Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare. Il segnale mostrato in figura è un segnale ad onda quadra unipolare (cioè con un termine continuo da sommare), è un segnale di tipo pari, perché è simmetrico rispetto all'asse delle ordinate e nello sviluppo in serie di Fourier ha solo i termini di tipo coseno. La funzione risultante del segnale desiderato è quindi rappresentata dalla seguente sommatoria nella quale i coefficienti hanno alternativamente il segno positivo e quello negativo. Da notare che nella serie sono presenti solo le armoniche dispari della fondamentale. L espressione del termine generico della serie di Fourier è: Si noti che il termine generico contiene una funzione trigonometrica. Il calcolo del termine continuo o della componente continua avviene nel solito modo: Si ricordi che esiste una differenza nel parlare di Duty Cycle per un onda quadra ( duty cycle = 50%) mentre per un onda rettangolare (duty cycle 50%). 21
Lo sviluppo in serie di Fourier per una generica forma d onda rettangolare nel caso di un duty cycle del 50% diventa: Si tenga presente che la funzione seno oscilla sempre tra -1 +1. Lo sviluppo in serie di Fourier, nell ipotesi di un duty cycle del 50%, diventa il seguente: Si può dimostrare che la fase, per ogni armonica è sempre 90 trattandosi di termini coseno e che l'offset corrisponde al valore del termine continuo, cioè al valore medio del segnale risultante. 22
Parametri derivati dalla serie di Fourier 1) Valore Efficace Dato un segnale y(t) periodico, di periodo T, il suo valore efficace è definito da: In altre parole, il V eff si calcola c on una serie di operazioni matematiche: a) Elevare al quadrato la funzione periodica f 2 (t) (Square = quadrato); b) Calcolare il valor medio della funzione della funzione f 2 (t) (Mean = medio); c) Estrarre la radice quadrata del valor medio ottenuto (Root = radice ). Si ricordi che un integrale definito è utilizzato per il calcolo dell area racchiusa dalla funzione periodica nell intervallo di tempo specificato e precisamente in un periodo. Si può dimostrare che se si sviluppa la f(t) in serie di Fourier, il suo valore efficace diventa: In altre parole si può affermare che il valore efficace di f(t) è uguale alla somma dei quadrati dei valori efficaci dei singoli termini che compongono lo sviluppo della f(t) stessa: rappresenta il valore efficace dell ennesima armonica. 23
Si può quindi affermare, da quanto scritto nell espressione sopra, che il valore efficace del valor medio è il valore stesso, mentre il valore efficace di ogni singola armonica è dato dall ampiezza dell armonica diviso la radice di 2. Esempio 1: Data una tensione sinusoidale, di valore massimo V M = 310 V, calcolarne il valore efficace. Soluzione: La funzione sinusoidale, ovviamente, contiene soltanto il termine sinusoidale e presenta una sola armonica, quella fondamentale. Quindi, il termine di Fourier A nm = 0, come pure il suo valor medio sarà nullo. Sostituendo il valori nell espressione del valor efficace Esempio 2: Si consideri il seguente circuito: FIGURA 34 - Rete elettrica esempio 2. Determinare il valore efficace della tensione ai capi della resistenza R e la potenza attiva sviluppata sulla resistenza stessa. Soluzione 24
I 220Volt di v i (t) sono efficaci, quindi occorre prima trovare il valore massimo della v i (t): La tensione ai capi della resistenza è data da: Sostituendo i valori nell espressione del valore efficace si ottiene: La potenza dissipata sulla resistenza è data da: 2) Percentuale di armoniche La percentuale di armoniche esprime in % il rapporto tra il valore efficace delle armoniche, compresa la fondamentale, e il valore medio. E un parametro fondamentale per il progetto degli alimentatori; infatti è estremamente importante conoscere questo parametro quando il segnale continuo è preponderante rispetto all alternata. In altre parole, quando il valor medio Ym è il termine utile. Dove Y 1 è il valore efficace dell armonica fondamentale e Y 2, Y 3, Y 4 sono i valori efficaci delle armoniche successive. 3) Fattore di cresta 25
