Elementi. Statistica. Masterclass - Frascati 18/3/2015 Elementi di statistica Marco Dreucci

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi. Statistica. Masterclass - Frascati 18/3/2015 Elementi di statistica Marco Dreucci"

Transcript

1 Elementi di Statistica

2 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

3 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

4 Spiega il complesso mediante il semplice nel mondo dell infinitamente piccolo.

5 Spiega il complesso mediante il semplice nel mondo dell infinitamente piccolo.

6 Si usa ovviamente il metodo scientifico Fisici sperimentali

7 Classica manovra a tenaglia! Fisici sperimentali Fisici teorici

8 piu son piccoli LHC

9 In concreto, cosa si misura nella HEP? Parametri fondamentali : Branching ratio (BR) : K S K L, K + K, p + p p, 35% 49% 15% 1% vita media () massa (m) costanti di accoppiamento

10 In concreto, cosa si misura nella HEP? Parametri fondamentali : Branching ratio (BR) : K S K L, K + K, p + p p, 35% 49% 15% 1% vita media () massa (m) costanti di accoppiamento attraverso quantita di moto p ; energia E rilasciata nel calorimetro ; angoli e direzioni delle particelle prodotte ; intervalli temporali ; efficienza rivelatore/selezione ; contaminazione selezione ; ecc.

11 Finiscono prima o poi le misure? sperim teor

12 Finiscono prima o poi le misure? Può aver senso ripetere una stessa misura sperim sperim teor teor

13 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

14 Valor medio Indicatori fondamentali m= Deviazione standard N x i σ = (m x N 1 i ) 2 x = m e x = /m

15 Valor medio Indicatori fondamentali m= Deviazione standard RMS N x i σ = (m x i N 1 ) 2 x = m e x = /m f bin m ~ x Istogramma o distribuzione

16 Esempio Misura spessore cavo elettrico frequenza N = s (mm) s = ( ) mm e r = 5,9%

17 aleatorie Tipi di variabili VA : gaussiana, x misura di una grandezza in presenza di errori casuali. spessore cavo elettrico massa di una particella misura di un intervallo di tempo

18 VA : gaussiana, x Tipi di variabili aleatorie VA : binomiale, k misura di una grandezza in presenza di errori casuali. numero di successi in N prove m = Np ; σ = Np( 1 p) spessore cavo elettrico massa di una particella misura di un intervallo di tempo risultato lancio di un dado efficienza rivelatore # decays di una particella in un dato canale

19 VA : gaussiana, x aleatorie Tipi di variabili VA : binomiale, k VA : poissoniana misura di una grandezza in presenza di errori casuali. numero di successi in N prove m = Np ; σ = Np( 1 p) Caso particolare di var.binom.: - successo: evento raro, p 0 - numero infinito di prove N m = Np ; σ = m spessore cavo elettrico massa di una particella misura di un intervallo di tempo # nascite al giorno # decays in 5s sostanza radioattiva # di eventi in un bin di un istogramma risultato lancio di un dado efficienza rivelatore # decays di una particella in un dato canale

20 Esempio 1 di VA gaussiana : massa di una particella f f M (MeV) M (MeV)

21 f R m m- m+ 68% m-2 m+2 M (MeV)

22 Esempio 2 di VA gaussiana : Misura intervallo temporale b Riv 1 a entries/ns ~ 37 m Riv2 Riv3 ~ 4 m t (ns)

23 Esempio di VA binomiale : I conteggi Z 0 ee, mm,, qq - Osservati N=1000 decadimenti Z 0 - Osservati K=34 eventi Z 0 ee (BR=3,4%)

24 Esempio di VA binomiale : I conteggi Z 0 ee, mm,, qq - Osservati N=1000 decadimenti Z 0 - Osservati K=34 eventi Z 0 ee (BR=3,4%) σ = Np( 1 p) 10000,034( 1 0,034 ) 6 k

