APPLICAZIONI LINEARI



Documenti analoghi
Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Parte 6. Applicazioni lineari

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

Applicazioni lineari

APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI

APPLICAZIONI LINEARI

1 Applicazioni Lineari tra Spazi Vettoriali

Esercizi su lineare indipendenza e generatori

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

LEZIONE 16. Proposizione Siano V e W spazi vettoriali su k = R, C. Se f: V W

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

LEZIONE 17. B : kn k m.

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Diagonalizzazione di matrici e applicazioni lineari

Dimensione di uno Spazio vettoriale

LE FIBRE DI UNA APPLICAZIONE LINEARE

STRUTTURE ALGEBRICHE

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Algebra Lineare e Geometria

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Equazioni alle differenze finite (cenni).

LEZIONE 23. Esempio Si consideri la matrice (si veda l Esempio ) A =

Parte 2. Determinante e matrice inversa

Lezione 9: Cambio di base

Parte 3. Rango e teorema di Rouché-Capelli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Corrispondenze e funzioni

15 febbraio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

RETTE, PIANI, SFERE, CIRCONFERENZE

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

Applicazioni lineari

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

LE FUNZIONI A DUE VARIABILI

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

3 Applicazioni lineari e matrici

Anno 5 Funzioni inverse e funzioni composte

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

Ottimizazione vincolata

Le funzioni reali di variabile reale

1 Serie di Taylor di una funzione

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

Esame di Geometria - 9 CFU (Appello del 28 gennaio A)

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

Funzioni. Funzioni /2

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

1. PRIME PROPRIETÀ 2

Sia data la rete di fig. 1 costituita da tre resistori,,, e da due generatori indipendenti ideali di corrente ed. Fig. 1

4. Operazioni elementari per righe e colonne

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

Rette e piani con le matrici e i determinanti

Esercitazione del Analisi I

( x) ( x) 0. Equazioni irrazionali

MATEMATICA p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

Luigi Piroddi

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

Sulle funzioni di W 1,p (Ω) a traccia nulla

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

2 FUNZIONI REALI DI VARIABILE REALE

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

FUNZIONI ELEMENTARI Esercizi risolti

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

FUNZIONI / ESERCIZI SVOLTI

Anno 3. Classificazione delle funzioni

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

CORSO DI LAUREA IN INGEGNERIA.

Funzioni. Parte prima. Daniele Serra

Matematica generale CTF

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

11) convenzioni sulla rappresentazione grafica delle soluzioni

Percorsi di matematica per il ripasso e il recupero

LE FUNZIONI E LE LORO PROPRIETÀ

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

FUNZIONI CONVESSE. + e x 0

Esercizi svolti sui numeri complessi

risulta (x) = 1 se x < 0.

Prova scritta di Geometria 2 Prof. M. Boratynski

Transcript:

APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3) h : R 3 R 2 definita da h(a, b, c) = (2a + c)i + (b c)j; calcolarne nucleo, immagine e matrice associata rispetto alle basi canoniche. Esercizio 2. Calcolare g f e f g dove f e g sono le applicazioni lineari del precedente esercizio. Verificare che la matrice associata rispetto alle basi canoniche a g f è A g A f dove A g è la matrice associata rispetto alle basi canoniche a g e A f è quella associata ad f sempre rispetto alle basi canoniche. Esercizio 3. Calcolare ker f ed Imf per l applicazione lineare f : R 3 R 3 associata rispetto alla base canonica B = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) di R 3 alla matrice A = 1 0 1 2 1 1 3 2 1 e verificare il teorema del rango (dim R 3 = dim ker f + dim Imf). f è iniettiva? f è suriettiva? Esercizio 4. Data l applicazione lineare f : R 4 R 6 definita da f (a, b, x, y) = (x + y, x + y, x + y, a + b, a + b, a + b) calcolare f 1 (1, 2, 1, 1, 0, 0) ed f 1 (2, 2, 2, 1, 1, 1). Calcolare, inoltre, dim ker f e dim Imf, e la matrice associata ad f rispetto alle basi canoniche di R 4 ed R 6. Esercizio 5. Calcolare la matrice associata all applicazione lineare f : R 3 R 2 rispetto alla base canonica C di R 3 e C di R 2, dove f è definita dalle seguenti condizioni: f(1, 1, 0) = (1, 0), f(1, 0, 1) = (1, x), f(0, 1, 1) = (0, 1). Studiare poi f. Esercizio 6. Data l applicazione lineare f : R 2 R 4 definita come calcolare f 1 (3, 0, 0, 3). f(1, 1) = (1, 0, 0, 1), f(1, 2) = ( 2, 0, 0, 2), Esercizio 7. Esiste un applicazione lineare f : R 2 R 2 che verifica f(1, 1) = (1, 1), f(0, 1) = (0, 1), f(1, 2) = (1, 4)? Esiste un applicazione (non lineare) che le verifica? Esercizio 8. Dire se l applicazione lineare f : R 2 R 2 definita da f(1, 1) = (2, 1), f(1, 2) = ( 1, 0) è invertibile, e, in caso affermativo, calcolarne l inversa. Esercizio 9. Un applicazione lineare f : R 5 R 3 (1) è sempre iniettiva; (2) è sempre suriettiva; (3) non è mai iniettiva; (4) non è mai suriettiva. 1

