7 - Distribuzione Poissoniana

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "7 - Distribuzione Poissoniana"

Transcript

1 7 - Distribuzione Poissoniana

2 Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) 0.7 Poisson, λ=0.5 Gaussiana, µ=λ=0.5, σ= n = numero di conteggi λ=0.7 Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) Poisson, λ=2.0 Gaussiana, µ=λ=2.0, σ= n = numero di conteggi λ=1.4 Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) Poisson, λ=10.0 Gaussiana, µ=λ=10.0, σ= n = numero di conteggi λ=3.2 Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) Poisson, λ=100.0 Gaussiana, µ=λ=100.0, σ= n = numero di conteggi λ=10.0

3 Esercizio 1: Misure accurate hanno stabilito che un campione di torio radioattivo emette particelle alfa ad un tasso di 1.5 al minuto. - Se si conta il numero di particelle alfa emesse in due minuti, qual e il risultato medio atteso? - Qual e la probabilità che si ottenga effettivamente questo numero? - Qual e la probabilità di osservare n particelle per n=0,1,2,3,4 e per n>=5?

4 Soluzione Esercizio 1: R = 1.5 conteggi/min. t =2min. a) = R t =1.5 2 = 3 conteggi b) P 3 (3) = 33 e 3 3! = 22.4% c) P 3 (0) = 30 e 3 0! = 5% P 3 (1) = 31 e 3 1! = 15% P 3 (2) = 32 e 3 2! = 22.5% P 3 (3) = 33 e 3 3! = 22.4% P 3 (4) = 34 e 3 4! = 16.9% P (n 5) = 1 P 3 (0) P 3 (1) P 3 (2) P 3 (3) P 3 (4) = 18.2% Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) Poisson, λ=3.0 Gaussiana, µ=λ=3.0, σ= n = numero di conteggi λ=1.7 Come si nota dal grafico la distribuzione di probabilità dei conteggi n e asimmetrica rispetto al valore atteso (E[n] = = 3).

5 Esercizio 2: Uno studente controlla un campione di una sostanza radioattiva per 30 minuti ed osserva 49 particelle alfa. - Qual e la sua stima del parametro λ del processo (numero di particelle alfa emesse in 30 minuti)? - Qual e la miglior stima del tasso R di decadimento (espresso in particelle al minuto)?

6 Soluzione Esercizio 2: Si vogliono stimare le proprietà del processo fisico poissoniano ( partire da un singolo esperimento di conteggio. t = 30 min. n = 49 (singolo misura, singolo conteggio) ed R) a a) La miglior stima di (numero atteso di conteggi in un intervallo di tempo t = 30) e : = n ± p n = 49 ± 7 conteggi Essendo un numero relativamente grande (> 10) siamo nel regime in cui la poissoniana e ben descritta da una gaussiana. In questa approssimazione, la probabilità che il valor vero di sia compreso nell intervallo quotato 49 ± 7 e circa il 68% (±1 gaussiana). b) La miglior stima di R = t = n ± p n conteggi =(1.6 ± 0.2) t t min. Dal momento che per la distribuzione dei conteggi e valida l approssimazione gaussiana, anche all intervallo (1.6±0.2) conteggi min. e associata una probabilità del 68% che il valor vero cada nell intervallo. q NOTA: il risultato R = n ± n =(1.6 ± p 1.6) conteggi t t min. e sbagliato! Le fluttuazioni statistiche poissoniane sono solo sul numero di conteggi n (mentre l intervallo di tempo t e supposto avere una incertezza trascurabile).

7 Esercizio 3: Un fisico nucleare controlla le disintegrazioni di una sostanza radioattiva con un contatore Geiger. Egli conta le disintegrazioni in N=15 distinti intervalli di tempo ciascuno pari a Δt=5 secondi ed ottiene i seguenti conteggi n_i: - 7, 11, 10, 7, 5, 7, 6, 12, 12, 7, 18, 12, 13, 12, 6 - Determinare il tasso di disintegrazioni (in conteggi al secondo)