25 Esempio di VA binomiale : I conteggi Z 0 ee, mm,, qq - Osservati N=1000 decadimenti Z 0 - Osservati K=34 eventi Z 0 ee (BR=3,4%) σ = Np( 1 p) 10000,034( 1 0,034 ) 6 k σ Np( = 1 m pn p) 1 N # osservaz. precisione N = 50 ~ 10% N = 10 3 ~ 2.4% N = 10 6 ~ 0.08%

26 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

27 relazione matematica=legge fisica=grafico : i valori sperimentali si adattano ad esso? Fare un fit : trovare la funzione che meglio si adatta ai dati

28 A scuola si fa a mano ( I ) Allungamento di una molla y = kx

29 A scuola si fa a mano ( I ) Allungamento di una molla y = kx k = 0.20 ± 0.03 cm/g

30 Ma esistono vari programmini PAW ROOT ( II ) Allungamento di una molla y = kx

31 ( I ) Spessore di un cavo elettrico A y = e 2πσ (x m) 2 2σ 2 gaussiana

32 Errori casuali da due sorgenti ( II ) Spessore di un cavo elettrico gaussiana

33 Errori casuali da due sorgenti ( II ) Spessore di un cavo elettrico gaussiana bigaussiana

34 Un fit non e fatto sempre per verificare l adattamento, ma per trovare qualche parametro Misura vita media y=ae t τ Legge stranota, ma voglio trovare la vita media esponenziale ( t(s

35 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali.

36 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali. y i f(x i ;a) x i

37 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali. y i f(x i ;a) x i

38 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali. y i f(x ;a) i σ i x i

39 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali. y i f(x ;a) σ i i 2 x i

40 Quale e il criterio per dire che un fit e OK? Se il fenomeno in studio e ben noto, la funzione y = f (x;a) è nota. Lo scopo del fit e allora determinare il valore del parametro che corrisponde al miglior adattamento della curva ai dati sperimentali. valore sperimentale valore teorico # parametri χ 2 = N i=1 y i f(x σ i i ;a) 2 χ Test del 2 N-p ndf

41 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

42 Esempio 1 (misura massa K ) R p + E 2 = p 2 + m 2 K p + p p 1 p K p 2 p m K 2 = E K 2 -p K 2 = (E 1 +E 2 ) 2 - p 12 2 P 2 12 = (p 1x +p 2x ) 2 + (p 1y +p 2y ) 2 + (p 1z +p 2z ) 2

43 Esempio 1 (misura massa K ) A cosa serve fare il fit?

44 ( cosmici Esempio 2 (velocità raggi Riv 1 ( ) ns ( ) ns 37 m Riv2 Riv3 4 m t (ns)

45 ( cosmici Esempio 2 (velocità raggi ( ) ns t 12 Δt = t 12 2 t = Δt 1 1 = 13.7ns Δt 2 = 4.0ns ( ) ns 37m 4m t (ns)

46 ( cosmici Esempio 2 (velocità raggi ( ) ns t 12 Δt = t 12 2 t = Δt 1 1 = 13.7ns Δt 2 = 4.0ns ( ) ns v = s t 12 Δv = v 4 m = Δs s Δt t = s = m / s m / s ~ 2% ~ 30% t (ns) m s v = /

47 10-8 s Esempio 3 (branching ratio) K + K + p + p p + p + p p p p + p m + m p e + e m + m trigger Efficienza SEL = 0.5 N trig Vertice p + N obs Rivelatore

48 Esempio 3 (branching ratio) K + K + p + p p + p + p p p p + p m + m p e + e m + m bkg Efficienza CUT = 0.9 sig trigger Efficienza SEL = 0.5 N trig cut Vertice E p ( MeV ) p + N obs Rivelatore

49 Esempio 3 (branching ratio) K + K + p + p p + p + p p p p + p m + m p e + e m + m bkg Efficienza CUT = 0.9 sig trigger Efficienza SEL = 0.5 N trig cut Vertice E p ( MeV ) BR K + π 0 π + = N N SIG trig = N ε OBS N ε N SEL CUT trig BKG = N N trig N ε ε OBS SEL BKG CUT p + Rivelatore N obs

50 Combinare insieme le misure Perché combinare insieme più misure? Da più misure indipendenti di una stessa grandezza, come si ricava il valore più attendibile?