2 APPLICAZIONI LINEARI Esercizio 10. L applicazione lineare f : R 3 R 4 f(x, y, z) = (x + y, 0, y + z, x + z) (1) è invertibile; (2) f 1 (1, 0, 0, 1) è formato da infiniti vettori; (3) ha come immagine un sottospazio di dimensione 3; (4) dim Imf = 2. Esercizio 11. Sia f : R 2 R 2 un applicazione lineare tale che f(1, 1) = f(1, 1). (1) f è suriettiva. (V ) (F ) (2) (0, 1) ker f. (V ) (F ) (3) dim ker f = 1. (V ) (F ) (4) f non è iniettiva. (V ) (F ) (5) Esistono infinite applicazioni lineari verificanti le condizioni date. (V ) (F ) Esercizio 12. Sia f : R 3 R 2 l applicazione lineare definita da (1) f non è lineare; (2) ker f ha dimensione 1; (3) f non è suriettiva; (4) f è iniettiva. f(x, y, z) = (x + y + z, 2x + z). Esercizio 13. Sia f : R 3 R 2 l applicazione lineare definita da f(x, y, z) = (x + y z, 2x 2z). (1) (1, 0, 1) Imf; (2) ker f ha dimensione 2; (3) la matrice associata ad f rispetto alle basi canoniche è (4) ker f = L((1, 0, 1)). 1 1 1 2 2 0 ] ; 2. Soluzione di alcuni esercizi Soluzione dell Esercizio 1. Cominciamo studiando f : R 2 R 3 che è definita come f(x, y) = (x 2y, x + y, x + y). Il nucleo è dato dalle soluzioni del sistema lineare x 2y = 0 x + y = 0 x + y = 0 la cui unica soluzione è (0, 0). Quindi ker(f) = (0, 0)}, la sua dimensione è 0, la sua base è B =, e, dalla caratterizzazione dell iniettività per le applicazioni lineari, otteniamo che f è iniettiva. Dal Teorema del Rango, si ottiene subito che dim Im(f) = dim R 2 dim ker(f) = 2 0 = 2. Inoltre, essendo f iniettiva, una base dell immagine è (f(1, 0), f(0, 1)) ossia ((1, 1, 1), ( 2, 1, 1)). In generale, se f è iniettiva, le immagini dei vettori di una base del dominio formano una base dell immagine dell applicazione. f non è suriettiva perché dim Im(f) dim R 3. La matrice associata ad f rispetto alle basi

