbiamo x =15t y = h 4, 9 t ; il pallone cade a 0 m dalla base dell edificio per cui dalla prima equazione si ricava 15 t =0 t 1, 33 s. b) Per determinare h è sufficiente sostituire il valore trovato al punto a) nella seconda equazione: 0=h 4, 9 (1, 33) h 8, 7 m. Esercizio. Un tuffatore di Acapulco si lancia orizzontalmente da un altezza di 35 m; sapendo che ci sono scogli per 5 m dalla base della piattaforma, determinare: a) il tempo di volo; b) la velocità minima che gli permette di evitare gli scogli. Soluzione. a) Indicata con v o la velocità iniziale del tuffatore, dalla formula (1) abbiamo x = vo t y =35 4, 9 t 1

il tempo di volo si trova risolvendo l equazione 0=35 4, 9 t t, 7 s. b) Per evitare gli scogli deve risultare v o (, 7 s) > 5 m v o > 1, 87 m/s. Esercizio 3. Un pallone viene calciato con un angolo θ =30 dalla sommità di un palazzo alto 3 m. Sapendo che la velocità iniziale è di 10 m/s, si determini: a) l altezza massima raggiunta; b) il tempo di volo; c) la gittata del pallone, misurata a partire dalla base del palazzo; d) la velocità con cui giunge a terra. Soluzione. La velocità inizialeè vo,x = v o cos θ v o,y = v o sin θ vo,x =(10m/s) cos 30 v o,y =(10m/s) sin 30 vo,x =8, m/s v o,y =5m/s. La legge oraria del pallone è x =8, t y =3+5t 4, 9 t. La velocità del pallone all istante generico t è vx =8, m/s v y =5m/s (9, 8 m/s ) t. a) Primo metodo. L altezza massima raggiunta y max è (0 m/s) (5 m/s) = ( 9, 8 m/s ) (y max 3 m) y max 33, 8 m. Secondo metodo. Il pallone raggiunge la massima altezza quando la componente y della velocità si annulla: v y =0m/s 5 m/s (9, 8 m/s ) t =0m/s t 0, 51 s ; sostituendo il valore appena calcolato nell espressione di y si trova l altezza massima raggiunta: y max =3m +(5m/s) (0, 51 s) (4, 9 m/s ) (0, 51 s) 33, 8 m. Terzo metodo. L equazione cartesiana della traiettoria parabolica è sostituendo i dati otteniamo y = h + v o,y v o,x x y =3+0, 577 x 0, 053 x ; l altezza massima coincide con l ordinata del vertice della parabola: g vo,x x () y max = (0, 577) +4 ( 0, 053) (3) 4 ( 0, 053) 33, 8 m. b) Calcoliamo il tempo di volo: 0=3+5t 4, 9 t t 3, 1 s. c) La gittata del pallone è x =8, m/s (3, 1 s) 7, 0 m.

d) La velocità all istante t 3, 1 s è vx =8, m/s v y =5m/s (9, 8 m/s ) (3, 1 s) 5, 58 m/s il modulo della velocità è v = (8, m/s) +( 5, 58 m/s) 7, 01 m/s. Nella figura qui sotto possiamo vedere la posizione del vertice V della traiettoria parabolica e la posizione del pallone all istante t =, 31 s: ; Esercizio 4. Alle olimpiadi un atleta lancia il peso con un angolo di 40 rispetto all orizzonte; sapendo che il peso lascia la mano dell atleta ad un altezza di 30 cm, si dica qual è la velocità iniziale minima che permette di battere il record (risalente al 1990) di Randy Barnes (USA): 3, 1 m. Soluzione. Primo metodo. Ponendo v o = v o la legge oraria è x = vo cos(40 ) t y =, 3+v o sin(40 ) t 4, 9 t ponendo x =3, 1 m, abbiamo x = vo 0, 7 t y =, 3+v o 0, 43 t 4, 9 t 3, 1 = v o 0, 7 t t 30, 183 v o ; sostituendo questa espressione nell altra equazione dove poniamo y = 0,si trova: ( ) ( ) 30, 183 30, 183 ( 30, 183 0=, 3+v o 0, 43 4, 9 0=1, 708 4, 9 v o v o v o ) risolvendo rispetto a v o si ottiene v o 14, 34 m/s. 3

Secondo metodo. L equazione della parabola è y =, 3+tan(40 4, 9 ) x [v o cos(40 )] x ; poiché deve passare dal punto di coordinate (3, 1 ; 0), abbiamo: 0=, 3+tan(40 4, 9 ) (3, 1) [v o cos(40 (3, 1) )] risolvendo rispetto a v o ritroviamo lo stesso risultato visto con il primo metodo: v o 14, 34 m/s. Esercizio 5. Guglielmo Tell deve colpire la mela posta sulla testa di suo figlio Gualtierino a una distanza di 5 m. Tenendo conto del fatto che la velocità iniziale della freccia èdi38 m/s eche, se mira direttamente alla mela, la freccia è orizzontale, a quale angolo deve inclinare la balestra per colpire la mela? Soluzione. La gittata orizzontale, in generale, è G = v o,x v o,y ; (3) g nel nostro caso abbiamo G =5m, quindi 5 m = v o,x v o,y ((38 m/s) cosθ) ((38 m/s) sinθ) 9, 8 m/s 5 m = 4, 9 m/s tenendo conto del fatto che sin θ cos θ = 1 sin( θ), si ha (38 m /s ) 1 sin( θ) 5 m = 4, 9 m/s risolvendo rispetto a θ si trovano questi due valori: θ 1 =4, 88 ; θ =85, 1 ; ovviamente la soluzione dell esercizio è θ =4, 88. La freccia colpisce la mela dopo circa 0, s. Esercizio. Facendo riferimento alla figura, qual è la velocità minima che permette alla palla di scavalcare il muro alto 4, 5 m? Soluzione. Primo metodo. Ponendo v o = v o la legge oraria è x = vo cos(30 ) t y =3+v o sin(30 ) t 4, 9 t x = vo 0, 8 t y =3+v o 0, 5 t 4, 9 t 4

ponendo x =m, abbiamo t = poniamo y =4, 5, si trova: ( 4, 5=3+v o 0, 5 v o 0, 8 ; sostituendo questa espressione nell altra equazione dove v o 0, 8 ) ( 4, 9 v o 0, 8 risolvendo rispetto a v o si trova v o 10, 95 m/s. Secondo metodo. L equazione della traiettoria è y =3+tan(30 ) x ) 4, 5=, 44 4, 9 ( 4, 9 [v o cos(30 )] x v o 0, 8 con la velocità minima per scavalcare il muro, la parabola deve passare per il punto di coordinate ( ; 4, 5): 4, 9 4, 5=3+0, 577 (v o 0, 8) () v o 10, 95 m/s. ) Esercizio 7. Un ragazzo calcia un pallone con una velocità inizialedi1 m/s. Qual è la massima gittata orizzontale? Soluzione. Dalla formula (3) la gittata massima orizzontale si ottiene quando l angolo è pari a 45, ovvero quando v o,x = v o,y = v o ; si ottiene quindi la formula G max = v o g. (4) sostituendo i dati dell esercizio si trova G max = (1 m/s) 14, 9 m. 9, 8 m/s 5

Esercizio 8. Pierino sta puntando la sua fionda, caricata con un innocuo palloncino ad acqua, verso una mela appesa al ramo di un albero. Nell esatto istante in cui parte il proiettile la mela cade dall abero. Dimostrare che Pierino ha avuto tanta fortuna... Soluzione. Vediamo la legge oraria del palloncino lanciato da Pierino: x = v o cos θt y = v o sin θt 1 gt la legge oraria della mela, invece, è x = d y = h 1 gt Per dimostrare che la mela viene colpita indipententemente dal valore di v o (velocità iniziale del palloncino), bisogna far vedere che quando l ordinata del palloncino è uguale a quella della mela, l ascissa del palloncino è x = d. Uguagliamo quindi le ordinate: v o sin θt 1 gt = h 1 gt h risolvendo rispetto a t si trova t = ; vediamo l ascissa del palloncino a questo istante: v o sin θ ( ) h x = v o cos θ = h cos θ v o sin θ sin θ ; d altra parte risulta anche tan θ = h d h = d tan θ e quindi x = h cos θ sin θ = d tan θ cos θ sin θ = d.

Esercizio 9. Un pallone viene calciato con velocità iniziale di 108 km/h; dopo aver rimbalzato contro un muro, distante 15 m, la palla cade a 75, 44 m dal muro stesso. Quali sono i possibili due angoli iniziali? Soluzione. Il problema equivale a trovare gli angoli per cui, se non ci fosse il muro, la gittata sarebbe pari a (15 + 75, 44) m =90, 44 m; dall equazione (3) 90, 44 m = v o,x v o,y ((30 m/s) cosθ) ((30 m/s) sinθ) 9, 8 m/s 90, 44 m = 4, 9 m/s tenendo conto del fatto che sin θ cos θ = 1 90, 44 m = sin( θ) siha (30 m /s ) 1 sin( θ) 4, 9 m/s risolvendo rispetto a θ si trovano questi due valori θ 1 =40 ; θ =50. Esercizio 10. Un pallone è calciato con velocità iniziale di 5 m/s su un pendio inclinato di un angolo pari a 30 rispetto all orizzonte (vedi la figura). Qual è la gittata massima sul pendio? Suggerimento: si usi l equazione cartesiana della parabola di sicurezza. E se siamo in presenza di una discesa (sempre con angolo uguale a 30?) 7

Soluzione. La parabola di sicurezza ha equazione cartesiana y = v o g g vo x (5) intersechiamo questa parabola (dove poniamo v o =5m/s) con la retta y =tan(30 ) x: y =31, 888 0, 00784 x le soluzioni del sistema sono: y =0, 577 x x =3, 8 A y =1, x = 110, 4 ; B y = 3, 78 ; la prima soluzione si riferisce al caso della salita (la gittata è 4, 5 m), la seconda, invece, alla discesa (la gittata in questo caso è 17, 55 m). I due angoli (a partire dall asse x) che permettono queste due gittate massime sono, rispettivamente, θ 1 =0 e θ = 150. 8