51 Combinare insieme le misure Perché combinare insieme più misure? Da più misure indipendenti di una stessa grandezza, come si ricava il valore più attendibile? 1 2 i p i i x p tot x i x 1 p tot

52 Combinare insieme le misure Perché combinare insieme più misure? Da più misure indipendenti di una stessa grandezza, come si ricava il valore più attendibile? 1 2 i p i i x p tot x i x 1 p tot x x 1 2 ( ) ( ) p p x ( x) x ( )

53

54 1 Fisica Alte Energie : di cosa si occupa? FINE 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi

Elementi. Statistica. Masterclass - Frascati 27/2/2013 Elementi di statistica Marco Dreucci

Elementi. Statistica. Masterclass - Frascati 27/2/2013 Elementi di statistica Marco Dreucci Elementi di Statistica 1 Fisica Alte Energie : di cosa si occupa? 2 Variabili aleatorie e distribuzioni 3 Fit ai dati sperimentali 4 Tre esempi completi 1 Fisica Alte Energie Di cosa si occupa? Spiega

Dettagli

Elementi di. Statistica

Elementi di. Statistica Elementi di Statistica 1... diamo un senso cosa e la Fisica delle Particelle Elementari? Spiega il complesso mediante il semplice nel mondo dell infinitamente piccolo all attacco!!! applicando la ben nota

Dettagli

Elementi. di Statistica. Stages Estivi - Frascati 19/6/2009. Marco Dreucci. Elementi di statistica

Elementi. di Statistica. Stages Estivi - Frascati 19/6/2009. Marco Dreucci. Elementi di statistica Elementi di Statistica 1... diamo un senso cosa e la Fisica delle Particelle Elementari? Spiega il complesso mediante il semplice nel mondo dell infinitamente piccolo all attacco!!! applicando la ben nota

Dettagli

Analisi dati. Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle

Analisi dati. Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle Analisi dati Metodi di analisi statistica dei dati di esperimenti di fisica delle particelle 2 Argomenti Introduzione Dalle misure sperimentali ai risultati finali Variabili aleatorie e distribuzioni statistiche

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x () t x ( t ) q Tempo Discreto Continuo Segnale Analogico ( ) x t k t t Segnale

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

7 - Distribuzione Poissoniana

7 - Distribuzione Poissoniana 7 - Distribuzione Poissoniana Probabilita' (poissoniana) o densita' di probabilita' (gaussiana) 0.7 Poisson, λ=0.5 Gaussiana, µ=λ=0.5, σ= 0.6 0.5 0.4 0.3 0.2 0.1 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 n = numero

Dettagli

Introduzione al modello Uniforme

Introduzione al modello Uniforme Teoria dei Fenomeni Aleatori 1 AA 01/13 Introduzione al modello Uniforme Esempio: conversione Analogico/Digitale Errore di quantizzazione Ampiezza Continua Discreta x t x q t Tempo Discreto Continuo 0

Dettagli

MEG: μ e γ. Analisi dei dati raccolti nel 2008 per l estrazione del Branching Ratio del decadimento μ + e + γ. Fisica Nucleare e Subnucleare II

MEG: μ e γ. Analisi dei dati raccolti nel 2008 per l estrazione del Branching Ratio del decadimento μ + e + γ. Fisica Nucleare e Subnucleare II 10 giugno 2010 Fisica ucleare e Subnucleare II MEG: μ e γ Analisi dei dati raccolti nel 2008 per l estrazione del Branching Ratio del decadimento μ + e + γ Daniel Salerno Tutors: Gianluca Cavoto Cecila

Dettagli

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS

DISTRIBUZIONI DISTRIBUZIONE DI GAUSS DISTRIBUZIONI ESPERIENZA a: DISTRIBUZIONE DI GAUSS SCOPO: Costruzione di una distribuzione di Gauss dai valori di una grandezza fisica ottenuti da una misura dominata da errori casuali. Studio dell influenza

Dettagli

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito:

ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: ESEMPIO: DISTRIBUZIONE UNIFORME CONTINUA fra a e b: si utilizza nei casi in cui nessun valore all'interno di un intervallo è preferito: f(x) = K () dalla proprietà di chiusura: f x dx = 1 *) segue f(x)

Dettagli

Distribuzione esponenziale. f(x) = 0 x < 0

Distribuzione esponenziale. f(x) = 0 x < 0 Distribuzione esponenziale Funzione densità f(x) = λe λx x 0 0 x < 0 Funzione parametrica (λ) 72 Funzione di densità della distribuzione esponenziale 1 0.9 0.8 0.7 λ=1 0.6 f(x) 0.5 0.4 0.3 λ=1/2 0.2 0.1

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) (discrete) variabile casuale

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

La legge di Gauss degli errori come limite di una binomiale

La legge di Gauss degli errori come limite di una binomiale Esiste una dimostrazione rigorosa dovuta a Laplace che la distribuzione degli scarti delle misure affette da errori casuali e indipendenti è la funzione normale di Gauss La legge di Gauss degli errori

Dettagli

Calcolo applicato alla Statistica Maximum Likelihood

Calcolo applicato alla Statistica Maximum Likelihood Calcolo applicato alla Statistica Maximum Likelihood Problema fisico 1/2 Consideriamo un esperimento consistente nella misura, per un tempo T fissato, delle trasmutazioni nucleari (spontanee o indotte)

Dettagli

I conteggi in fisica. Appendice D. D.1 Urti di particelle

I conteggi in fisica. Appendice D. D.1 Urti di particelle Appendice D I conteggi in fisica Il conteggio di eventi è un importante modalità di indagine delle leggi che governano alcuni fenomeni fisici. In un esperimento di conteggio si raccolgono e analizzano

Dettagli

Misura diretta al LEP del numero di famiglie di neutrini

Misura diretta al LEP del numero di famiglie di neutrini Misura diretta al LEP del numero di famiglie di neutrini Anno Accademico 2005-2006 - Presentazione a cura di F. Orio Quanti tipi diversi di neutrino esistono? Spettro continuo del decadimento β ν e _ ν

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

MISURA DELLA VITA MEDIA DEL MUONE

MISURA DELLA VITA MEDIA DEL MUONE MISURA DELLA VITA MEDIA DEL MUONE I Raggi Cosmici Sorgente dei Muoni Sono flussi di particelle relativistiche prodotte dalle stelle e provenienti da ogni parte dell' universo Nel momento in cui colpiscono

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 5 luglio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 5 luglio 2016 SOLUZIONI Esperimentazioni di Fisica 1 Prova scritta del 5 luglio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 6 10/09/2015 1. 12 Punti) Quesito. Nella misura della costante di una molla con il

Dettagli

f (a)δa = C e (a a*)2 h 2 Δa

f (a)δa = C e (a a*)2 h 2 Δa Distribuzione di Gauss Se la variabile non e` discreta ma puo` variare in modo continuo in un certo intervallo e ad ogni suo valore resta assegnata una probabilita` di verificarsi, dalla distribuzione

Dettagli

Distribuzioni di probabilità e principi del metodo di Montecarlo

Distribuzioni di probabilità e principi del metodo di Montecarlo Distribuzioni di probabilità e principi del metodo di Montecarlo Simulazione di sistemi complessi Distribuzioni di probabilità Istogrammi Generazione di numeri casuali Esempi di applicazione del metodo

Dettagli

La casualità nello spazio o nel tempo: la distribuzione di Poisson

La casualità nello spazio o nel tempo: la distribuzione di Poisson La casualità nello spazio o nel tempo: la distribuzione di Poisson Cosa potrebbero rappresentare questi punti? o Organismi o eventi presenti in una certa area Per esempio, ci interessa capire come avviene

Dettagli

Simulazione dei dati

Simulazione dei dati Simulazione dei dati Scopo della simulazione Fasi della simulazione Generazione di numeri casuali Esempi Simulazione con Montecarlo 0 Scopo della simulazione Le distribuzioni di riferimento usate per determinare