APPLICAZIONI LINEARI 3 canoniche ha per colonne le componenti di f(1, 0) ed f(0, 1) rispetto alla base canonica di R 3. Avendo già calcolato f(1, 0) ed f(0, 1) abbiamo che la matrice cercata è A f = 1 2 1 1. 1 1 Consideriamo ora la seconda applicazione g : R 3 R 2, definita come g(x, y, z) = (x + y, x y). Questa volta calcoliamo prima l immagine di g. Dalla teoria, è noto che l immagine è generata dalle immagini dei vettori di una base del dominio. Quindi Im(g) = L(g(1, 0, 0), g(0, 1, 0), g(0, 0, 1)) = ((1, 1), (1, 1), (0, 0)). Una base di Im(g) si calcola scartando dai generatori quelli che dipendono linearmente dagli altri. In questo caso, una base dell immagine è ((1, 1), (1, 1)) e la dimensione del sottospazio è 2. In particolare, dim Im(g) = dim R 2 e quindi g è suriettiva. Dal Teorema del Rango, si ricava che dim ker(g) = dim R 3 dim Im(g) = 3 2 = 1, e quindi g non è iniettiva. Calcoliamo ker(g) risolvendo il sistema lineare omogeneo x + y = 0 x y = 0. Le soluzioni del sistema sono i vettori di R 3 della forma (0, 0, z) con z parametro libero. Qundi ker(g) = (0, 0, z) z R}, ed una sua base è ((0, 0, 1)). Infine, la matrice associata a g rispetto alle basi canoniche ha come colonne le componenti di g(1, 0, 0), g(0, 1, 0), g(0, 0, 1) rispetto alla base canonica di R 2, e quindi si ha A g = 1 1 0 1 1 0 Infine, consideriamo l applicazione lineare h : R 3 R 2 definita come ]. h(a, b, c) = (2a + c)i + (b c)j = (2a + c, b c). Calcoliamo per prima cosa l immagine di h. Im(h) è generato dai vettori h(1, 0, 0), h(0, 1, 0), h(0, 0, 1) e quindi Im(h) = L((2, 0), (0, 1), (1, 1)). Una sua base è ((2, 0), (0, 1)) e quindi dim Im(h) = 2, ed h è suriettiva. Inoltre, dim ker(h) = 1 ed h non è iniettiva. Il nucleo di h si calcola risolvendo il sistema lineare omogeneo 2a + c = 0 b c = 0 le cui soluzioni sono ker(h) = ( c, c, c) c R}. Una base di ker(h) è allora (( 1, 2, 2)). 2 La matrice associata ad h rispetto alle basi canoniche ha come colonne le componenti di h(1, 0, 0), h(0, 1, 0), h(0, 0, 1) rispetto alla base canonica di R 2, e quindi abbiamo A h = 2 0 1 0 1 1 ]. Soluzione dell Esercizio 2. Calcoliamo f g : R 3 R 3. f g(x, y, z) = f(g(x, y, z)) = f(x+y, x y) = (x+y 2x+2y, 2x, 2x) = ( x+3y, 2x, 2x).

4 APPLICAZIONI LINEARI L applicazione lineare g f : R 2 R 2 si calcola come g f(x, y) = g(f(x, y)) = g(x 2y, x + y, x + y) = (2x y, 3y) e la matrice associata a questa applicazione rispetto alla base canonica di R 2 è ] 2 1 A g f =. 0 3 D altra parte, la matrice A g A f è uguale a A g A f = 1 1 0 1 1 0 ] 1 2 1 1 1 1 = 2 1 0 3 ] = A g f. Soluzione dell Esercizio 3. Cominciamo con il calcolo dell immagine di f. Per come si costruisce la matrice associata ad f rispetto ad una base, sappiamo che le colonne di A sono le componenti dei vettori f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) rispetto alla base scelta. Quindi abbiamo che f(1, 0, 0) = 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1) = (1, 2, 3), f(0, 1, 0) = 0(1, 0, 0) 1(0, 1, 0) 2(0, 0, 1) = (0, 1, 2), f(0, 0, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1) = (1, 1, 1). Si ha allora che Im(f) = L((1, 2, 3), (0, 1, 2), (1, 1, 1)), che dim Im(f) = 2 e che una sua base è ((1, 2, 3), (0, 1, 2)). Gli ultimi due risultati si ottengono eliminando i vettori superflui dai generatori dell immagine. In particolare, f non è suriettiva. Calcoliamo ora il nucleo di f. Poiché le componenti del vettore nullo sono sempre nulle, rispetto a qualsiasi base si faccia il calcolo, abbiamo che i vettori del nucleo sono tutti e soli quelli le cui componenti risolvono il sistema AX = 0. Le soluzioni del sistema sono ( z, z, z) e quindi abbiamo ker(f) = v R 3 v] B = t ( z, z, z), z R}. Tali vettori sono allora v = z(1, 0, 0) z(0, 1, 0) + z(0, 0, 1) = ( z, z, z), e quindi ker(f) = L(( 1, 1, 1)) e la sua dimensione è 1. In particolare, f non è iniettiva. Infine, risulta evidente che dim R 3 = dim ker(f) + dim Im(f). Osserviamo infine esplicitamente che le componenti di un vettore rispetto alla base canonica coincidono con le entrate del vettore stesso. Soluzione dell Esercizio 4. Calcoliamo f 1 (1, 2, 1, 1, 0, 0) risolvendo il sistema x + y = 1 x + y = 2 x + y = 1 a + b = 1 a + b = 0 a + b = 0. È evidente che il sistema è senza soluzioni, e quindi f 1 (1, 2, 1, 1, 0, 0) =. Nel secondo caso, dobbiamo risolvere il sistema (abbiamo eliminato le equazioni uguali) x + y = 2 a + b = 1 che ha infinite soluzioni che dipendono dalle variabili libere a, x. Abbiamo quindi f 1 (2, 2, 2, 1, 1, 1) = (a, 1 a, x, 2 x) a, x R}.

Analogamente, possiamo calcolare il nucleo di f e risulta APPLICAZIONI LINEARI 5 ker(f) = (a, a, x, x) a, x R}. La dimensione del nucleo è allora dim ker(f) = 2, e dal Teorema del rango dim Im(f) = 2. Calcolando l immagine di due vettori opportuni della base canonica di R 4 otteniamo f (0, 0, 1, 0) = (1, 1, 1, 0, 0, 0) e f (1, 0, 0, 0) = (0, 0, 0, 1, 1, 1) che sono due vettori linearmente indipendenti dell immagine di f. Quindi Im(f) = L ((1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)). Per calcolare la matrice associata ad f rispetto alle basi canniche, calcoliamo le immagini dei vettori della base canonica di R 4 e le loro componenti rispetto alla base canonica di R 6. Svolgendo i calcoli, abbiamo f (1, 0, 0, 0) = (0, 0, 0, 1, 1, 1) ; f (0, 1, 0, 0) = (0, 0, 0, 1, 1, 1) ; f (0, 0, 1, 0) = (1, 1, 1, 0, 0, 0) ; f (0, 0, 0, 1) = (1, 1, 1, 0, 0, 0). In conclusione, la matrice associata è A = 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0. Soluzione dell Esercizio 5. La prima cosa da verificare è se l applicazione f è assegnata. Dalla teoria, è noto che l applicazione è assegnata se si conoscono le immagini dei vettori di una base del dominio. Quindi, bisogna verificare se ((1, 1, 0), (1, 0, 1), (0, 1, 1)) è una base di R 3. Ma questo è vero, perché la matrice 1 1 0 1 0 1 0 1 1 ha determinante 2 e quindi i tre vettori sono linearmente indipendenti. Essendo nel numero giusto, essi formano una base del dominio, e quindi l applicazione f è fissata. Siano ora C e C le basi canoniche di R 3 ed R 2, rispettivamente. Per calcolare la matrice di f rispetto a tali basi, dobbiamo innanzitutto esprimere i vettori di C come combinazioni lineari di ((1, 1, 0), (1, 0, 1), (0, 1, 1)). Risolvendo gli opportuni sistemi lineari, otteniamo (1, 0, 0) = 1(1, 1, 0) + 1(1, 0, 1) 1 (0, 1, 1); 2 2 2 (0, 1, 0) = 1(1, 1, 0) 1(1, 0, 1) + 1 (0, 1, 1); 2 2 2 (0, 0, 1) = 1(1, 1, 0) + 1(1, 0, 1) + 1 (0, 1, 1); 2 2 2 da cui si ricavano le loro immagini. Bisogna poi scrivere le immagini come combinazioni lineari dei vettori di C. In ultimo, si ha f(1, 0, 0) = (1, 0); f(0, 1) = (0, 0); f(0, 0, 1) = (0, 1);

6 APPLICAZIONI LINEARI e quindi la matrice cercata è M C,C (f) = ( 1 0 0 0 0 1 Per studiare f usiamo la matrice M C,C (f). L immagine è generata dai vettori f(1, 0, 0) = (1, 0), f(0, 0, 1) = (0, 1) che sono linearmente indipendenti. Quindi, Im(f) = L((1, 0), (0, 1)) ed ha dimensione 2. In conclusione, f è suriettiva, e, per il Teorema del Rango, ker(f) ha dimensione 1. Poiché f(0, 1, 0) = (0, 0), per definizione, (0, 1, 0) ker(f), e quindi ker(f) = L((0, 1, 0)). Soluzione dell Esercizio ( 6. ) La prima osservazione è che ((1, 1), (1, 2)) è una base di R 2 1 1 perché la matrice ha determinante diverso da zero. Quindi f è fissata perché 1 2 conosciamo le immagini dei vettori di una base del dominio. Inoltre, conosciamo anche l immagine di f che è generata appunto dalle immagini dei vettori della base del dominio che è stata scelta. Allora abbiamo ). Im(f) = L ((1, 0, 0, 1), ( 2, 0, 0, 2)) una cui base è ((1, 0, 0, 1)). Risulta allora evidente che la controimmagine di (3, 0, 0, 3) è non vuota perché il vettore appartiene all immagine di f. Per calcolarla, procediamo come segue: sia v R 2 un vettore di componenti t (a, b) rispetto a ((1, 1), (1, 2)). Per la linearità di f, la sua immagine è f(v) = af(1, 1) + bf(1, 2) = (a 2b, 0, 0, a + 2b). Uguagliando f(v) a (3, 0, 0, 3) otteniamo il sistema lineare a 2b = 3 a + 2b = 3 le cui soluzioni sono infinite della forma a = 3 + 2b. Abbiamo allora che f 1 (3, 0, 0, 3) = (3 + 2b)(1, 1) + b(1, 2) = (3 + 3b, 3 + 4b) b R}. Soluzione dell Esercizio 7. Non esistono applicazioni lineari che soddisfano le richieste. Infatti, (1, 2) = (1, 1) + (0, 1), mentre (1, 4) = f(1, 2) f(1, 1) + f(0, 1) = (1, 1) + (0, 1) = (1, 2). Viene quindi violata la proprietà di linearità. È possibile trovare applicazioni non lineari che verificano le condizioni assegnate. Una di queste è f(x, y) = (x, y 2 ). Soluzione dell Esercizio 8. Ancora una volta, f è fissata perché i vettori ((1, 1), (1, 2)) sono una base di R 2. Inoltre, le loro immagini sono linearmente indipendenti, e quindi l immagine dell applicazione f ha dimensione 2 (e quindi f è suriettiva). Dal Teorema del Rango, si ottiene che dim ker(f) = 0 e quindi f è anche iniettiva. In conclusione, ( ) f è 1 0 invertibile. Sia B = ((1, 1), (1, 2)) e B = ((2, 1), ( 1, 0)). Allora, M B,B (f) = = 0 1 I ( 2, e M B,B(f ) 1 ) = (I 2 ) 1 = I 2. Usando la formula del cambio base, si ha che M C,C (f 1 ) = 1 3, da cui 2 5 f 1 (x, y) = ( x + 3y, 2x + 5y).

APPLICAZIONI LINEARI 7 Soluzione dell Esercizio 9. Ricordiamo che dim R 5 = 5 e che dim R 3 = 3. Il Teorema del Rango, in questo caso, afferma che dim ker(f) + dim Im(f) = 5, e poiché Im(f) R 3 abbiamo che dim Im(f) 3. Possiamo allora affermare che dim ker(f) 2, e quindi che f non è mai iniettiva. Inoltre, diamo due esempi per verificare che f può essere suriettiva, ma potrebbe anche non esserlo. f 1 (a 0, a 1, a 2, a 3, a 4 ) = (a 0, a 1, a 2 ) è suriettiva, mentre f 2 (a 0, a 1, a 2, a 3, a 4 ) = (a 0, a 1, 0) non lo è. In conclusione, l unica affermazione vera è la (3). Soluzione dell Esercizio 10. (1) è falsa perché, se fosse invertibile, R 3 ed R 4 avrebbero la stessa dimensione. (2) è falsa perché le controimmagini si calcolano dall uguaglianza (x + y, 0, y + z, x + z) = (1, 0, 0, 1) da cui otteniamo il sistema lineare x + y = 1 y + z = 0 x + z = 1 che ha l unica soluzione (1, 0, 0). Quindi (1, 0, 0, 1) ha un unica controimmagine. Ne segue anche che il sistema lineare omogeneo associato ha la soluzione nulla come unica soluzione, e quindi l applicazione è iniettiva. Dal Teorema del Rango, ne consegue che dim Im(f) = 3, ossia (4) è falsa e l affermazione (3) è vera. Soluzione dell Esercizio 11. (1) è falsa perché se due vettori distinti hanno la stessa immagine, allora f non è iniettiva. Per la caratterizzazione dell iniettività per le applicazioni lineari, abbiamo che dim ker(f) 1, e dal Teorema del rango, ricaviamo che dim Im(f) 1. Quindi, possiamo escludere che dim Im(f) = 2 ossia che f sia suriettiva. (2) è vera. Infatti dalle ipotesi otteniamo che f(1, 1) f(1, 1) = (0, 0). Usando la linearità di f possiamo scrivere che (0, 0) = f(0, 2) = 2f(0, 1). Dividendo per 2 la precedente uguaglianza, otteniamo f(0, 1) = (0, 0), ossia (0, 1) ker(f). (3) è falsa, perché non sappiamo quale sia il vettore immagine di (1, 1). Se, ad esempio, f(1, 1) = (0, 0) allora f è l applicazione nulla, e quindi dim ker(f) = 2. (4) è vera perché due vettori distinti hanno la stessa immagine. (5) è vera perché ogni volta che scegliamo il vettore f(1, 1) otteniamo una diversa applicazione lineare. Soluzione dell Esercizio 12. (1) è chiaramente falsa perché le entrate del vettore f(x, y, z) sono dei polinomi lineari omogenei nelle variabili x, y, z. (2) è vera perché la matrice associata al sistema lineare omogeneo x + y + z = 0 2x + z = 0. è ridotta per righe ed ha rango 2. Poiché le soluzioi del sistema danno i vettori del nucleo di f abbiamo che dim ker(f) = 1. In particolare, non richiesto dall Esercizio, una sua base è ((1, 1, 2)). (4) è falsa perché f è iniettiva se, e solo se, dim ker(f) = 0, e ciò non capita in questo caso. (3) è falsa perché il Teorema del rango, in questo caso, afferma che dim Im(f) = 3 1 = 2 ossia Im(f) = R 2, e quindi f è suriettiva. Soluzione dell Esercizio 13. (1) è chiaramente falsa perché i vettori dell immagine di f sono in R 2 e quindi non possono essere scritti con 3 componenti. (2) e (4) prevedono che

8 APPLICAZIONI LINEARI si calcoli in nucleo dell applicazione, ossia le soluzioni del sistema lineare x + y z = 0 2x 2z = 0. La matrice è già ridotta per righe ed il suo rango è 2 ossia il sistema ammette 1 soluzioni. Ne consegue che dim ker(f) = 1 e quindi (2) è falsa. Le soluzioni del sistema sono della forma (x, 0, x) x R} = L((1, 0, 1)) e quindi (4) è vera. La matrice associata ad f rispetto alle basi canoniche è ] 1 1 1 2 0 2 e quindi anche (3) è falsa.