Il ciclo di vita del Data Warehouse. Prof. Stefano Rizzi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il ciclo di vita del Data Warehouse. Prof. Stefano Rizzi"

Transcript

1 Il ciclo di vita del Data Warehouse Prof. Stefano Rizzi

2 Perché? Molte organizzazioni mancano della necessaria esperienza e capacità per affrontare con successo le sfide implicite nei progetti di data warehousing Uno dei fattori che maggiormente minaccia la riuscita dei progetti è la mancata adozione di una approccio metodologico, che minimizza i rischi di insuccesso essendo basato su un analisi costruttiva degli errori commessi 2

3 Fattori di rischio 9 Rischi legati alla gestione del progetto 9 Rischi legati alle tecnologie 9 Rischi legati ai dati e alla progettazione 9 Rischi legati all organizzazione Il rischio di ottenere un risultato insoddisfacente nei progetti di data warehousing è particolarmente alto a causa delle elevatissime aspettative degli utenti Nella cultura aziendale contemporanea è infatti diffusissima la credenza che attribuisce al data warehousing il ruolo di panacea In realtà una larga parte della responsabilità della riuscita del progetto ricade sulla qualità dei dati sorgente e sulla lungimiranza, disponibilità e dinamismo del personale dell azienda 3

4 Approccio top-down Analizza i bisogni globali dell intera azienda e pianifica lo sviluppo del DW per poi progettarlo e realizzarlo nella sua interezza & Promette ottimi risultati poiché si basa su una visione globale dell obiettivo e garantisce in linea di principio di produrre un DW consistente e ben integrato ' Il preventivo di costi onerosi a fronte di lunghi tempi di realizzazione scoraggia la direzione dall intraprendere il progetto ' Affrontare contemporaneamente l analisi e la riconciliazione di tutte le sorgenti di interesse è estremamente complesso ' Riuscire a prevedere a priori nel dettaglio le esigenze delle diverse aree aziendali impegnate è pressoché impossibile, e il processo di analisi rischia di subire una paralisi ' Il fatto di non prevedere la consegna a breve termine di un prototipo non permette agli utenti di verificare l utilità del progetto e ne fa scemare l interesse e la fiducia 4

5 Approccio bottom-up Il DW viene costruito in modo incrementale, assemblando iterativamente più data mart, ciascuno dei quali incentrato su un insieme di fatti collegati a uno specifico settore aziendale e di interesse per una certa categoria di utenti & Determina risultati concreti in tempi brevi & Non richiede elevati investimenti finanziari & Permette di studiare solo le problematiche relative al data mart in oggetto & Fornisce alla dirigenza aziendale un riscontro immediato sull effettiva utilità del sistema in via di realizzazione & Mantiene costantemente elevata l attenzione sul progetto ' Determina una visione parziale del dominio di interesse 5

6 Il primo data mart da prototipare... 9 deve essere quello che gioca il ruolo più strategico per l azienda 9 deve ricoprire un ruolo centrale e di riferimento per l intero DW '0 '0 '0 9 si deve appoggiare su fonti dati già disponibili e consistenti '0 Source 3 Source 1 '0 Source 2 6

7 Il ciclo di sviluppo Definizione obiettivi e pianificazione Progettazione dell infrastruttura Progettazione e sviluppo dei data mart individuazione degli obiettivi e dei confini del sistema stima delle dimensioni scelta dell approccio per la costruzione valutazione dei costi e del valore aggiunto analisi dei rischi e delle aspettative studio delle competenze del gruppo di lavoro 7

8 Il ciclo di sviluppo Definizione obiettivi e pianificazione Progettazione dell infrastruttura Si analizzano e si comparano le possibili soluzioni architetturali valutando le tecnologie e gli strumenti disponibili, al fine di realizzare un progetto di massima dell intero sistema. Progettazione e sviluppo dei data mart 8

9 Il ciclo di sviluppo Definizione obiettivi e pianificazione Progettazione dell infrastruttura Ciascuna iterazione comporta la creazione di un nuovo data mart e di nuove applicazioni, che vengono via via integrate nel sistema di data warehousing. Progettazione e sviluppo dei data mart 9

10 Il Business Dimensional Pianificazione Definizione dei requisiti Lifecycle (Kimball) Gestione progetto Progetto dell architettura Selezione e installazione prodotti TECNOLOGIA Modellazione dimensionale Progettazione fisica Progettazione e sviluppo alimentazione DATI Specifica applicazioni utente Sviluppo applicazioni utente APPLICAZIONI Attuazione Manutenzione 10

11 La Rapid Warehousing Accertamento Requisiti Methodology (SAS) Riesame Progettazione Costruzione Attuazione Amministrazione e manutenzione 11

12 La progettazione del data mart Analisi e riconciliazione delle sorgenti amministratore db Analisi dei requisiti utente finale Progettazione concettuale Raffinamento del carico di lavoro Progettazione logica progettista Progettazione dell alimentazione Progettazione fisica 12

13 La progettazione del data mart requisiti utente schema riconciliato PROGETTAZIONE CONCETTUALE carico di lavoro volume dati modello logico schemi delle sorgenti operazionali RICONCILIAZIONE schema riconciliato schema di fatto PROGETTAZIONE LOGICA schema logico carico di lavoro volume dati DBMS PROGETTAZIONE DELL ALIMENTAZIONE PROGETTAZIONE FISICA schema dell alimentazione schema fisico 13

14 Analisi e riconciliazione delle sorgenti operazionali Prof. Stefano Rizzi

15 Progettazione del livello riconciliato Schemi sorgenti operazionali Campioni dei dati Schema riconciliato, Mapping sorgenti operazionali Analisi e riconciliazione Meta-dati Progettazione del cleaning Schema riconciliato, Mapping sorgenti operazionali Progettazione della trasformazione Procedure per strumenti ETL Strumenti ETL 9 La fase di integrazione è incentrata sulla componente intensionale delle sorgenti operazionali, ossia riguarda la consistenza degli schemi che le descrivono 9 Pulizia e trasformazione dei dati operano a livello estensionale, ossia coinvolgono direttamente i dati veri e propri 15

16 Analisi e riconciliazione delle sorgenti operazionali Sorgente I Sorgente II Ricognizione e normalizzazione Schema logico (locale) Schema logico (locale) Ricognizione e normalizzazione Schema concettuale (locale) trasformato Schema concettuale (globale) riconciliato Integrazione degli schemi Schema concettuale (globale) riconciliato Schema concettuale (locale) trasformato Meta-dati Definizione corrispondenza con le sorgenti Schema logico (globale) riconciliato e corrispondenza 16

17 Ricognizione e normalizzazione Il progettista, confrontandosi con gli esperti del dominio applicativo, acquisisce un approfondita conoscenza delle sorgenti operazionali attraverso: 9 ricognizione, che consiste in un esame approfondito degli schemi locali mirato alla piena comprensione del dominio applicativo; 9 normalizzazione, il cui obiettivo è correggere gli schemi locali al fine di modellare in modo più accurato il dominio applicativo Ricognizione e normalizzazione devono essere svolte anche qualora sia presente una sola sorgente dati; qualora esistano più sorgenti, l operazione dovrà essere ripetuta per ogni singolo schema 17