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Distribuzione Gaussiana

Distribuzione Gaussiana Nella maggioranza dei casi (ma non in tutti) facendo un istogramma delle misure acquisite si ottiene una curva a campana detta normale o Gaussiana. G,, G,, d 1 e 2 1 Distribuzione Gaussiana 1 2 = Valor

Dettagli

PROPRIETA GENERALI DEI RIVELATORI. Principi di funzionamento Osservabili piu comunemente misurate Risoluzione Energetica Efficienza

PROPRIETA GENERALI DEI RIVELATORI. Principi di funzionamento Osservabili piu comunemente misurate Risoluzione Energetica Efficienza PROPRITA GNRALI DI RIVLATORI Principi di funzionamento Osservabili piu comunemente misurate Risoluzione nergetica fficienza PROPRITA GNRALI DI RIVLATORI Rivelatore: Apparato (di qualsiasi tipo) che reagisce

Dettagli

Osservazioni e Misura. Teoria degli errori

Osservazioni e Misura. Teoria degli errori Osservazioni e Misura ella misura di una grandezza fisica gli errori sono inevitabili. Una misura non ha significato se non viene stimato l errore. Teoria degli errori La teoria degli errori cerca di trovare

Dettagli

Definizione della variabile c 2 Distribuzione della variabile c 2

Definizione della variabile c 2 Distribuzione della variabile c 2 Definizione della variabile c Distribuzione della variabile c In queste definizioni ho N variabili indipendenti, nessun vincolo e quindi N coincide con i gradi di libertà In un sistema fisico dove il numero

Dettagli

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo Distribuzioni di probabilità e principi del metodo di Montecarlo Simulazione di sistemi complessi Distribuzioni di probabilità Istogrammi Generazione di numeri casuali Esempi di applicazione del metodo

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre 2013

Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre 2013 DIPARTIMENTO DIPARTIMENTO DI DI FISICA FISICA Corso Corso di di Laurea Laurea Triennale Triennale in in Fisica Fisica Laboratorio di Fisica con Elementi di Statistica corso A Esame scritto del 26 settembre

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Funzionamento di un rivelatore a LEP

Funzionamento di un rivelatore a LEP Funzionamento di un rivelatore a LEP ν µ ± non in scala γ π ± e ± π γ e + SMD e TEC - Calo e.m. Calo hadr. µ ± Magnete µ + ν e non rivelata Estratto da presentazioni di Paolo Bagnaia - Roma I/Marisa Valdata

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 18 febbraio 2019 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 18 febbraio 2019 SOLUZIONI Esperimentazioni di Fisica 1 Prova d esame del 18 febbraio 2019 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 8 1. (12 Punti) Quesito. La misurazione della massa di una certa quantità di una sostanza liquida

Dettagli

Sviluppo di rivelatori a gas basati su elettrodi piani semiconduttivi

Sviluppo di rivelatori a gas basati su elettrodi piani semiconduttivi 103 Congresso Nazionale della Società Italiana di Fisica Trento 11-15 Settembre 2017 Sviluppo di rivelatori a gas basati su elettrodi piani semiconduttivi Autore: Alessandro Rocchi Co-Autori: Caltabiano

Dettagli

Indice Premessa Cenni storici delle misure

Indice Premessa Cenni storici delle misure Indice Premessa................................... 5 1 Cenni storici delle misure...................... 11 1.1 Il numero come misura...................... 13 1.2 I primi campioni di lunghezza..................

Dettagli

Laboratorio di Calcolo B 67

Laboratorio di Calcolo B 67 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

Tutta la scienza è fondata sulle misure (Helmholtz)

Tutta la scienza è fondata sulle misure (Helmholtz) Tutta la scienza è fondata sulle misure (Helmholtz) L acquisizione di una osservazione come DATO SCIENTIFICO richiede che : osserviamo un fenomeno lo quantifichiamo correttamente lo confrontiamo con altri

Dettagli

LHCb. - Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo

LHCb. - Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo LHCb [Thanks to F. Alessio, A. Carbone, R. Forty, J. Rademacker for some material] - Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo 2017-1 LHC @ CERN Alpes Lac Léman Genève ATLAS Jura +LHCf