Il fattore di cresta rappresenta il rapporto tra il valore massimo Y M e quello efficace Y eff della grandezza data: 4) Fattore di forma Il fattore di forma è definito come il rapporto tra il valore efficace Y eff e il valore medio Y m. Esempio di sviluppo in serie grafico. Si consederi un impulso rettangolare periodico. Nella sequenza delle immagini che seguono è mostrato l effetto delle armoniche sulla ricostruzione del segnale periodico dato. 26
FIGURA 35 - Segnale periodico e segnale periodico + prima armonica. 27
FIGURA 36 - Segnale periodico con 1-2 armonica ; segnale periodico con 1-2-3 armonica. 28
FIGURA 37 - Segnale periodico con 1-2-3-4-5 armonica; segnale periodico con 1 20ªarmonica. 29
Si consideri ora un impulso triangolare periodico. FIGURA 38 - Segnale periodico triangolare e segnale periodico triangolare + prima armonica. 30
FIGURA 39 - Segnale periodico triangolare con 0-5 armoniche; segnale periodico triangolare con 0 20 armoniche. 31
RIEPILOGO e Osservazioni Funzione pari f(t) = f(-t) simmetrica rispetto all asse delle ordinate. Funzione dispari f(t) = -f(-t) simmetrica rispetto all asse delle ordinate ma con segno opposto Una funzione dispari ha sempre valor medio nullo. Una funzione pari può avere valor medio uguale o diverso da zero. La funzione coseno è pari, mentre la funzione seno è dispari. In una funzione periodica pari sono nulli i coefficienti A k. In una funzione periodica dispari sono nulli i coefficienti B k e Valore Medio. Le armoniche sono le componenti di una qualsiasi forma d'onda periodica nel modello matematico che si fonda sul teorema di Fourier. E' la forma d'onda originaria che determina quali armoniche la compongono. In generale ci sono sempre tutte, ma se la forma d'onda ha particolari caratteristiche di simmetria alcune ci sono, altre no. In particolare, se la semionda negativa, ribaltata rispetto all'asse delle ascisse, è sovrapponibile alla semionda positiva mediante traslazione, mancano tutte le armoniche pari. Le terze armoniche ed i loro multipli sono poi le più temibili perché le reti di distribuzione sono trifasi. Le terze armoniche delle correnti di fase sono tutte in fase tra loro per cui nel filo neutro, in cui circola la somma vettoriale delle tre correnti di fase, mentre le fondamentali si elidono se uguali tra loro, le correnti di terza armonica si sommano. Il neutro allora può subire sovraccarichi tanto più elevati quanto maggiori sono le componenti di terza armonica. Le ampiezze delle armoniche di ordine crescente diminuiscono man mano che aumenta il loro ordine, fino a diventare irrilevanti. Per questo motivo generalmente un segnale periodico può essere espresso come somma di un numero finito di armoniche. La funzione sinx è una funzione armonica dispari e cosx è una funzione armonica pari; infatti, dalla definizione di funzione dispari e funzione pari:f è pari <=> f(-x) = f(x)f è dispari <=> f(-x) = - f(x). Una funzione pari ha grafo simmetrico rispetto all'asse delle y, mentre una funzione dispari è simmetrica rispetto all'origine o antisimmetrica rispetto all'asse delle y con passaggio nell'origine in caso di continuità. Questo spiegherebbe perchè in sinx le armoniche pari si annullano: sinx è una funzione dispari pura, non puoi sommarci una funzione pari se non la funzione identicamente nulla! Quando sono presenti le armoniche, in genere, le componenti dispari sono dominanti, mentre quelle pari, se esistono, sono molto più piccole. Le armoniche pari, hanno un impatto completamente diverso a quello delle armoniche dispari, in quanto creano una componente continua nelle apparecchiature magnetiche (motori trasformatori, ecc). 32