8 Soluzione Esercizio 3 (pag 1): Si vuole stimare una proprietà del processo fisico in esame (il tasso di disintegrazioni R) a partire da una serie di conteggi (misure ripetute). Il problema di può svolgere in 2 modi. 1) Caso generale di una serie di misure ripetute. Si considera la variabile casuale n, numero di conteggi in un tempo t = 5s, senza fare assunzioni a priori sulla natura poissoniana del processo. Si usano media e deviazione standard campionaria come stime del valore atteso e della deviazione standard della distribuzione di probabilità di n. n = n = P N i=1 n i q PN i=1 (n i n) 2 N =9.7 N 1 = N N 1 (n2 n 2 )=3.5 Essendo il numero delle misure N = 15 relativamente grande, e una approssimazione ragionevole assumere che la deviazione standard del campione coincida con la deviazione standard della distribuzione di probabilità. Sotto queste ipotesi si ottengono le seguenti stime: = n ± n = n ± p n N =(9.7 ± 0.9) R = t =(1.94 ± 0.18) conteggi s ad 1 cifra significativa) (1.9 ± 0.2) conteggi s (approssimando gli errori

9 Soluzione Esercizio 3 (pag 2): 2) Serie di misure ripetute facendo una ipotesi poissoniana Se il processo e poissoniano, la serie di misure può essere considerata equivalente ad un unico conteggio n tot = P N i=1 n i = 145 e ettuato in un tempo tot t = N t = 75 s. La stima di ed R si ottiene quindi come nell esercizio precedente a partire da una singola misura. = n tot ± p n tot = (145 ± 12) R = t =(1.93 ± 0.16) conteggi s (1.9 ± 0.2) conteggi s Confrontando questo valore di R con quello ottenuto con il metodo 1, si osserva che sono assolutamente compatibili. Questo conferma quindi l ipotesi utilizzata nel metodo 2 che il processo in esame e e ettivamente poissoniano. NOTA: e normale che le due stime di R diano risultati leggermente diversi (ma compatibili): (1.94 ± 0.18) conteggi s vs (1.93 ± 0.16) conteggi s. Le due stime sarebbero in perfetto accordo sono nel caso N!1.

10 Esercizio 4: Una variabile casuale n (conteggi in un certo tempo fissato) e distribuita secondo una Poissoniana con λ=64. - Calcolare la probabilità che n=72 - Calcolare la probabilità che n>=72

11 Soluzione Esercizio 4: P (n) = n e n! Essendo poissoniana. a) = 64 > 10 possiamo utilizzare l approssimazione gaussiana della p(n = 72) = R G µ, (n)dn con µ = e = p. n 1 = 71.5! t 1 = n 1 µ / = n 2 = 72.5! t 2 = n 2 µ / = p(n = 72) = R µ+t 2 µ+t 1 G µ, (x)dx = Q(t 2 ) Q(t 1 ) = ( )% 2.9% Il risultato approssimato ottenuto e in buon accordo con quello esatto che richiede l uso di un calcolatore per essere ricavato: P 64 (72) = 6472 e 64 72! =2.9% (risultato esatto) b) p(n 72) = R G µ, (n)dn = R +1 µ+t 1 G µ, (n)dn = 50% Q(t 1 ) = ( )% = 17.4% NOTA: Nel rispondere alla domanda b) risulta ancora più evidente l utilità dell approssimazione gaussiana per grandi. p(n 72) = 1 P (0) P (1) P (2) P (3)... P (71) = 17.3% (risultato esatto): si tratta di un calcolo molto laborioso che richiede l uso di un calcolatore. Il risultato ottenuto con l approssimazione gaussiana e in buon accordo con quello esatto.

12 Esercizio 5: Uno studente decide di controllare l attività di una sorgente radioattiva ponendola in un rivelatore a scintillazione liquida. Nel corso di 10 minuti il rivelatore registra 2540 conteggi totali. Per tenere conto di conteggi indesiderati dovuti al rumore di fondo, egli rimuove la sorgente e nota che in 3 minuti il rivelatore registra 95 conteggi. - Determinare la miglior stima del tasso di conteggi Rsorgente dovuto alla sola sorgente.

13 Soluzione Esercizio 5: Il tasso di conteggi totale e dato dalla somma del tasso di conteggi della sorgente (processo di interesse) e del tasso di conteggi di fondo (conteggi indesiderati dovuti a processi diversi da quello di interesse): R tot = R sorgente + R fondo Si vuole determinare il tasso di conteggi relativo al solo processo di interesse. Si deve quindi e ettuare la cosiddetta sottrazione del fondo : R sorgente = R tot R fondo tot = 2540 ± p 2540 (2540 ± 50) (vedi stima di sorgente t = 10 min. R tot = tot / sorgente t = (254 ± 5) conteggi min da una singola misura) fondo = 95 ± p 95 (95 ± 10) (vedi stima di fondo t =3min. R fondo = fondo / fondo t = (32 ± 3) conteggi min da una singola misura) R sorgente = R tot R fondo L incertezza su q R sorgente si ottiene dalla formula di propagazione delle incertezze: R sorgente = Rtot 2 + Rfondo 2 = p =6 conteggi min (le incertezze si sommano in quadratura in quanto le misure con e senza sorgente hanno incertezze statistiche indipendenti). R sorgente = R tot R fondo = (222 ± 6) conteggi min

14 Esercizio 6: Il reparto ostetrico di un piccolo paese ha un solo posto e dunque può gestire non più di un parto al giorno. Negli ultimi anni e stato visto che si ha un parto nel paese circa una volta la settimana. Sulla base di questi dati: - a) Calcolare la probabilità che domani arrivino 2 o più donne per partorire, e che quindi una o più di loro debba essere mandata in un altro ospedale vicino - b) Calcolare la probabilità che l evento del punto a) si verifichi almeno una volta in un anno

15 Soluzione Esercizio 6: a) Il primo quesito si risolve assumendo che il numero di donne che in un dato giorno arriva in ospedale a partorire segue una distribuzione poissoniana (P (n)) con tasso di conteggio: R =1 conteggio settimana = 1 7 conteggi giorno t = 1 giorno = R t =1/ P (0) = (0.143)0 e ! = 86.7% P (1) = (0.143)1 e ! = 12.4% p(2 o più donne in un giorno) = 1 P (0) P (1) 0.9% b) Il secondo quesito di risolve considerando un problema binomiale:, in un dato giorno, - successo = l evento che due o più donne si presentino in ospedale per partorire. A questo evento e associata una probabilità p =0.9% (calcolata al punto precedente). - N = 365 rappresenta il numero di prove indipendenti del processo binomiale (in questo caso il numero di giorni in un anno in cui può verificarsi un parto in ospedale). - n e il numero di successi in N prove indipendenti, e rappresenta una variabile casuale distribuita secondo una binomiale (B N,p (n)). La probabilità che in un anno succeda almeno una volta l evento definito sopra come successo e : p(n 1) = 1 B N,p (n = 0) = 96.3% essendo N! B N,p (n = 0) = n!(n n)! pn (1 p) N n 365! = 0!(365 0)! (0.009)0 ( ) %

16 Esercizio 7: Tre contatori per raggi cosmici contano in media 256 eventi al minuto. - Calcolare la probabilità che almeno 2 contatori osservino un conteggio inferiore a 240 in un minuto.

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana)

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) 5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) Esercizio 1: Una variabile casuale e caratterizzata da una distribuzione uniforme tra 0 e 10. Calcolare - a) la probabilità

Dettagli

La legge di Gauss degli errori come limite di una binomiale

La legge di Gauss degli errori come limite di una binomiale Esiste una dimostrazione rigorosa dovuta a Laplace che la distribuzione degli scarti delle misure affette da errori casuali e indipendenti è la funzione normale di Gauss La legge di Gauss degli errori

Dettagli

Soluzione Esercizio 1 (pag 1):

Soluzione Esercizio 1 (pag 1): 8 - Test di Ipotesi Esercizio 1: Dopo anni di esperienza e noto che la distribuzione della concentrazione di rame nel sangue umano e ben descritta da una distribuzione gaussiana di parametri μ=3.2 10-5

Dettagli

9 - Esercizi su Test di Ipotesi e Media Pesata

9 - Esercizi su Test di Ipotesi e Media Pesata 9 - Esercizi su Test di Ipotesi e Media Pesata Esercizio 1: Prese due risme di fogli di carta, la misura della lunghezza di un campione di 10 fogli presi a caso da ciascuna delle due risme fornisce i seguenti

Dettagli

6 - Distribuzione Binomiale

6 - Distribuzione Binomiale 6 - Distribuzione Binomiale Probabilita' (binomiale) o densita' di probabilita' (gaussiana) Binomiale, N=3, p=0.25 0.5 Gaussiana, µ=np=0.8, σ= Np(1-p)=0.8 0.4 0.3 0.2 0.1 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica - 12.01.2016 Cognome e Nome............................................................................... C. d. L.:................................................Anno di Corso:

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito:

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: f(x) = K () dalla proprietà di chiusura: f x dx = 1 *) segue f(x)

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

La distribuzione di Poisson

La distribuzione di Poisson La distribuzione di Poisson La distribuzione di Poisson (poissoniana) descrive fenomeni fisici per i quali nello schema successo-insuccesso ci si trovi nelle seguenh situazioni: - Il numero di evenh possibili,

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

CONFRONTO TRA LA MEDIE DI DUE CAMPIONI INDIPENDENTI

CONFRONTO TRA LA MEDIE DI DUE CAMPIONI INDIPENDENTI CONFRONTO TRA LA MEDIE DI DUE CAMPIONI INDIPENDENTI ipotesi sul confronto tra le medie di due campioni indipendenti Obiettivo: decidere, attraverso il confronto tra le medie dei due campioni indipendenti,

Dettagli

Compitino del Statistica e Probabilità Laurea Specialistica in Ingegneria Meccanica e dei Materiali

Compitino del Statistica e Probabilità Laurea Specialistica in Ingegneria Meccanica e dei Materiali Dichiaro di acconsentire all esposizione dei risultati dei compitini in rete Firma Compitino del 23-12-2002 Statistica e Probabilità Laurea Specialistica in Ingegneria Meccanica e dei Materiali Esercizio

Dettagli

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c.

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 48 Outline 1 2 3 () Statistica 2 / 48 Variabili casuali continue Una variabile casuale X è continua

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 20 febbraio 2018 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 20 febbraio 2018 SOLUZIONI Esperimentazioni di Fisica 1 Prova d esame del 20 febbraio 2018 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 6 01/02/2018 1. (12 Punti) Quesito. In un esperimento è stata misurata la grandezza Y in funzione

Dettagli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli

3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli 3 - Esercizi: strumenti di misura, propagazione degli errori, media, deviazione standard, intervalli Esercizio 1: Si intende misurare la densità di un fluido tramite misure di massa e di volume. Lo si

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

Elementi. Statistica. Masterclass - Frascati 27/2/2013 Elementi di statistica Marco Dreucci

Elementi. Statistica. Masterclass - Frascati 27/2/2013 Elementi di statistica Marco Dreucci Elementi di Statistica 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi 1 Fisica Alte Energie Di cosa si occupa? Spiega

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

Definizione della variabile c 2 Distribuzione della variabile c 2

Definizione della variabile c 2 Distribuzione della variabile c 2 Definizione della variabile c Distribuzione della variabile c In queste definizioni ho N variabili indipendenti, nessun vincolo e quindi N coincide con i gradi di libertà In un sistema fisico dove il numero

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

Analisi dati. Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle

Analisi dati. Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle Analisi dati Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle 2 Argomenti Introduzione Dalle misure sperimentali ai risultati finali Variabili aleatorie e distribuzioni statistiche

Dettagli

Probabilità e Statistica

Probabilità e Statistica Cognome e Nome............................................................................... C. d. L.: GESL Anno di Corso: 1 2 3 altro Matricola....................................... Firma.......................................

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Intervallo di confidenza.

Intervallo di confidenza. Intervallo di confidenza annarita.vestri@uniroma1.it campione inferenza popolazione Media Riportare sempre anche la deviazione standard Stima puntuale di Media, dev.standard, numerosità Qualche semplice

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14

Esercitazione del 04/06/2015 Probabilità e Statistica Foglio 14 Esercitazione del 0/06/05 Probabilità e Statistica Foglio David Barbato Esercizio. Ci sono 0 monetine di cui 5 con due teste, con due croci e regolari una moneta regolare ha una faccia testa e una faccia

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Elementi. Statistica. Masterclass - Frascati 18/3/2015 Elementi di statistica Marco Dreucci

Elementi. Statistica. Masterclass - Frascati 18/3/2015 Elementi di statistica Marco Dreucci Elementi di Statistica 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Stima puntuale di parametri Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 018/019 Marco Pietro Longhi Prob. e Stat.

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

lezione 4 AA Paolo Brunori

lezione 4 AA Paolo Brunori AA 2016-2017 Paolo Brunori dove eravamo arrivati - abbiamo individuato la regressione lineare semplice (OLS) come modo immediato per sintetizzare una relazione fra una variabile dipendente (Y) e una indipendente

Dettagli

11 - Test del Chi-Quadro

11 - Test del Chi-Quadro 11 - Test del Chi-Quadro rocedura generale di un fit ai dati: 1) Misure: (x 1,y 1 )...(x n,y n ), x 0, y = yi (gaussiani indipendenti) ) Ipotesi H 0 sul modello (Es. y = f(x) =A + Bx) 3) Metodo dei minimi

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS DISTRIBUZIONI ESPERIENZA a: DISTRIBUZIONE DI GAUSS SCOPO: Costruzione di una distribuzione di Gauss dai valori di una grandezza fisica ottenuti da una misura dominata da errori casuali. Studio dell influenza

Dettagli

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012

Statistica I. Ingegneria Gestionale. Scritto del 17/07/2012 Statistica I. Ingegneria Gestionale. Scritto del 17/07/01 Cerchiare, su questo foglio, le risposte corrette e risolvere per esteso gli esercizi sui fogli assegnati. Esercizio 1. Un operatore finanziario

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 205- P.Baldi Lista di esercizi 5, 8 febbraio 20. Esercizio Si fanno 25 estrazioni

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 Distribuzione Binomiale 2 / 34 La più importante distribuzione di probabilità per variabili casuali discrete è la distribuzione binomiale. Questa distribuzione

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

Tecniche di sondaggio

Tecniche di sondaggio SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale Tecniche di sondaggio 24/1/2006 Nomenclatura Indicheremo con P una popolazione, con N la sua numerosità, con k la sua etichetta e con

Dettagli

Introduzione all Inferenza Statistica

Introduzione all Inferenza Statistica Introduzione all Inferenza Statistica Fabrizio Cipollini Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) G. Parenti Università di Firenze Firenze, 3 Febbraio 2015 Introduzione Casi di studio

Dettagli

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati 1. - Un urna contiene 2 palline bianche e 28 nere; da essa vengono

Dettagli

COGNOME.NOME...MATR..

COGNOME.NOME...MATR.. STATISTICA 29.01.15 - PROVA GENERALE (CHALLENGE) Modalità A (A) ai fini della valutazione verranno considerate solo le risposte riportate dallo studente negli appositi riquadri bianchi: in caso di necessità

Dettagli

Elementi. di Statistica. Stages Estivi - Frascati 19/6/2009. Marco Dreucci. Elementi di statistica

Elementi. di Statistica. Stages Estivi - Frascati 19/6/2009. Marco Dreucci. Elementi di statistica Elementi di Statistica 1... diamo un senso cosa e la Fisica delle Particelle Elementari? Spiega il complesso mediante il semplice nel mondo dell infinitamente piccolo all attacco!!! applicando la ben nota

Dettagli

Calcolo applicato alla Statistica Maximum Likelihood

Calcolo applicato alla Statistica Maximum Likelihood Calcolo applicato alla Statistica Maximum Likelihood Problema fisico 1/2 Consideriamo un esperimento consistente nella misura, per un tempo T fissato, delle trasmutazioni nucleari (spontanee o indotte)

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Intervalli di confidenza Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

SOLUZIONI DEL 2 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 2 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA Esercizio 0.1 Una moneta non truccata viene lanciata 10 volte. Calcolare la probabilità che non esca mai testa. Quale risulta la probabilità

Dettagli

Introduzione all'inferenza Lezione 4

Introduzione all'inferenza Lezione 4 Last updated April 16, 2016 Introduzione all'inferenza Lezione 4 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Introduzione all inferenza Popolazione Campione

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) (discrete) variabile casuale

Dettagli

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 28/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 8/0/01 Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio 1. Sia X una v.a. aleatoria assolutamente continua con densità f X data da { 0 x < 0 f X

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE

STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE S.S.I.S TOSCANA F.I.M. -II anno STATISTICA INDUTTIVA: STIMA DI PARAMETRI STIMA PUNTUALE PROBLEMA 1 Vogliamo valutare la percentuale p di donne fumatrici tra le donne in età fertile. Procediamo all estrazione

Dettagli

I conteggi in fisica. Appendice D. D.1 Urti di particelle

I conteggi in fisica. Appendice D. D.1 Urti di particelle Appendice D I conteggi in fisica Il conteggio di eventi è un importante modalità di indagine delle leggi che governano alcuni fenomeni fisici. In un esperimento di conteggio si raccolgono e analizzano

Dettagli

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96.

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96. Problema A Un pendolo e costituito da una massa di dimensioni trascurabili appesa a un filo considerato in estensibile, di massa trascurabile, lunghezza L, e fissato a un estremo. L Il periodo di oscillazione

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Teoria dei Fenomeni Aleatori 1 AA 01/13 Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x t x q t Tempo Discreto Continuo 0

Dettagli

Prova di recupero di Probabilità e Statistica - A * 21/04/2006

Prova di recupero di Probabilità e Statistica - A * 21/04/2006 Prova di recupero di Probabilità e Statistica - A * /04/006 (NB: saranno prese in considerazione solo le risposte adeguatamente motivate) tempo di lavoro: Due ore. Per conseguire la patente di guida, un

Dettagli

Appunti di statistica ed analisi dei dati

Appunti di statistica ed analisi dei dati Appunti di statistica ed analisi dei dati Indice generale Appunti di statistica ed analisi dei dati...1 Analisi dei dati...1 Calcolo della miglior stima di una serie di misure...3 Come si calcola μ...3

Dettagli

Metodi di Monte Carlo: un'applicazione

Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: un'applicazione Metodi di Monte Carlo: definizione Brevi richiami sui concetti base utilizzati Variabile casuale Valore di aspettazione Varianza Densità di probabilità Funzione cumulativa

Dettagli

Contenuto del capitolo

Contenuto del capitolo Capitolo 8 Stima 1 Contenuto del capitolo Proprietà degli stimatori Correttezza: E(Stimatore) = parametro da stimare Efficienza Consistenza Intervalli di confidenza Per la media - per una proporzione Come

Dettagli

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta): ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

Distribuzione Normale. Dott. Claudio Verona

Distribuzione Normale. Dott. Claudio Verona Distribuzione Normale Dott. Claudio Verona Rappresentazione di valori ottenuti da misure ripetute Il primo problema che si riscontra nelle misure ripetute più volte è trovare un metodo conveniente per

Dettagli

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie.

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it I risultati di un esperimento

Dettagli

Esercizi di statistica inferenziale

Esercizi di statistica inferenziale Dipartimento di Fisica SMID a.a. 004/005 Esercizi di statistica inferenziale Prof. Maria Antonietta Penco tel. 0103536404 penco@fisica.unige.it 6/1/005 Esercizio1 E noto che un grande numero di pazienti

Dettagli

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana Statistica Lez. 1 Gli intervalli di confidenza Intervallo di confidenza per la media (σ nota) nel caso di popolazione Gaussiana Sia X una v.c Gaussiana di media µ e varianza σ. Se X 1, X,..., X n è un

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Campionamento. Una grandezza fisica e' distribuita secondo una certa PDF

Campionamento. Una grandezza fisica e' distribuita secondo una certa PDF Campionamento Una grandezza fisica e' distribuita secondo una certa PDF La pdf e' caratterizzata da determinati parametri Non abbiamo una conoscenza diretta della pdf Possiamo determinare una distribuzione

Dettagli

Approfondimento 3.3. Approssimazione della distribuzione binomiale alla normale

Approfondimento 3.3. Approssimazione della distribuzione binomiale alla normale Approfondimento 3.3 Approssimazione della distribuzione binomiale alla normale Come aveva notato de Moivre, se il numero di prove è sufficientemente ampio e la probabilità del successo π sufficientemente

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella

Dettagli

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss)

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss) Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in medicina e chirurgia - Corso di Statistica

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

La SCALA di Probabilità varia tra 0.00 e 1.00.

La SCALA di Probabilità varia tra 0.00 e 1.00. CHE COS E LA PROBABILITA La probabilità è la MISURA dell incertezza di un evento, cioè come noi classifichiamo gli eventi rispetto alla loro incertezza. La SCALA di Probabilità varia tra 0.00 e 1.00. 0.00

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VI

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VI Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VI Test del χ 2 (il file Excel test_chi.xls mostra possibili sviluppi degli esercizi proposti) Esercizio 1a) un

Dettagli

Statistica. Lezione : 18, 19. Variabili casuali

Statistica. Lezione : 18, 19. Variabili casuali Corsi di Laurea: a.a. 2017-18 Diritto per le Imprese e le istituzioni Scienze dell Amministrazione e Consulenza del Lavoro sienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili

Dettagli

, B con probabilità 1 4 e C con probabilità 1 4.

, B con probabilità 1 4 e C con probabilità 1 4. Laurea triennale in MATEMATICA, Corso di PROBABILITÀ Prof. L. Bertini - G. Nappo - F. Spizzichino Esonero del 0.06.00 N.B. Scrivere le soluzioni degli esercizi su questi fogli giustificando brevemente

Dettagli