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati CONCETTI DI BASE DI STATISTICA ELEMENTARE Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Collaudo sistemi di produzione IPOTESI:

Dettagli

11 - Test del Chi-Quadro

11 - Test del Chi-Quadro 11 - Test del Chi-Quadro rocedura generale di un fit ai dati: 1) Misure: (x 1,y 1 )...(x n,y n ), x 0, y = yi (gaussiani indipendenti) ) Ipotesi H 0 sul modello (Es. y = f(x) =A + Bx) 3) Metodo dei minimi

Dettagli

II Esonero - Testo B

II Esonero - Testo B Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 29 Gennaio 2018 II Esonero - Testo B Cognome Nome Matricola Esercizio 1. (20%) Si

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Distribuzione Binomiale

Distribuzione Binomiale Statistica e analisi dei dati Data: 2 Maggio 2016 Distribuzione Binomiale Docente: Prof. Giuseppe Boccignone Scriba: Nicoló Pisaroni 1 Conteggi e tempi di attesa Consideriamo il seguente schema, facendo

Dettagli

6 - Distribuzione Binomiale

6 - Distribuzione Binomiale 6 - Distribuzione Binomiale Probabilita' (binomiale) o densita' di probabilita' (gaussiana) Binomiale, N=3, p=0.25 0.5 Gaussiana, µ=np=0.8, σ= Np(1-p)=0.8 0.4 0.3 0.2 0.1 0 0.5 0 0.5 1 1.5 2 2.5 3 3.5

Dettagli

di Higgs a LHC b-tagging per la ricerca Scuola Normale Superiore e INFN, Pisa Incontri sulla Fisica delle Alte Energie Andrea Bocci

di Higgs a LHC b-tagging per la ricerca Scuola Normale Superiore e INFN, Pisa Incontri sulla Fisica delle Alte Energie Andrea Bocci b-tagging per la ricerca di Higgs a LHC Incontri sulla Fisica delle Alte Energie Pavia Scuola Normale Superiore e INFN, Pisa Sommario - b-tagging per la ricerca del bosone di Higgs - Caratteristiche degli

Dettagli

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo Significato probabilistico di σ: su 1 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo x σ, x + σ e 99.7 nell intervallo x 3 σ, x + 3 Se si considerano campioni

Dettagli

Soluzione Esercizio 1 (pag 1):

Soluzione Esercizio 1 (pag 1): 8 - Test di Ipotesi Esercizio 1: Dopo anni di esperienza e noto che la distribuzione della concentrazione di rame nel sangue umano e ben descritta da una distribuzione gaussiana di parametri μ=3.2 10-5

Dettagli

[Eur. Phys. J. A 50 (2014) 134] Alessandro Di Marco I.N.F.N. & Università di Roma Tor Vergata

[Eur. Phys. J. A 50 (2014) 134] Alessandro Di Marco I.N.F.N. & Università di Roma Tor Vergata Alessandro Di Marco I.N.F.N. & Università di Roma Tor Vergata 100 Congresso Nazionale della S.I.F. Pisa 25 Settembre 2014 Utilizzato in varie applicazioni come la rivelazione di γ e neutroni Utilizzato

Dettagli

Stima dei Parametri. Capitolo 8

Stima dei Parametri. Capitolo 8 Capitolo 8 Stima dei Parametri Lo scopo dello studio dei fenomeni fisici è quello di scoprire le leggi che legano le grandezze oggetto di indagine e di misurare il valore delle costanti che compaiono della

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 20 febbraio 2018 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 20 febbraio 2018 SOLUZIONI Esperimentazioni di Fisica 1 Prova d esame del 20 febbraio 2018 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 6 01/02/2018 1. (12 Punti) Quesito. In un esperimento è stata misurata la grandezza Y in funzione

Dettagli

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice

Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Misura del periodo di oscillazione e della costante elastica della molla di un oscillatore armonico semplice Crisafulli Paride Curseri Federica Raia Salvatore Torregrossa M. Roberto Valerio Alessia Zarcone