18 Ricognizione e normalizzazione descrizionecategoria nomecategoria codicecategoria PRODOTTO descrizioneprod nomeprod codiceprod PRODOTTO (1,1) descrizione nome codice appartiene a (1,n) CATEGORIA descrizione nome codice 18

19 Integrazione L integrazione di un insieme di sorgenti dati eterogenee (basi di dati relazionali, file dati, sorgenti legacy) consiste nell individuazione delle corrispondenze tra i concetti rappresentati negli schemi locali e nella risoluzione dei conflitti evidenziati, finalizzate alla creazione di un unico schema globale i cui elementi possano essere correlati con i corrispondenti elementi degli schemi locali (mapping) La fase di integrazione non si deve limitare a evidenziare le differenze di rappresentazione dei concetti comuni a più schemi locali, ma deve anche identificare l insieme di concetti distinti e memorizzati in schemi differenti che sono correlati attraverso proprietà semantiche (proprietà interschema) Per poter ragionare sui concetti espressi negli schemi delle diverse sorgenti dati è necessario utilizzare un unico formalismo in modo da fissare i costrutti utilizzabili e la potenza espressiva 19

20 Problemi: diversa prospettiva DIPENDENTE (0,1) DIPENDENTE (0,1) partecipa a (1,n) PROGETTO (1,1) assegnato a (1,n) DIPARTIMENTO appartiene a (1,n) DIPARTIMENTO 20

21 Problemi: costrutti equivalenti LIBRO (1,1) titolo ISBN edito da titolo ISBN LIBRO (1,n) CASA EDITRICE indirizzo nome casa editrice indirizzo casa editrice 21

22 Problemi: incompatibilità PROFESSORE nome PROFESSORE nome (0,1) (2,n) insegna insegna (1,1) (1,1) CORSO titolo CORSO titolo 22

23 Relazioni tra concetti comuni Identità: vengono utilizzati gli stessi costrutti, il concetto è modellato dallo stesso punto di vista e non vengono commessi errori di specifica Equivalenza: sono stati utilizzati costrutti diversi (ma equivalenti) e non sussistono errori di specifica o diversità di percezione Comparabilità: i costrutti utilizzati e i punti di vista dei progettisti non sono in contrasto tra loro Incompatibilità: gli schemi sono in contrasto a causa dell incoerenza nelle specifiche 23

24 Fasi dell integrazione 1. Preintegrazione 2. Comparazione degli schemi 3. Allineamento degli schemi 4. Fusione e ristrutturazione degli schemi 24

25 1. Preintegrazione Viene definita la strategia di integrazione Processo di integrazione Binario Ennario A scala Bilanciato A un passo Iterativo 25

26 2. Comparazione degli schemi Un analisi comparativa dei diversi schemi che mira a identificare le correlazioni e i conflitti tra i concetti in essi espressi DIPARTIMENTO (0,n) EDIFICIO (0,n) sinonimia CLIENTE (0,n) ACQUIRENTE (0,n) possiede contiene detiene fa (1,1) ATTREZZATURA (1,1) ATTREZZATURA omonimia (1,1) CREDITO (1,1) ORDINE UOMO UOMO conflitto di dipendenza (0,1) sposa (0,1) DONNA (0,n) sposa (0,n) DONNA 26

27 3. Allineamento degli schemi Scopo di questa fase è la risoluzione dei conflitti evidenziatisi al passo precedente, che si ottiene applicando primitive di trasformazione agli schemi sorgenti o allo schema riconciliato temporaneamente definito 9 Tipiche primitive di trasformazione riguardano il cambio dei nomi e dei tipi degli attributi, la modifica delle dipendenze funzionali e dei vincoli esistenti sugli schemi 9 Non sempre i conflitti possono essere risolti, poiché derivano da inconsistenze di base del sistema informativo; in questo caso la soluzione deve essere discussa con gli utenti che dovranno fornire indicazioni su qual è la più fedele interpretazione del mondo reale 9 In caso di incertezza si preferiscono le trasformazioni che avvantaggiano gli schemi ritenuti centrali nella struttura del data mart 27

28 4. Fusione degli schemi Gi schemi allineati vengono fusi a formare un unico schema riconciliato; l approccio più diffuso è quello di sovrapporre i concetti comuni a cui saranno collegati tutti i rimanenti concetti provenienti dagli schemi locali. Dopo questa operazione si renderanno necessarie ulteriori trasformazioni mirate a migliorare la struttura dello schema riconciliato rispetto a: 9 Completezza 9 Minimalità 9 Leggibilità 28

29 Definizione delle corrispondenze // DB1 Magazzino ORDINI2001(chiaveO, chiavec, data ordine, impiegato) CLIENTE(chiaveC, nome, indirizzo, città, regione, stato)... // DB2 Amministrazione CLIENTE(chiaveC, partitaiva, nome, telefono, fatturato) FATTURE(chiaveF, data, chiavec, importo, iva) STORICO_ORDINI2000(chiaveO, chiavec, data ordine, impiegato)... CREATE VIEW CLIENTE AS SELECT CL1.chiaveC, CL1.nome, CL1.indirizzo, CL1.città, CL1.regione, CL1.stato, CL2.partitaIva, CL2.telefono, CL2.fatturato FROM DB1.CLIENTE AS CL1, DB2.CLIENTE AS CL2 WHERE CL1.chiaveC = CL2.chiaveC; CREATE VIEW ORDINI AS SELECT * FROM DB1.ORDINI2001 UNION SELECT * FROM DB2.STORICO_ORDINI2000; 29

30 Analisi dei requisiti Prof. Stefano Rizzi

31 Obiettivi La fase di analisi dei requisiti ha l obiettivo di raccogliere le esigenze di utilizzo del data mart espresse dai suoi utenti finali Essa ha un importanza strategica poiché influenza le decisioni da prendere riguardo: 9 lo schema concettuale dei dati 9 il progetto dell alimentazione 9 le specifiche delle applicazioni per l analisi dei dati 9 l architettura del sistema 9 il piano di avviamento e formazione 9 le linee guida per la manutenzione e l evoluzione del sistema. 31

32 Fonti La fonte principale da cui attingere i requisiti sono i futuri utenti del data mart (business users) 9 La differenza nel linguaggio usato da progettisti e utenti, e la percezione spesso distorta che questi ultimi hanno del processo di warehousing, rendono il dialogo difficile e a volte infruttuoso Per gli aspetti più tecnici, saranno gli amministratori del sistema informativo e/o i responsabili del CED a fungere da riferimento per il progettista 9 In questo caso, i requisiti che dovranno essere catturati riguardano principalmente vincoli di varia natura imposti sul sistema di data warehousing 32

33 Le interviste A piramide. Approccio induttivo: l intervistatore parte da domande molto dettagliate per poi ampliare l argomento dell intervista mediante domande aperte che richiedono risposte più generali. 9 Questo tipo di intervista permette di superare la riluttanza di un intervistato scettico poiché inizialmente non richiede un forte coinvolgimento da parte dell intervistato. A imbuto. Approccio deduttivo: l intervistatore parte da domande molto generali per poi restringere l argomento dell intervista a temi specifici 9 Questo approccio è utile nel caso in cui l intervistato sia emozionato o eccessivamente deferente, poiché il fatto che le domande di carattere generale (normalmente in forma aperta) non prevedano una risposta sbagliata allevia la tensione dell intervistato. 33

34 Le interviste Ritiene interessante vedere in quali negozi i prodotti vengono venduti a prezzi più alti della media? Quali altre informazioni le interessa associare a una vendita? Ci sono altri fatti che ritiene utili ai fini del processo decisionale? Quali sono i fattori fondamentali che influenzano il processo decisionale nel suo reparto? Come misura la soddisfazione di un cliente? Ritiene utile valutare l andamento nel tempo dei reclami effettuati? Le interessa distinguere i clienti per fasce d età? In quale modo pensa che le tecniche di data warehousing potranno giovare al suo reparto? 34

35 Le domande Ruolo Dirigente Direttore di reparto Amministratore del sistema informativo Domande chiave Quali sono gli obiettivi aziendali? Come misuri il successo della tua azienda? Quali sono oggi i principali problemi dell azienda? In che modo ti aspetti che una maggiore disponibilità di informazioni possa migliorare la situazione aziendale? Quali sono gli obiettivi del tuo reparto? Come misuri il successo del tuo reparto? Descrivi i soggetti coinvolti nel tuo settore di interesse. Ci sono colli di bottiglia nell accesso ai dati? Che analisi di routine esegui? Che tipi di analisi ti piacerebbe poter eseguire? A che livello di dettaglio occorre vedere le informazioni? Quanta informazione storica è necessaria? Illustra le caratteristiche delle principali fonti dati disponibili. Che strumenti vengono usati per analizzare i dati? Come vengono gestite le richieste di analisi ad hoc? Quali sono i principali problemi di qualità dei dati? 35

36 I fatti I fatti sono i concetti su cui gli utenti finali del data mart baseranno il processo decisionale; ogni fatto descrive una categoria di eventi che si verificano in azienda 9 Fissare le dimensioni di un fatto è importante poiché significa determinarne la granularità, ovvero il più fine livello di dettaglio a cui i dati saranno rappresentati. La scelta della granularità di un fatto nasce da un delicato compromesso tra due esigenze contrapposte: quella di raggiungere un elevata flessibilità d utilizzo e quella di conseguire buone prestazioni 9 Per ogni fatto occorre definire l intervallo di storicizzazione, ovvero l arco temporale che gli eventi memorizzati dovranno coprire 36

37 Data mart Fatti approvvigionamenti acquisti, inventario di magazzino, distribuzione commerciale/ manufatturiero finanziario sanitario trasporti telecomunicazioni turismo gestionale produzione gestione domanda marketing bancario investimenti servizi scheda di ricovero pronto soccorso medicina di base merci passeggeri manutenzione traffico CRM gestione domanda CRM logistica risorse umane budgeting infrastrutture confezionamento, inventario, consegna, manifattura vendite, fatturazione, ordini, spedizioni, reclami promozioni, fidelizzazione, campagne pubblicitarie conti correnti, bonifici, prestiti ipotecari, mutui acquisto titoli, transazioni di borsa carte di credito, domiciliazioni bollette ricoveri, dimissioni, interventi chirurgici, diagnosi accessi, esami, dimissioni scelte, revoche, prescrizioni domanda, offerta, trasporti domanda, offerta, trasporti interventi traffico in rete, chiamate fidelizzazione, reclami, servizi biglietteria, noleggi auto, soggiorni frequent-flyers, reclami trasporti, scorte, movimentazione assunzioni, dimissioni, promozioni, incentivi budget commerciale, budget di marketing acquisti, opere 37

38 Glossario dei requisiti Fatto Possibili dimensioni Possibili misure Storicità inventario di magazzino prodotto, d ata, magazzino quantità in magazzino 1 anno vendite prodotto, data, negozio quantità ve nduta, importo, sco nto 5 anni linee d ordine prodotto, data, fornitore quantità ordinata, importo, sco nto 3 anni 38

39 Il carico di lavoro preliminare Il riconoscimento di fatti, dimensioni e misure è strettamente collegato all identificazione di un carico di lavoro preliminare. 9 Oltre che dall interazione diretta con l utente, indicazioni al riguardo potranno essere ricavate da un esame della reportistica correntemente in uso in azienda. 9 In questa fase il carico di lavoro può essere espresso in linguaggio naturale; esso sarà comunque utile per valutare la granularità dei fatti e le misure di interesse, nonché per iniziare ad affrontare il problema dell aggregazione 39

40 Il carico di lavoro preliminare Fatto invent ario di magazzino vendite linee d ordine Interrogazione Quantità media di ciascun prodotto presente mensilmente in tutti i magazzini. Prodotti per i quali è stata esaurita la scorta contemporaneamente in tutti i magazzini in almeno un occasione durante la settimana passata. Andamento giornaliero delle scorte complessive per ciascun tipo di prodotto. Quantità totali di ciascun tipo di prodotto vendute durante l ultimo mese. Incasso totale giornaliero di ciascun negozio. Per un dato negozio, incassi relativi alle diverse categorie di prodotti durante un certo giorno. Riepilogo annuale degli incassi per regione relativamente a un dato prodotto. Quantità totale ordinata annualmente presso un certo fornitore. Importo giornaliero ordinato nell ultimo mese per un certo tipo di prodotto. Sconto massimo applicato da ciascun fornitore durante l ultimo anno per ciascuna categoria di prodotto. 40

41 Altri requisiti Vincoli di progettazione logica e fisica (spazio disponibile) Progetto dell alimentazione (periodicità dell alimentazione) Architettura del sistema di data warehousing (tipo di architettura da implementare, numero dei livelli, presenza di data mart dipendenti o indipendenti, materializzazione del livello riconciliato) Applicazioni per l analisi dei dati (disamina delle tipologie di interrogazioni e dei rapporti analitici normalmente richiesti) Piano di avviamento Piano di formazione 41

42 Progettazione concettuale Prof. Stefano Rizzi

43 Quale formalismo? Mentre è universalmente riconosciuto che un DW si appoggia sul modello multidimensionale, non c è accordo sulla metodologia di progetto concettuale. Il modello Entity/Relationship è molto diffuso nelle imprese come formalismo per la documentazione dei sistemi informativi relazionali, ma non può essere usato per modellare il DW. 43

44 Il Dimensional Fact Model Il DFM è un modello concettuale grafico per data mart, pensato per: 9 supportare efficacemente il progetto concettuale; 9 creare un ambiente su cui formulare in modo intuitivo le interrogazioni dell utente; 9 permettere il dialogo tra progettista e utente finale per raffinare le specifiche dei requisiti; 9 creare una piattaforma stabile da cui partire per il progetto logico (indipendentemente dal modello logico target); 9 restituire una documentazione a posteriori espressiva e non ambigua. La rappresentazione concettuale generata dal DFM consiste in un insieme di schemi di fatto. Gli elementi di base modellati dagli schemi di fatto sono i fatti, le misure, le dimensioni e le gerarchie 44

45 Il DFM: costrutti di base Un fatto è un concetto di interesse per il processo decisionale; tipicamente modella un insieme di eventi che accadono nell impresa (ad esempio: vendite, spedizioni, acquisti,...). È essenziale che un fatto abbia aspetti dinamici, ovvero evolva nel tempo Una misura è una proprietà numerica di un fatto e ne descrive un aspetto quantitativo di interesse per l analisi (ad esempio, ogni vendita è misurata dal suo incasso) Una dimensione è una proprietà con dominio finito di un fatto e ne descrive una coordinata di analisi (dimensioni tipiche per il fatto vendite sono prodotto, negozio, data) prodotto fatto Un fatto esprime una associazione molti-a-molti tra le dimensioni dimensione data VENDITA quantità venduta incasso num. clienti prezzo unitario negozio misura 45

46 Il DFM: costrutti di base Con il termine generale attributi dimensionali si intendono le dimensioni e gli eventuali altri attributi, sempre a valori discreti, che le descrivono (per esempio, un prodotto è descritto dal suo tipo, dalla categoria cui appartiene, dalla sua marca, dal reparto in cui è venduto) Una gerarchia è un albero direzionato i cui nodi sono attributi dimensionali e i cui archi modellano associazioni molti-a-uno tra coppie di attributi dimensionali. Essa racchiude una dimensione, posta alla radice dell albero, e tutti gli attributi dimensionali che la descrivono attributo dimensionale anno trimestre mese giorno vacanza settimana data gruppo di marketing prodotto tipo VENDITA quantità venduta incasso num. clienti prezzo unitario categoria reparto città della marca marca responsabile delle vendite distretto di vendita negozio città del negozio regione stato gerarchia 46

47 47 vacanza responsabile delle vendite distretto di vendita settimana negozio PRODOTTO NEGOZIO DATA qtà venduta incasso prezzo unitario num. clienti data prodotto MESE mese (1,n) (1,1) TRIMESTRE trimestre (1,n) (1,1) ANNO anno (1,n) (1,1) (1,n) (1,1) città CITTÀ (1,n) (1,1) regione REGIONE (1,n) (1,1) stato STATO (1,n) (1,1) tipo TIPO (1,n) (1,1) categoria CATEGORIA (1,n) (1,1) reparto REPARTO MARCA marca (1,n) (1,1) CITTÀ MARCA città marca (1,n) (1,1) (0,n) (0,n) (0,n) vendita RESP. VENDITE (1,n) (1,1) DISTRETTO VENDITA (1,n) (1,1) giorno VACANZA (1,n) (1,1) GIORNO (1,n) (1,1) (1,n) (1,1) SETTIMANA GRUPPO MARKETING gruppo marketing (1,n) (1,1) Il DFM: corrispondenza con l E/R

48 Naming conventions Tutti gli attributi dimensionali in ciascuno schema di fatto devono avere nomi diversi Eventuali nomi uguali devono essere differenziati qualificandoli con il nome di un attributo dimensionale che li precede nella gerarchia 9 Ad esempio, warehouse city è la città in cui si trova un magazzino, mentre store city è la città in cui si trova un negozio I nomi degli attributi non dovrebbero riferirsi esplicitamente al fatto a cui appartengono 9 Ad esempio, si evitino shipped product e shipment date Attributi con lo stesso significato in schemi diversi devono avere lo stesso nome 48

49 Eventi e aggregazione Un evento primario è una particolare occorrenza di un fatto, individuata da una ennupla costituita da un valore per ciascuna dimensione. A ciascun evento primario è associato un valore per ciascuna misura 9 Con riferimento alle vendite, un possibile evento primario registra per esempio che, il 10/10/2001, nel negozio NonSoloPappa sono state vendute 10 confezioni di detersivo Brillo per un incasso complessivo pari a 25 euro Dato un insieme di attributi dimensionali (pattern), ciascuna ennupla di loro valori individua un evento secondario che aggrega tutti gli eventi primari corrispondenti. A ciascun evento secondario è associato un valore per ciascuna misura, che riassume in sé tutti i valori della stessa misura negli eventi primari corrispondenti 9 Pertanto, le gerarchie definiscono il modo in cui gli eventi primari possono essere aggregati e selezionati significativamente per il processo decisionale; mentre la dimensione in cui una gerarchia ha radice ne definisce la granularità più fine di aggregazione, agli altri attributi dimensionali corrispondono granularità via via crescenti 49

50 Eventi e aggregazione città negozio tipo parte tipo parte mese sparsità mese negozio operatori di aggregazione parte data 50

51 Il DFM: costrutti avanzati Un attributo descrittivo contiene informazioni aggiuntive su un attributo dimensionale di una gerarchia, a cui è connesso da una associazione -a-uno. Non viene usato per l aggregazione poiché ha valori continui e/o poiché deriva da un associazione unoa-uno Alcuni archi dello schema di fatto possono essere opzionali anno trimestre mese giorno vacanza settimana responsabile data peso capo reparto gruppo di marketing prodotto tipo VENDITA categoria marca dieta quantità venduta incasso num. clienti prezzo unitario (AVG) reparto città della marca responsabile delle vendite distretto di vendita negozio città del stato negozio regione indirizzo telefono attributo descrittivo arco opzionale 51

52 Il DFM: costrutti avanzati non-additività anno trimestre mese giorno vacanza settimana responsabile data peso capo reparto gruppo di marketing prodotto tipo VENDITA categoria marca dieta quantità venduta incasso num. clienti prezzo unitario (AVG) reparto città della marca responsabile delle vendite distretto di vendita negozio IVA attributo cross-dimensionale città del stato negozio regione indirizzo convergenza telefono data inizio data fine costo promozione pubblicità sconto dimensione opzionale 52

53 Il DFM: costrutti avanzati copertura di arco opzionale data cliente codord LINEA D ORDINE quantità importo data scadenza taglia P-E tipo prodotto codprod 53

54 Il DFM: costrutti avanzati gerarchia condivisa uso chiamante CHIAMATA ora distretto numero telefonico chiamato numero durata data mese anno uso del num. chiamante distretto del numero chiamante distretto del numero chiamato uso del num. chiamato numero chiamante numero chiamato ruolo CHIAMATA numero durata ora data mese anno prodotto SPEDIZIONE numero costo magazzino ordine data di spedizione data città regione stato cliente mese anno 54

55 Il DFM: costrutti avanzati genere VENDITA autore libro numero incasso data mese anno arco multiplo reparto reparto categoria data diagnosi RICOVERO costo nome cognome sesso codpaz fascia d utenza città anno nascita categoria data diagnosi gruppo di diagnosi RICOVERO costo nome cognome sesso codpaz fascia d utenza città anno nascita 55

56 Additività L aggregazione richiede di definire un operatore adatto per comporre i valori delle misure che caratterizzano gli eventi primari in valori da abbinare a ciascun evento secondario Da questo punto di vista è possibile distinguere tre categorie di misure: 9 Misure di flusso: si riferiscono a un periodo, al cui termine vengono valutate in modo cumulativo (il numero di prodotti venduti in un giorno, l incasso mensile, il numero di nati in un anno) 9 Misure di livello: vengono valutate in particolari istanti di tempo (il numero di prodotti in inventario, il numero di abitanti di una città) 9 Misure unitarie: vengono valutate in particolari istanti di tempo, ma sono espresse in termini relativi (il prezzo unitario di un prodotto, la percentuale di sconto, il cambio di una valuta) *HUDUFKLHWHPS RUDOL *HUDUFKLHQRQWHPS RUDOL 0LVXUHGLIOX VVR 680$9*0,10$; 680$9*0,10$; 0LVXUHGLO LYHOOR $9*0,10$; 680$9*0,10$; 0LVXUHXQLWDULH $9*0,10$; $9*0,10$; 56

57 Additività Una misura è detta additiva su una dimensione se i suoi valori possono essere aggregati lungo la corrispondente gerarchia tramite l operatore di somma, altrimenti è detta non-additiva. Una misura non-additiva è non-aggregabile se nessun operatore di aggregazione può essere usato su di essa reparto peso confezione prodotto tipo categoria marca unità per pallet indirizzo anno mese data INVENTARIO AVG, MIN livello quantità ingresso magazzino città stato 57

58 Misure additive anno trim. I 99 II 99 III 99 IV 99 I 00 II 00 III 00IV 00 categoria tipo prodotto Brillo detersivo pulizia Sbianco casa Lucido Manipulite sapone Scent Latte F Slurp latticino Latte U Slurp alimentari Yogurt Slurp bibita Bevimi Colissima anno trim. I 99 II 99 III 99 IV 99 I 00 II 00 III 00 IV 00 categoria pulizia casa alimentari anno categoria pulizia casa alimentari anno categoria tipo pulizia detersivo casa sapone alimentari latticino bibita

59 Misure non-additive anno 1999 trim. I 99 II 99 III 99 IV 99 categoria tipo prodotto Brillo 2 2 2,2 2,5 detersivo Sbianco 1,5 1,5 2 2,5 pulizia casa Lucido sapone Manipulite 1 1,2 1,5 1,5 Scent 1,5 1,5 2 categoria pulizia anno 1999 trim. I 99 II 99 III 99 IV 99 tipo detersivo 1,75 2,17 2,40 2,67 casa sapone 1,25 1,35 1,75 1,50 media: 1,50 1,76 2,08 2,09 anno 1999 trim. I 99 II 99 III 99 IV 99 categoria pulizia casa 1,50 1,84 2,14 2,38 59

60 Schemi di fatto vuoti Uno schema di fatto si dice vuoto se non ha misure 9 In questo caso, il fatto registra solo il verificarsi di un evento anno professore semestre indirizzo nome nazionalità età studente FREQUENZA (COUNT) corso area facoltà sesso 60

61 Progettazione concettuale: approcci Basata sui requisiti 9 Il progettista deve essere in grado di enucleare, dalle interviste condotte presso l utente, un indicazione precisa circa i fatti da rappresentare, le misure che li descrivono e le gerarchie attraverso cui aggregarli utilmente. Il problema del collegamento tra lo schema concettuale così determinato e le sorgenti operazionali viene affrontato in un secondo tempo Basata sulle sorgenti 9 È possibile definire lo schema concettuale in funzione della struttura delle sorgenti, evitando il complesso compito di stabilire il legame con esse a posteriori. Inoltre, è possibile derivare uno schema concettuale prototipale dagli schemi operazionali in modo pressoché automatico 61

Progettazione del Data Warehouse

Progettazione del Data Warehouse Progettazione del Data Warehouse Queste dispense sono state estratte dalle dispense originali del Prof. Stefano Rizzi, disponibili in http://www-db.deis.unibo.it/~srizzi/) e sono state tratte dal libro

Dettagli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli 13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati Questa fase richiede di definire e documentare lo schema del livello dei dati operazionali, a partire dal quale verrà alimentato il

Dettagli

Progettazione Logica. Sviluppo di un Database/DataWarehouse

Progettazione Logica. Sviluppo di un Database/DataWarehouse Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo

Dettagli

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi

Dettagli

Pianificazione del data warehouse

Pianificazione del data warehouse Pianificazione del data warehouse Dalla pianificazione emergono due principali aree d interesse: area commerciale focalizzata sulle agenzie di vendita e area marketing concentrata sulle vendite dei prodotti.

Dettagli

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing

Lezione 3. Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing Lezione 3 Modello Multidimensionale dei Dati Metadati per il Data Warehousing Accesso ai Data Warehouses Implementazioni per il Data Warehousing 27/02/2010 1 Modello multidimensionale Nasce dall esigenza

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Basi di Dati Complementi Esercitazione su Data Warehouse

Basi di Dati Complementi Esercitazione su Data Warehouse Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena

Dettagli

I data warehouse e la loro progettazione

I data warehouse e la loro progettazione Tecnologie per i sistemi informativi I data warehouse e la loro progettazione Docente: Letizia Tanca Politecnico di Milano tanca@elet.polimi.it 1 Processi processi direzionali processi gestionali processi

Dettagli

Dominio applicativo. Analisi e ricognizione delle fonti dati

Dominio applicativo. Analisi e ricognizione delle fonti dati Dominio applicativo La Società chiamata StraSport, si occupa di vendite all ingrosso di articoli sportivi. Ha agenzie distribuite sul territorio italiano che gestiscono le vendite, ognuna di esse gestisce

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Progettazione di un Data Warehouse

Progettazione di un Data Warehouse Sistemi Informativi Avanzati Anno Accademico 2012/2013 Prof. Domenico Beneventano Progettazione di un Data Warehouse Dai Capitoli 2,3 e 4 del libro Data Warehouse - teoria e pratica della Progettazione

Dettagli

Misure. Definizione delle misure

Misure. Definizione delle misure Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure In parte dal Capitolo 5 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo Golfarelli,

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)

Dettagli

Progettazione base dati relazionale

Progettazione base dati relazionale Progettazione base dati relazionale Prof. Luca Bolognini E-Mail:luca.bolognini@aliceposta.it Progettare una base di dati Lo scopo della progettazione è quello di definire lo schema della base di dati e

Dettagli

Estensioni del linguaggio SQL per interrogazioni OLAP

Estensioni del linguaggio SQL per interrogazioni OLAP Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

LABORATORIO di INFORMATICA

LABORATORIO di INFORMATICA Università degli Studi di Cagliari Corso di Laurea Magistrale in Ingegneria per l Ambiente ed il Territorio LABORATORIO di INFORMATICA A.A. 2010/2011 Prof. Giorgio Giacinto IL MODELLO ER PER LA PROGETTAZIONE

Dettagli

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati: DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,

Dettagli

Architetture per l analisi di dati

Architetture per l analisi di dati Architetture per l analisi di dati Basi di dati: Architetture e linee di evoluzione - Seconda edizione Capitolo 8 Appunti dalle lezioni Motivazioni I sistemi informatici permettono di aumentare la produttività

Dettagli

Data Warehouse Architettura e Progettazione

Data Warehouse Architettura e Progettazione Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Data Warehousing e Data Mining

Data Warehousing e Data Mining Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori a.gori@unifi.it OLTP vs. OLAP OLTP vs.

Dettagli

BASI DATI BIOINGEGNERIA ED INFORMATICA MEDICA. Lezione II - BioIngInfMed

BASI DATI BIOINGEGNERIA ED INFORMATICA MEDICA. Lezione II - BioIngInfMed BASI DATI BIOINGEGNERIA ED INFORMATICA MEDICA 1 Sistema Informativo Un sistema informativo (SI) è un componente di una organizzazione il cui obiettivo è gestire le informazioni utili per gli scopi dell

Dettagli

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna Il Data Warehousing Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna 1 Sommario Il ruolo della business intelligence e del sistema informativo 9 Il ruolo dell informatica in azienda 9 La

Dettagli

Ciclo di vita dimensionale

Ciclo di vita dimensionale aprile 2012 1 Il ciclo di vita dimensionale Business Dimensional Lifecycle, chiamato anche Kimball Lifecycle descrive il framework complessivo che lega le diverse attività dello sviluppo di un sistema

Dettagli

Data warehouse (parte 1)

Data warehouse (parte 1) Data warehouse (parte 1) La maggior parte delle aziende dispone di enormi basi di dati contenenti dati di tipo operativo: queste basi di dati costituiscono una potenziale miniera di informazioni utili.

Dettagli

Il modello Entity-Relationship per il progetto delle basi di dati

Il modello Entity-Relationship per il progetto delle basi di dati 1 Il modello Entity-Relationship per il progetto delle basi di dati Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Le metodologie di progettazione delle Basi di Dati 2 Una metodologia

Dettagli

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Base Di Dati II Anno accademico 2011/2012 Progettazione di un Data mart per l'analisi dei servizi bibliotecari universitari

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

DATA WAREHOUSING CON JASPERSOFT BI SUITE

DATA WAREHOUSING CON JASPERSOFT BI SUITE UNIVERSITÁ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria di Enzo Ferrari Corso di Laurea Magistrale in Ingegneria Informatica (270/04) DATA WAREHOUSING CON JASPERSOFT BI SUITE Relatore

Dettagli

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta

Dettagli

Progettazione concettuale2

Progettazione concettuale2 Lo L analisi La scopo Progettazione della progettazione concettuale Risultato: risultato descrizione dinamici settori progettare garantiscano che progettazione modella dal dei dell analisi schema sistema

Dettagli

Rassegna sui principi e sui sistemi di Data Warehousing

Rassegna sui principi e sui sistemi di Data Warehousing Università degli studi di Bologna FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Rassegna sui principi e sui sistemi di Data Warehousing Tesi di laurea di: Emanuela Scionti Relatore: Chiar.mo Prof.Montesi

Dettagli

Progettazione concettuale usando il modello Entità-Relazione (ER) e Progettazione Logica

Progettazione concettuale usando il modello Entità-Relazione (ER) e Progettazione Logica Progettazione concettuale usando il modello Entità-Relazione (ER) e Progettazione Logica 1 Introduzione alla progettazione delle basi di dati v Progettazione concettuale (in questa fase si usa il modello

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Il problema - dati IPERVENDO Via Vai 111 P.I.11223344 Vendite II Trim. (Milioni!) Introduzione al Data Warehousing tecnologia abilitante per il data mining ACQUA MIN 0.40 LATTE INTERO 1.23 SPAZZ.DENTI

Dettagli

Data Warehousing: concetti base e metodologie

Data Warehousing: concetti base e metodologie Data Warehousing: concetti base e metodologie Paolo Atzeni (con la collaborazione di Luca Cabibbo e Riccardo Torlone) Università di Roma Tre Dipartimento di Informatica e Automazione atzeni@dia.uniroma3.it

Dettagli

PROGETTAZIONE CONCETTUALE

PROGETTAZIONE CONCETTUALE Fasi della progettazione di basi di dati PROGETTAZIONE CONCETTUALE Parte V Progettazione concettuale Input: specifiche utente Output: schema concettuale (astrazione della realtà) PROGETTAZIONE LOGICA Input:

Dettagli

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale

02/mag/2012. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale. Il Modello Multidimensionale Modello semplice ed intuitivo Si presta bene a descrivere dei FATTI in modo grafico (CUBO o IPERCUBO) Es. di FATTI: Vendite Spedizioni Ricoveri Interventi chirurgici Andamento borsistico 62 Un cubo multidimensionale

Dettagli

Progettazione di un DB....in breve

Progettazione di un DB....in breve Progettazione di un DB...in breve Cosa significa progettare un DB Definirne struttura,caratteristiche e contenuto. Per farlo è opportuno seguire delle metodologie che permettono di ottenere prodotti di

Dettagli

Stefania Marrara - Esercitazioni di Tecnologie dei Sistemi Informativi. Integrazione di dati di sorgenti diverse

Stefania Marrara - Esercitazioni di Tecnologie dei Sistemi Informativi. Integrazione di dati di sorgenti diverse Politecnico di Milano View integration 1 Integrazione di dati di sorgenti diverse Al giorno d oggi d la mole di informazioni che viene gestita in molti contesti applicativi è enorme. In alcuni casi le

Dettagli

Misure (parte II) Gerarchie Incomplete

Misure (parte II) Gerarchie Incomplete Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Misure (parte II) Gerarchie Incomplete Esempio Schema di Fatto STUDENTE(STUDENTE,,REGIONE,), DF:! REGIONE (,,) REGIONE!

Dettagli

Corso di Basi di Dati A.A. 2013/2014

Corso di Basi di Dati A.A. 2013/2014 Corso di Laurea in Ingegneria Gestionale Sapienza - Università di Roma Corso di Basi di Dati A.A. 2013/2014 8 - Progettazione Concettuale Tiziana Catarci, Andrea Marrella Ultimo aggiornamento : 27/04/2014

Dettagli

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it

Introduzione alla Business Intelligence. E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence E-mail: infobusiness@zucchetti.it Introduzione alla Business Intelligence Introduzione Definizione di Business Intelligence: insieme di processi per raccogliere

Dettagli

Convergenza. Schema di fatto

Convergenza. Schema di fatto Convergenza Quando due attributi dimensionali possono essere connessi da due o più cammini direzionali distinti pur mantenendo le dipendenze funzionali di tutte le direzioni. 451 Schema di fatto 452 1

Dettagli

Data warehouse: casi di studio DataBase and Data Mining Group of Politecnico di Torino

Data warehouse: casi di studio DataBase and Data Mining Group of Politecnico di Torino DataBase and Data Mining Group of Database and data mining group, Database and data mining group, DataBase and Data Mining Group of DataBase and Data Mining Group of Data warehouse Casi di studio Gestione

Dettagli

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione

SOMMARIO. 9- Basi di dati direzionali. Tipi di sistemi direzionali SISTEMI INFORMATIVI DIREZIONALI. Basi di Dati per la gestione dell Informazione 1 SOMMARIO 2 9- Basi di dati direzionali Basi di Dati per la gestione dell Informazione A. Chianese, V. Moscato, A. Picariello, L. Sansone Sistemi Informativi Direzionali (SID) Architettura dei SID La

Dettagli

Lezione 2. Il modello entità relazione

Lezione 2. Il modello entità relazione Lezione 2 Il modello entità relazione Pag.1 Introduzione alla progettazione delle basi di dati 1. Analisi dei requisiti Quali sono le entità e le relazioni dell organizzazione? Quali informazioni su queste

Dettagli

Database. Appunti di Amaranto Oronzo e Giancane Diego Lezione dell Ing. Lucia Vaira 24/04/2014

Database. Appunti di Amaranto Oronzo e Giancane Diego Lezione dell Ing. Lucia Vaira 24/04/2014 Database Appunti di Amaranto Oronzo e Giancane Diego Lezione dell Ing. Lucia Vaira 24/04/2014 Cos'è un database? È una struttura di dati composta da tabelle a loro volta composte da campi. Caratteristiche

Dettagli

Informatica per l'impresa. Sistemi per la gestione di basi di Dati

Informatica per l'impresa. Sistemi per la gestione di basi di Dati Informatica per l'impresa Sistemi per la gestione di basi di Dati Prof. Mauro Gaspari gaspari@cs.unibo.it 1 1 Sistema Informativo Insieme degli strumenti, risorse e procedure che consentono la gestione

Dettagli

Progettazione concettuale

Progettazione concettuale Progettazione concettuale Strategie top-down A partire da uno schema che descrive le specifiche mediante pochi concetti molto astratti, si produce uno schema concettuale mediante raffinamenti successivi

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

ESEMPIO: RITARDI & BIGLIETTI

ESEMPIO: RITARDI & BIGLIETTI ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare

Dettagli

11 - Progettazione Logica

11 - Progettazione Logica Corso di Laurea in Ingegneria Gestionale SAPIENZA Università di Roma Esercitazioni del corso di Basi di Dati Prof.ssa Catarci e Prof.ssa Scannapieco Anno Accademico 2011/2012 11 - Progettazione Logica

Dettagli

Capitolo 4. Studio dei problemi di progetto. 4.1 Data Quality

Capitolo 4. Studio dei problemi di progetto. 4.1 Data Quality Capitolo 4 Studio dei problemi di progetto Dal primo approccio con il progetto, è risultato chiaro che una semplice analisi della teoria sulla progettazione concettuale non sarebbe stata sufficiente ad

Dettagli

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse

Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Riferimenti Corso di Complementi di Basi di dati A.A. 2005-2006 4. Data Warehouse Queste trasparenze parte 4 Testo di Atzeni et al. Basi di dati R.Kimball, The Data Warehouse Lifecycle Toolkit, 2nd Ed.,

Dettagli

Impresa di raccolta e riciclaggio di materiali metallici e di rifiuti.

Impresa di raccolta e riciclaggio di materiali metallici e di rifiuti. Impresa di raccolta e riciclaggio di materiali metallici e di rifiuti. Indice Cognome Nome Matr.xxxxxx email Cognome Nome Mat. Yyyyyy email Argomento Pagina 1. Analisi dei requisiti 1 a. Requisiti espressi

Dettagli

1.1 I componenti di un DBMS... 5

1.1 I componenti di un DBMS... 5 Indice 1 Introduzione ai DBMS.......................................................... 1 1.1 Scopi di un DBMS............................................................ 1 1.2 Modelli dei dati..............................................................

Dettagli

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS

Basi di dati. (Sistemi Informativi) teoria e pratica con Microsoft Access. Basi di dati. Basi di dati. Basi di dati e DBMS DBMS DBMS Basi di Basi di (Sistemi Informativi) Sono una delle applicazioni informatiche che hanno avuto il maggiore utilizzo in uffici, aziende, servizi (e oggi anche sul web) Avete già interagito (magari inconsapevolmente)

Dettagli

Il modello dimensionale

Il modello dimensionale aprile 2012 1 L organizzazione dei dati del data warehouse costituisce la pietra angolare dell intero sistema DW/BI le applicazioni BI, di supporto alle decisioni, accedono i dati direttamente dal DW l

Dettagli

Lezione 5: Progettazione di Software e Database. Ingegneria del Software. Il Software 19/11/2011. Dr. Luca Abeti

Lezione 5: Progettazione di Software e Database. Ingegneria del Software. Il Software 19/11/2011. Dr. Luca Abeti Lezione 5: Progettazione di Software e Database Dr. Luca Abeti Ingegneria del Software L ingegneria del software è la disciplina che studia i metodi e gli strumenti per lo sviluppo del software e la misura

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Sistemi informativi aziendali Lezione 12 prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone Sistemi informatici = informazioni+hardware+software

Dettagli

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2)

Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Tecnologie per i sistemi informativi Breve introduzione ai data warehouse (per gli allievi che non hanno seguito BD2) Letizia Tanca lucidi tratti dal libro: Atzeni, Ceri, Paraboschi, Torlone Introduzione

Dettagli

PROGETTAZIONE DI UN DATABASE

PROGETTAZIONE DI UN DATABASE Indice PROGETTAZIONE DI UN DATABASE 1.Il modello ER (entity relationship)...1 Generalità...1 I costrutti principali del modello...2 Entità...2 Associazioni...2 Attributi...2 Altri costrutti del modello...2

Dettagli

Introduzione alla progettazione. Metodologie e modelli per la progettazione di basi di dati. Il ciclo di vita dei sistemi informativi

Introduzione alla progettazione. Metodologie e modelli per la progettazione di basi di dati. Il ciclo di vita dei sistemi informativi Metodologie e modelli per la progettazione di basi di dati Introduzione alla progettazione Il problema: progettare una base di base di dati a partire dai suoi requisiti Progettare: definire la struttura,

Dettagli

Basi di dati. Le funzionalità del sistema non vanno però ignorate

Basi di dati. Le funzionalità del sistema non vanno però ignorate Basi di dati La progettazione di una base di dati richiede di focalizzare lo sforzo su analisi, progettazione e implementazione della struttura con cui sono organizzati i dati (modelli di dati) Le funzionalità

Dettagli

Le Basi di dati: generalità. Unità di Apprendimento A1 1

Le Basi di dati: generalità. Unità di Apprendimento A1 1 Le Basi di dati: generalità Unità di Apprendimento A1 1 1 Cosa è una base di dati In ogni modello di organizzazione della vita dell uomo vengono trattate informazioni Una volta individuate e raccolte devono

Dettagli

Appunti per il Corso di Data Warehousing

Appunti per il Corso di Data Warehousing Università degli Studi Mediterranea di Reggio Calabria Corsi per il Personale Tecnico Amministrativo Appunti per il Corso di Data Warehousing Autori: Ing. Giovanni Quattrone, Prof. Domenico Ursino Anno

Dettagli

Design di un database

Design di un database Design di un database Progettare un database implica definire quanto i seguenti aspetti: Struttura Caratteristiche Contenuti Il ciclo di design di un database si suddivide in tre fasi principali: progettazione

Dettagli

Governo Digitale a.a. 2011/12

Governo Digitale a.a. 2011/12 Governo Digitale a.a. 2011/12 I sistemi di supporto alle decisioni ed il Data Warehouse Emiliano Casalicchio Agenda Introduzione i sistemi di supporto alle decisioni Data warehouse proprietà architettura

Dettagli

Progettazione di basi di dati. Progettazione di basi di dati. Ciclo di vita dei sistemi informativi. Fasi del ciclo di vita [1]

Progettazione di basi di dati. Progettazione di basi di dati. Ciclo di vita dei sistemi informativi. Fasi del ciclo di vita [1] Progettazione di basi di dati Progettazione di basi di dati Requisiti progetto Base di dati Struttura Caratteristiche Contenuto Metodologia in 3 fasi Progettazione concettuale Progettazione logica Progettazione

Dettagli

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale

Data Warehousing. Argomenti della lezione. Rappresentazioni dei dati. Rappresentazione dei dati. Parte II Analisi multidimensionale Argomenti della lezione Data Warehousing Parte II Analisi multidimensionale richiami sul data warehousing organizzazione di un data warehouse l analisi multidimensionale data warehousing e internet strumenti

Dettagli

Basi di Dati. Progettazione del Modello ER. K. Donno - Progettazione del Modello ER

Basi di Dati. Progettazione del Modello ER. K. Donno - Progettazione del Modello ER Basi di Dati Progettazione del Modello ER Dai requisiti allo schema ER Entità, relazioni e attributi non sono fatti assoluti dipendono dal contesto applicativo Nella pratica si fa spesso uso di una strategia

Dettagli

I livelli di progettazione possono essere così schematizzati: Esistono tre tipi diversi di modelli logici: Modello gerarchico: Esempio SPECIFICHE

I livelli di progettazione possono essere così schematizzati: Esistono tre tipi diversi di modelli logici: Modello gerarchico: Esempio SPECIFICHE I DATABASE o basi di dati possono essere definiti come una collezione di dati gestita dai DBMS. Tali basi di dati devono possedere determinati requisiti, definiti come specifiche, necessarie per il processo

Dettagli

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17 Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...

Dettagli

Progetto Logos - Documentazione -

Progetto Logos - Documentazione - Progetto Logos - Documentazione - Marco Benvegnù Gianluca Marcante Simone Sanavio Roberto De Franceschi PM) Corso di Basi di Dati Corso di Laurea in Ingegneria Informatica A.A. 2002/2003 Progetto Logos

Dettagli

Introduzione al data base

Introduzione al data base Introduzione al data base L Informatica è quella disciplina che si occupa del trattamento automatico dei dati con l ausilio del computer. Trattare i dati significa: raccoglierli, elaborarli e conservarli

Dettagli

Data warehouse Casi di studio

Data warehouse Casi di studio atabase and ata Mining Group of atabase and ata Mining Group of atabase and ata Mining Group of B MGata warehouse: casi di studio atabase and data mining group, ata warehouse Casi di studio ATA WAREHOUSE:

Dettagli

70555 Informatica 3 70777 Sicurezza 2. 70555 Mario Rossi 70777 Anna Bianchi. Esempio istanza:

70555 Informatica 3 70777 Sicurezza 2. 70555 Mario Rossi 70777 Anna Bianchi. Esempio istanza: DOMANDE 1) Definire i concetti di schema e istanza di una base di dati, fornendo anche un esempio. Si definisce schema di una base di dati, quella parte della base di dati stessa che resta sostanzialmente

Dettagli

Database. Organizzazione di archivi mediante basi di dati. ing. Alfredo Cozzi 1

Database. Organizzazione di archivi mediante basi di dati. ing. Alfredo Cozzi 1 Database Organizzazione di archivi mediante basi di dati ing. Alfredo Cozzi 1 Il database è una collezione di dati logicamente correlati e condivisi, che ha lo scopo di soddisfare i fabbisogni informativi

Dettagli

PERSONA UOMO MILITARE

PERSONA UOMO MILITARE Capitolo 6 Esercizio 6.1 Considerare lo schema ER in figura 6.36: lo schema rappresenta varie proprietà di uomini e donne. Correggere lo schema tenendo conto delle proprietà fondamentali delle generalizzazioni.

Dettagli

Organizzazione degli archivi

Organizzazione degli archivi COSA E UN DATA-BASE (DB)? è l insieme di dati relativo ad un sistema informativo COSA CARATTERIZZA UN DB? la struttura dei dati le relazioni fra i dati I REQUISITI DI UN DB SONO: la ridondanza minima i

Dettagli

Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006. Esercizi entità relazione risolti. a cura di Angela Campagnaro 802749

Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006. Esercizi entità relazione risolti. a cura di Angela Campagnaro 802749 Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006 Esercizi entità relazione risolti a cura di Angela Campagnaro 802749 Indice: Esercizio 1: Un insieme di officine 1.1 Testo esercizio.3

Dettagli

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing

Database Commerciali/ Marketing. Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Indice: 1. Gli elementi chiave del db commerciale/ marketing 2. Come si costruisce un db commerciale/ marketing Database Commerciali/ Marketing Gli elementi chiave del db

Dettagli

Informatica Industriale Modello funzionale: Informazione Progettazione concettuale

Informatica Industriale Modello funzionale: Informazione Progettazione concettuale DIIGA - Università Politecnica delle Marche A.A. 2006/2007 Informatica Industriale Modello funzionale: Informazione Progettazione concettuale Luca Spalazzi spalazzi@diiga.univpm.it www.diiga.univpm.it/~spalazzi/

Dettagli

Progettaz. e sviluppo Data Base

Progettaz. e sviluppo Data Base Progettaz. e sviluppo Data Base! Progettazione Basi Dati: Metodologie e modelli!modello Entita -Relazione Progettazione Base Dati Introduzione alla Progettazione: Il ciclo di vita di un Sist. Informativo

Dettagli

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8

E.T.L. (Extract.Tansform.Load) IBM - ISeries 1/8 E.T.L. (Extract.Tansform.Load) IBM - ISeries Quick-EDD/ DR-DRm ETL 1/8 Sommario ETL... 3 I processi ETL (Extraction, Transformation and Loading - estrazione, trasformazione e caricamento)... 3 Cos è l

Dettagli

Basi di dati. Informatica. Prof. Pierpaolo Vittorini pierpaolo.vittorini@cc.univaq.it

Basi di dati. Informatica. Prof. Pierpaolo Vittorini pierpaolo.vittorini@cc.univaq.it pierpaolo.vittorini@cc.univaq.it Università degli Studi dell Aquila Facoltà di Medicina e Chirurgia 18 marzo 2010 Un esempio di (semplice) database Quando si pensa ad un database, generalmente si immagina

Dettagli

APPROFONDIMENTO ORGANIZZAZIONE

APPROFONDIMENTO ORGANIZZAZIONE APPROFONDIMENTO ORGANIZZAZIONE Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Approfondimento Posizione e ruolo nell organizzazione: le cinque parti dell organizzazione ORGANISMO BILATERALE

Dettagli

Università degli Studi di Torino Facoltà di Economia

Università degli Studi di Torino Facoltà di Economia Università degli Studi di Torino Facoltà di Economia Corso di Information and Communication Technology II Progettazione di basi di dati: introduzione, il modello E-R, traduzione da E-R a relazionale --

Dettagli

Basi di dati. Gabriella Trucco gabriella.trucco@unimi.it

Basi di dati. Gabriella Trucco gabriella.trucco@unimi.it Basi di dati Gabriella Trucco gabriella.trucco@unimi.it Esempio Quando si pensa ad un database, generalmente si immagina una tabella contenente grandi quantità di informazioni, sulla quale è possibile

Dettagli

GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004

GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004 GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,

Dettagli

Basi di Dati Relazionali

Basi di Dati Relazionali Corso di Laurea in Informatica Basi di Dati Relazionali a.a. 2009-2010 PROGETTAZIONE DI UNA BASE DI DATI Raccolta e Analisi dei requisiti Progettazione concettuale Schema concettuale Progettazione logica

Dettagli

Metodologia di Progettazione database relazionali

Metodologia di Progettazione database relazionali Informatica e Telecomunicazioni S.p.A. Metodologia di Progettazione database relazionali I&T Informatica e Telecomunicazioni S.p.A Via dei Castelli Romani, 9 00040 Pomezia (Roma) Italy Tel. +39-6-911611

Dettagli

Prova scritta. Mercoledì 23 Luglio 2008. Appello di Informatica II - Corso di Laurea in Ottica e Optometria A.A. 2007/2008

Prova scritta. Mercoledì 23 Luglio 2008. Appello di Informatica II - Corso di Laurea in Ottica e Optometria A.A. 2007/2008 Mercoledì 23 Luglio 2008 Appello di Informatica II - Corso di Laurea in Ottica e Optometria A.A. 2007/2008 Prova scritta Esercizio 1 (8 punti). Si vuole progettare una base di dati per una catena di ristoranti

Dettagli