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS

17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS 17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS 17.1 LA DISTRIBUZIONE DEI DATI Nel trattare gli errori casuali abbiamo utilizzato il concetto di media aritmetica ed il concetto di deviazione standard

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Distribuzioni di probabilità nel continuo

Distribuzioni di probabilità nel continuo Distribuzioni di probabilità nel continuo Prof.ssa Fabbri Francesca Classe 5C Variabili casuali continue Introduzione: Una Variabile Casuale o Aleatoria è una grandezza che, nel corso di un esperimento

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

LEZIONE 2.6. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.6 p. 1/15

LEZIONE 2.6. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.6 p. 1/15 LEZIONE 2.6 p. 1/15 LEZIONE 2.6 corso di statistica Francesco Lagona Università Roma Tre LEZIONE 2.6 p. 2/15 variabili aleatorie continue consideriamo la distribuzione del fatturato mensile in una popolazione

Dettagli

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana)

5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) 5 - Esercizi: Probabilità e Distribuzioni di Probabilità (Uniforme, Gaussiana) Esercizio 1: Una variabile casuale e caratterizzata da una distribuzione uniforme tra 0 e 10. Calcolare - a) la probabilità

Dettagli

Elaborazione dei dati sperimentali. Problemi di Fisica

Elaborazione dei dati sperimentali. Problemi di Fisica Problemi di Fisica Elaborazione dei dati sperimentali Nella seguente tabella riportiamo alcune regole per esprimere ualunue numero mediante una potenza di 0: 00000000 = 0 9 456789 = 45,6789 0 4 3, = 0,3

Dettagli

Lezione 6. Tabelle funzionali. Utilizziamo il nostro sistema a portata di mano e ben controllabile

Lezione 6. Tabelle funzionali. Utilizziamo il nostro sistema a portata di mano e ben controllabile Tabelle funzionali Riguardano dati in cui si vuole verificare una relazione tra più grandezze. Si organizzano le tabelle delle migliori stime delle coppie di grandezze e delle rispettive incertezze totali.

Dettagli

Misura del flusso di elio nei raggi cosmici con l'esperimento PAMELA

Misura del flusso di elio nei raggi cosmici con l'esperimento PAMELA Misura del flusso di elio nei raggi cosmici con l'esperimento PAMELA Candidato: Andrea Cardini Relatore: Dott. Nicola Mori Sintesi dei contenuti I raggi cosmici L'esperimento PAMELA Misura del flusso di

Dettagli

Misura della vita media del mesone D 0 a LHCb

Misura della vita media del mesone D 0 a LHCb International Masterclasses (LNF) 17 marzo 2016 Misura della vita media del mesone D 0 a LHCb B. Sciascia (INFN) [Almost all slides from A. Carbone] L ESERCIZIO DI OGGI Obiettivi dell esercizio I obiettivo:

Dettagli

Richiami di probabilità e statistica

Richiami di probabilità e statistica Richiami di probabilità e statistica Una variabile casuale (o aleatoria) X codifica gli eventi con entità numeriche x ed è caratterizzata dalla funzione di distribuzione di probabilità P(x) : P(x)=Pr ob[x

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss)

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss) Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in medicina e chirurgia - Corso di Statistica

Dettagli

Modulo di LABORATORIO del corso di FISICA DELLE RADIAZIONI APPLICATA ALLA MEDICINA

Modulo di LABORATORIO del corso di FISICA DELLE RADIAZIONI APPLICATA ALLA MEDICINA Modulo di LABORATORIO del corso di FISICA DELLE RADIAZIONI APPLICATA ALLA MEDICINA FORMARE GRUPPI DA TRE 5 ESPERIENZE DI LABORATORIO DI MERCOLEDI OBBLIGATORIE QUADERNO (logbook) RETRO QUADERNO ESAME ESEMPIO

Dettagli

AA Prof. V. Palladino. Undicesima lezione, seconda del secondo modulo

AA Prof. V. Palladino.   Undicesima lezione, seconda del secondo modulo AA 2016-17 Prof. V. Palladino http://people.na.infn.it/palladin/lezioni2016-17/161205lezione11.pdf Undicesima lezione, seconda del secondo modulo Possiamo predire le distribuzioni di probabilita' delle

Dettagli

BIN = 15 um l [um] Minimum um. Data_31misure_ l [um] Maximum Points 102, , um 1.3 um

BIN = 15 um l [um] Minimum um. Data_31misure_ l [um] Maximum Points 102, , um 1.3 um 1 2 Data_31misure_070318 BIN = 15 um Minimum 80 Maximum Sum 120 3176,7 Points Mean Median 31 102,47419 102,9 102.5 um RMS Std Deviation Variance Std Error 102,7225 7,2559846 52,649312 1,3032133 7.3 um

Dettagli

Corso di Istituzioni di Matematiche con Elementi di Statistica. anno accademico 2015/2016 corso A-L (G. Gaeta & N. Bressan)

Corso di Istituzioni di Matematiche con Elementi di Statistica. anno accademico 2015/2016 corso A-L (G. Gaeta & N. Bressan) Corso di Istituzioni di Matematiche con Elementi di Statistica anno accademico 215/216 corso A-L (G. Gaeta & N. Bressan) Esercizi Foglio 9 (Funzioni aleatorie; distribuzioni di probabilita ) Esercizio

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE INVERNALE A TOR VERGATA, FEBBRAIO 2019

RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE INVERNALE A TOR VERGATA, FEBBRAIO 2019 RIVELATORI DI PARTICELLE PER LO STUDIO DEI RAGGI COSMICI STAGE INVERNALE A TOR VERGATA, 11-15 FEBBRAIO 2019 I RAGGI COSMICI Abbiamo studiato flussi di raggi cosmici utilizzando il metodo delle coincidenze.

Dettagli

Valenza didattica (aggiunta e principale) Individuazione della grandezza da misurare. Misure ccomplementari/alternative

Valenza didattica (aggiunta e principale) Individuazione della grandezza da misurare. Misure ccomplementari/alternative Misura del coefficiente di emanazione del radon da un materiale poroso Valenza didattica (aggiunta e principale) Contesto Tematica Individuazione della grandezza da misurare Metodologia di misura Misure

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 Introduzione alla Statistica Nella statistica, anziché predire la probabilità che si verifichino gli eventi di interesse (cioè passare dal modello alla realtà), si osserva un fenomeno se ne estraggono

Dettagli

Funzioni di 2 variabili

Funzioni di 2 variabili Funzioni di 2 variabili 1 eterminare l insieme di definizione di ciascuna delle seguenti funzioni precisando se tali insiemi sono aperti, chiusi, itati. F (x, y) = 1 sin x cos y F (x, y) = arctan sin xy

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

L istogramma dei nomi degli studenti presenti può essere descritto tranquillamente da un istogramma a barre. L istogramma dei voti riportati ad un

L istogramma dei nomi degli studenti presenti può essere descritto tranquillamente da un istogramma a barre. L istogramma dei voti riportati ad un Gli istogrammi L istogramma è una rappresentazione grafica di una distribuzione di frequenza di una certa grandezza, ossia di quante volte in un insieme di dati si ripete lo stesso valore. Esistono diversi

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Le distribuzioni teoriche di probabilità. La distribuzione di probabilità binomiale Corso di laurea

Dettagli

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96.

3) Vengono di nuovo ripetute le misure del punto 2 e i risultati sono s, s, s, s, s, s, s, 96. Problema A Un pendolo e costituito da una massa di dimensioni trascurabili appesa a un filo considerato in estensibile, di massa trascurabile, lunghezza L, e fissato a un estremo. L Il periodo di oscillazione

Dettagli

Indice Premessa................................... Cenni storici delle misure......................

Indice Premessa................................... Cenni storici delle misure...................... Indice Premessa................................... 5 1 Cenni storici delle misure...................... 11 1.1 Il numero come misura...................... 13 1.2 I primi campioni di lunghezza..................

Dettagli

Variabili aleatorie gaussiane

Variabili aleatorie gaussiane Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli