COMPONENTI TERMODINAMICI APERTI
|
|
|
- Michelangelo Nicolosi
- 10 anni fa
- Visualizzazioni
Transcript
1 CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica a fluido In una macchina termica a fluido, sia essa motrice che operatrice (quest'ultima trattata con le convenzioni di segno delle macchine motrici) si possono, nell'approssimazione qui esaminata, trascurare le energie cinetiche, gravitazionali, il calore in ingresso q 1, in uscita q 2 e le perdite di calore; così si può scrivere: s at s s = = lh 2 s f 2, da cui: l = = s at s s h 2 T a s f2 Tenuto però presente che dal bilancio delle entropie nell'ipotesi generale di Cap 9 Pagina 1 di 9
2 macchina reale: s f1 s at s s =s f2, si ottiene: ed: l= h 2, = h 2 Qualora interessasse l'utilizzazione del calore del fluido di scarico per uso riscaldamento (macchina a cogenerazione) a denominatore bisogna detrarre l'exergia corrispondente a tale calore, per cui: h = 1 h 2 h 2 s f2 L'efficienza viene invece calcolata dal rapporto fra lavoro ottenuto e calore speso: = h 2, con h o opportuno valore iniziale dell'entalpia Si sottolinea nuovamente che questa ultima grandezza non permette di valutare chiaramente la bontà della macchina in esame perché non tiene conto del valore del calore speso B) Processo di combustione Esso avviene in un bruciatore posto entro una caldaia o in un generatore di vapore; esso permette di trasformare l'energia chimica in calore; tale calore viene ceduto ai prodotti della combustione che pertanto escono ad una Cap 9 Pagina 2 di 9
3 temperatura elevata La quantità di calore q per unità di massa di combustibile scalderà 1+m chilogrammi di prodotti della combustione essendo m la massa di comburente utilizzata Si ha: T q= 1m c d T, essendo la temperatura iniziale e c il calore specifico ( c p a pressione costante, c v a volume costante c per una politropica di esponente n ) dei prodotti della combustione (si suppone che combustibile e comburente siano alla stessa temperatura iniziale) Integrando, nella condizione di calore specifico costante, si ottiene: q=1m c T f, da cui si trova la temperatura finale dei gas di combustione: q T f = 1m c L'exergia corrispondentemente fornita ad un kg di combustibile (supposto c costante), risulta: T f b=1m c 1 T a T d T = = 1m c [T f ln T f ] = = q q T a T f ln T f L'energia chimica non viene completamente trasformata in exergia ma solo Cap 9 Pagina 3 di 9
4 la quota: T a b q =1 ln T f ; T f nella tabella 91 sono indicate le quote di calore trasformate in exergia in funzione di T a, e T f Da questa tabella si nota come la conversione del calore in exergia sia tanto maggiore quanto più alto è il salto termico T f, ma anche quanto maggiore è la temperatura di partenza ; ciò rende ragione della procedura che consiste nell'utilizzare calore a bassa temperatora, comunque maggiore di T a per preriscaldare combustibile e comburente fino ad una temperatura Tab 91 - Rapporti di conversione di calore in exergia Temperatura ambientale Temperatura iniziale Temperatura finale K K K Rapporto di conversione , , , , , , , , , , ,584 Cap 9 Pagina 4 di 9
5 Nella tabella 92 sono indicate alcune grandezze relative alla combustione di alcuni combustibili correnti e riferite ad una =T a dell'ordine di poche decine di gradi Celsius Tab 92 - Temperature di combustione Combustibile Temperatura teorica Temperatura effettiva Carbone 1500 / / 1000 Olio combustibile 1500 / / 1550 Gas 1850 / / 1800 Propano e butano commerciale 1900 Metano 2000 Gas distillato fossile 2100 Gas d'acqua 2300 Nel caso reale in cui si vogliano effettuare calcoli più precisi (anche tenendo conto della dissociazione dei prodotti di combustione alle alte temperature), si può considerare il calore specifico funzione della temperatura e pertanto il calcolo precedente dividerlo in tanti tratti in ciascuno dei quali la citata ipotesi possa essere considerata valida C) Scambiatori di calore - caldaia o generatore di vapore Rispetto al semplice bruciatore trattato al precedente punto B) si esamina il caso di un apparecchio nel quale una quantità di calore, indipendentemente dalla provenienza, viene ceduto da un fluido ad un altro: scambiatore di calore (da fluido a fluido), caldaia o generatore di vapore (da prodotti della combustione a fluido) Questi apparecchi funzionano tutti allo stesso modo: un fluido più caldo cede calore ad uno più freddo Si suppone che questo avvenga senza perdite di calore verso altri apparecchi Con queste ipotesi tutto il calore ceduto dalla prima sostanza viene prelevato dalla seconda; non si hanno altri scambi di calore Q 1 entrante può essere fornita da un fluido di portata G 1, con calore Cap 9 Pagina 5 di 9
6 specifico c 1, che cambia di temperatura da T 1i a T 1u ; così il secondo fluido di portata G 2, con calore specifico c 2 asporterà Q 2 con salto termico da T 2u a T 2i Si ottiene che il calore scambiato Q s risulta: Q s =Q 1 T 1i T 1u =Q 2 =c 2 G 2 T 2 u Il bilancio delle quantità di calore indica che non si è avuta alcuna perdita Ma l'enegia utilizzabile (exergia) introdotta dal fluido 1 corrisponde alla differenza fra B 1i del fluido entrante e B 1 u dello stesso uscente; per cui: B 1i T 1i T a ln T 1i T a ; B lu T 1u ln T 1u T a ; con una differenza: B 1 T 1i T 1 u ln T 1i T 1 u Corrispondentemente per il fluido secondario l'exergia assorbita risulta: B 2 =c 2 G 2 T 2u ln T 2 u T 2i Di conseguenza la differenza fra B 1 e B 2 corrisponde alla perdita exergetica T a S s : Cap 9 Pagina 6 di 9
7 T a S s T 1i T 1u ln T 1i T 1u c 2 G 2 T 2u ln T 2 u T 2i e nel caso che i calori specifici dei due fluidi siano uguali ( c 1 =c 2 =c ): T a S s = c T a ln T 1i T 1 u c G 2 T a ln T 2 u T 2i Se infine le due portate G 1 =G 2 =G sono uguali fra loro (salti termici conseguentemente uguali T 1i T 1u =T 2u, si ottiene: S s =c G ln T 1i T 1u ln T 2u T 2i =c G ln T 1 u T 2 u T 1i T 2i Mentre l'efficienza è unitaria in quanto: = Q 2 Q 1 = c 2 G 2 T 2u c 1 T 1i T 1 u =1 il rendimento (exergetico) risulta dalla: = B c 2 G 2 T 2 u ln T 2u 2 T = 2i B 1 c 1 T 1i T 1 u ln T 1i T 1u relazione che subisce ancora qualche semplificazione nell'ultima situazione (fluidi identici e portate uguali) D) Macchina a combustione interna In questa macchina a combustione interna il fluido in ingresso si trova in condizioni termiche e di pressione prossime a quelle esterne: esso può essere Cap 9 Pagina 7 di 9
8 costituito da sola aria atmosferica ovvero da una sua miscela con un combustibile All'interno della macchina (turbina a gas, motore a ciclo Otto o Diesel) avvengono operazioni di compressione (a spese del lavoro prodotto in fase di espansione) di combustione e di espansione; nella combustione viene introdotto il calore da convertire in lavoro L'equazione di bilancio diventa: s fo q 1 s 1 s at s s = ed il rendimento: = lh 2 s f2 s fo, l = = s fo q 1 s 1 = q 1 s 1 s at s s h 2 T a s f2 s fo q 1 s 1, che, per il bilancio delle entropie diventa: h = 1 q 1 h 2 s fo q 1 s 1 Il problema consiste nella valutazione dell'exergia del calore di combustione: tale grandezza è relativamente facile da calcolare se la velocità del processo è sufficientemente bassa e le temperature che si raggiungono non sono tanto elevate, poiché in tal caso viene completata la reazione chimica prima del processo di espansione; diversamente avviene per gli altri tipi di macchine nelle quali la reazione avviene durante l'espansione e si completa quando le temperature sono in parte diminuite Ovviamente tanto minore è la temperatura alla quale il calore di combustione viene sviluppato, tanto minore sarà l'exergia che esso possiede Per questo motivo di difficoltà nella valutazione dell'exergia, viene correntemente calcolata l'efficienza in luogo del rendimento: Cap 9 Pagina 8 di 9
9 l = = h 2 q 1 q 1 q 1 Anche in questo caso il rendimento permette di conoscere prestazioni e perdite della macchina, mentre l'efficienza, riferendosi al calore speso, ingloba anche l'efficienza di combustione Cap 9 Pagina 9 di 9
Esercizi di Fisica Tecnica 2013-2014. Termodinamica
Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione
CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA
CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU
Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:
LA COGENERAZIONE TERMICA ED ELETTRICA 1. Introduzione 2. Turbine a Gas 3. Turbine a vapore a ciclo combinato 4. Motori alternativi 5. Confronto tra le diverse soluzioni 6. Benefici ambientali 7. Vantaggi
Il lavoro nelle macchine
Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:
LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1
LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)
Termodinamica. Sistema termodinamico. Piano di Clapeyron. Sistema termodinamico. Esempio. Cosa è la termodinamica? TERMODINAMICA
Termodinamica TERMODINAMICA Cosa è la termodinamica? La termodinamica studia la conversione del calore in lavoro meccanico Prof Crosetto Silvio 2 Prof Crosetto Silvio Il motore dell automobile trasforma
352&(662',&20%867,21(
352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.
ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1
L - SISTEMI APERTI ENERGIA INTERNA E = n Cv T E = m cv T (Cv molare = J/kmol C) (cv massico = J/kg C) ENERGIA INTERNA SPECIFICA e = E/m = cv T ENTALPIA H = E + pv H = n Cp T H = m cp T (Cp molare = J/kmol
RICHIAMI DI TERMOCHIMICA
CAPITOLO 5 RICHIAMI DI TERMOCHIMICA ARIA TEORICA DI COMBUSTIONE Una reazione di combustione risulta completa se il combustibile ha ossigeno sufficiente per ossidarsi completamente. Si ha combustione completa
CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE
CAPITOLO 1 CICLO RANKINE (CICLO A FLUIDO BIFASE) TURBINE A VAPORE 1 CICLO RANKINE IL CICLO TERM ODINAM ICO RANKINE E COMPO STO DA Q UATTRO TRASFO RM AZIO NI PRINCIPALI (COMPRESSIO NE, RISCALDAM ENTO, ESPANSIO
POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE
POMPA DI CALORE CONDENSATORE = + L T = + L C ORGANO DI ESPANSIONE LIQUIDO COMPRESSORE T COND. E D T 1 VAPORE T EVAP. A B T 2 Schema a blocchi di una macchina frigorifera EVAPORATORE Dal punto di vista
9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI
9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia
Impianti motori termici
Impianti motori termici Classificazione: impianto motore termico con turbina a vapore il fluido evolvente nell impianto è acqua in diversi stati di aggregazione impianto motore termico con turbina a gas
CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau
CORSO DI SISTEMI ENERGETICI II A.A. 20142015 Prof. Ing. Giorgio Cau VALUTAZIONE DELLE PRESTAZIONI DI UN IMPIANTO DI COGENERAZIONE E VERIFICA DEGLI INDICI ENERGETICI AI SENSI DELLA DELIBERA AEEG 42/02 Caratteristiche
Energia nelle reazioni chimiche. Lezioni d'autore di Giorgio Benedetti
Energia nelle reazioni chimiche Lezioni d'autore di Giorgio Benedetti VIDEO Introduzione (I) L energia chimica è dovuta al particolare arrangiamento degli atomi nei composti chimici e le varie forme di
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA
QUESITI DI FISICA RISOLTI A LEZIONE TERMODINAMICA Un recipiente contiene gas perfetto a 27 o C, che si espande raggiungendo il doppio del suo volume iniziale a pressione costante. La temperatura finale
Applicazioni del secondo principio. ovvero. Macchine a vapore a combustione esterna: Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel
Termodinamica Applicazioni del secondo principio ovvero Macchine a vapore a combustione esterna: macchina di Newcomen e macchina di Watt Macchine a vapore a combustione interna: Ciclo Otto, ciclo Diesel
Formulario di Fisica Tecnica Matteo Guarnerio 1
Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI
BILANCI DI ENERGIA. Capitolo 2 pag 70
BILANCI DI ENERGIA Capitolo 2 pag 70 BILANCI DI ENERGIA Le energie in gioco sono di vario tipo: energia associata ai flussi entranti e uscenti (potenziale, cinetica, interna), Calore scambiato con l ambiente,
IMPIANTI DI CLIMATIZZAZIONE
IMPIANTI DI CLIMATIZZAZIONE parti 3 4 1 IMPIANTO TERMICO In generale si può pensare articolato nelle seguenti parti: Generatore uno o più apparati che forniscono energia termica ad un mezzo di trasporto
PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4)
PROBLEMA 1 Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) Deve possedere un elevato calore latente, cioè, deve evaporare asportando molto calore dall ambiente
Le macchine termiche e il secondo principio della termodinamica
Le macchine termiche e il secondo principio della termodinamica ) Definizione di macchina termica È sperimentalmente verificato che nel rispetto del primo principio della termodinamica (ovvero della conservazione
CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro
Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del
Lezione IX - 19/03/2003 ora 8:30-10:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro.
Lezione IX - 9/03/003 ora 8:30-0:30 - Ciclo di Carnot, Otto, Diesel - Originale di Spinosa Alessandro. Ciclo di Carnot Si consideri una macchina termica semplice che compie trasformazioni reversibili,
UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi
Roberto Lensi 1. Complementi sui sistemi termici Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 1. Complementi sui sistemi termici Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico
Caratterizzazione di un cogeneratore a combustione esterna: la macchina di Striling nel laboratorio mobile del progetto Sinergreen
Caratterizzazione di un cogeneratore a combustione esterna: la macchina di Striling nel laboratorio mobile del progetto Sinergreen 1 SCHEMA DI PRINCIPIO PERDITE 10 ENERGIA PRIMARIA 100 ENERGIA TERMICA
COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke)
COMPOSIZIONE E FUNZIONAMENTO DEL MOTORE QUATTRO TEMPI(4-Stroke) Salve a tutti. In questa recensione spiegherò la composizione e il funzionamento del motore a scoppio Quattro Tempi, in inglese 4-stroke.
Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.
Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti
Applicazioni della Termochimica: Combustioni
CHIMICA APPLICATA Applicazioni della Termochimica: Combustioni Combustioni Il comburente più comune è l ossigeno dell aria Aria secca:! 78% N 2 21% O 2 1% gas rari Combustioni Parametri importanti:! 1.Potere
Ciclo Rankine. Macchina tipica di un ciclo a vapore
di Piraccini Davide OBBIETTIVI : Inserire un impianto ORC (Organic Rankine Cycle) nel ciclo di bassa pressione della centrale Enel di Porto Corsini e studiare la convenienza tramite il confronto dei rendimenti
MOTORI ENDOTERMICI di Ezio Fornero
MOTORI ENDOTERMICI di Ezio Fornero Nei motori endotermici (m.e.t.) l energia termica è prodotta mediante combustione di sostanze liquide o gassose, generalmente dette carburanti. Si tratta di motori a
Seconda legge della termodinamica
Seconda legge della termodinamica In natura tutti i processi devono soddisfare il principio di conservazione dell energia (e quindi anche la a legge della termodinamica) ma non tutti i processi che conservano
ALLEGATO II. Calcolo della produzione da cogenerazione
ALLEGATO II Calcolo della produzione da cogenerazione I - Calcolo dell energia elettrica da cogenerazione 1. Per calcolare il risparmio di energia primaria di una unità di cogenerazione, occorre anzitutto
PINCH TECHNOLOGY. Il target può essere: minima area degli scambiatori minimo consumo di energia minimo costo annuo totale
PINCH TECHNOLOGY Obiettivo => ottimizzare i flussi energetici nel sistema i.e. trovare la migliore disposizione degli scambiatori di calore (energia) necessari per ottenere le temperature finali richieste.
FACOLTÀ DI INGEGNERIA. 2. Exergia. Roberto Lensi
Roberto Lensi 2. Exergia Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Exergia Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2002-03 Roberto Lensi 2. Exergia Pag. 2 REVERSIBILITÀ
Impianti di COGENERAZIONE
Impianti di COGENERAZIONE Definizione: produrre energia insieme Produzione combinata di : 1. energia elettrica/meccanica 2. energia termica (calore) ottenute in appositi impianti utilizzanti la stessa
Rapporto ambientale Anno 2012
Rapporto ambientale Anno 2012 Pagina 1 di 11 1 ANNO 2012 Nell anno 2005 la SITI TARGHE srl ha ottenuto la certificazione ambientale secondo la norma internazionale ISO 14001:2004, rinnovata nel 2008 e
CENTRALI TERMOELETTRICHE
CENTRALI TERMOELETTRICHE Le centrali termoelettriche sono impianti che utilizzano l energia chimica dei combustibili per trasformarla in energia elettrica. Nelle centrali termoelettriche la produzione
Prima Prova Scritta. Traccia n. 1 Descrivere le diverse tipologie di macchine elettriche impiegate nelle centrali di produzione dell energia.
Allegato 1 al Verbale n. 1 Università degli Studi Mediterranea di Reggio Calabria Sezione A Settore industriale Sessione: Novembre 2006, 2 a Sessione Il candidato svolga uno dei seguenti temi: Prima Prova
Macchine termiche. Alla fine di ogni ciclo il fluido ripassa per lo stesso stato.
Macchine termiche In una macchina termica - ad esempio un motore - un fluido (il vapore delle vecchie locomotive, la miscela del motore a scoppio) esegue qualche tipo di ciclo termodinamico. Alla fine
IL SISTEMA DRY TECNOCLIMA. i perchè di una tecnologia che ti conviene!
IL SISTEMA DRY TECNOCLIMA i perchè di una tecnologia che ti conviene! 4 FENOMENOLOGIA IL RISCALDAMENTO E IL RAFFREDDAMENTO DELL ARIA A SCAMBIO DIRETTO (DRY) In generale, il consumo energetico di un impianto
Stagisti: Bottaini Federico, Konica Francesco Tutor aziendali: Calistri Cesare, Ferri Leonardo Tutor scolastico: Carosella Vincenzo
Stagisti: Bottaini Federico, Konica Francesco Tutor aziendali: Calistri Cesare, Ferri Leonardo Tutor scolastico: Carosella Vincenzo 1 Prefazione Lo scopo principale di queste cabine è quello di ottenere
Termodinamica: legge zero e temperatura
Termodinamica: legge zero e temperatura Affrontiamo ora lo studio della termodinamica che prende in esame l analisi dell energia termica dei sistemi e di come tale energia possa essere scambiata, assorbita
X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)
CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico
Programma di sperimentazione
Programma di sperimentazione 1 GENERALITÀ Dopo avere valutato quanto indicato nel Decreto del Ministero dei Lavori Pubblici del 22/10/97 con riferimento alla Guida ai programmi di sperimentazione allegata
Focus sulla potenza termica
Focus sulla potenza termica La vigente normativa distingue le prescrizioni di sicurezza e di risparmio energetico in funzione della potenza dei generatori di calore o degli impianti termici. A volte, però
RECUPERATORE DI CALORE AD ALTISSIMA EFFICIENZA ENERGETICA
RECUPERATORE DI CALORE AD ALTISSIMA EFFICIENZA ENERGETICA BEAM POWER ENERGY SRL SVILUPPA UNA PARTICOLARE ATTIVITÀ DI SERVIZIO DI EFFICIENTAMENTO ENERGETICO PER LE INDUSTRIE O GRANDI STRUTTURE INCENTRATA
Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento
LA TECNOLOGIA DEL CICLO COMBINATO A GAS NATURALE La maggiore quantità di energia elettrica generata da Edison è prodotta da 28 centrali termoelettriche. Edison sviluppa, progetta e costruisce interamente,
Celle a combustibile Fuel cells (FC)
Celle a combustibile Fuel cells (FC) Celle a combustibile Sono dispositivi di conversione elettrochimica ad alto rendimento energetico. Esse trasformano in potenza elettrica l energia chimica contenuta
TESTO. Art. 2. Sono abrogati i decreti ministeriali 10 gennaio 1950 e 2 agosto 1956. ALLEGATO
Decreto del Presidente della Repubblica n 1208 del 05/09/1966 Modifiche alla vigente disciplina normativa in materia di apparecchi di alimentazione per generatori di vapore aventi potenzialità specifica
Lezione estd 29 pagina 1. Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica
Lezione estd 29 pagina 1 Argomenti di questa lezione (esercitazione) Iniziare ad affrontare esercizi di termodinamica Lezione estd 29 pagina 2 Esercizio 3, 5 luglio 2005 Una macchina di Carnot produce
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012
Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100
Esercizi sui Compressori e Ventilatori
Esercizi sui Compressori e Ventilatori 27 COMPRESSORE VOLUMETRICO (Appello del 08.06.1998, esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V
Energia e Fonti Rinnovabili. Un esempio di risparmio energetico: la produzione distribuita di energia elettrica
Energia e Fonti Rinnovabili Almo Collegio Borromeo, Pavia, a.a. 2009-2010 corso riconosciuto dall Università degli Studi di Pavia Un esempio di risparmio energetico: la produzione distribuita di energia
La combustione ed i combustibili
La combustione ed i combustibili Concetti di base Potere calorifico Aria teorica di combustione Fumi: volume e composizione Temperatura teorica di combustione Perdita al camino Combustibili Gassosi Solidi
LA MACCHINA FRIGORIFERA E LA POMPA DI
asdf LA MACCHINA FRIGORIFERA E LA POMPA DI CALORE 12 March 2012 Il ciclo di Carnot... "al contrario" Nell'articolo dedicato alla macchina termica, avevamo visto nel finale la macchina di Carnot e il ciclo
CICLO FRIGORIFERO PER RAFFREDDAMENTO
CICLO FRIGORIFERO PER RAFFREDDAMENTO REGIONE CALDA Liquido saturo o sottoraffreddato Q out 3 2 Vapore surriscaldato valvola di espansione condensatore compressore P c evaporatore 4 1 Miscela bifase liquidovapore
Motori endotermici I MOTORI ENDOTERMICI. Corso di Laurea Scienze e Tecnologie Agrarie
Corso di Laurea Scienze e Tecnologie Agrarie Motori endotermici Dipartimento Ingegneria del Territorio - Università degli Studi di Sassari I MOTORI ENDOTERMICI Il motore converte l energia termica del
Complementi di Termologia. I parte
Prof. Michele Giugliano (Dicembre 2) Complementi di Termologia. I parte N.. - Calorimetria. Il calore è una forma di energia, quindi la sua unità di misura, nel sistema SI, è il joule (J), tuttavia si
Temperatura e Calore
Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli
Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti
Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas
Preparazione alle gare di II livello delle Olimpiadi della Fisica 2013
Preparazione alle gare di II livello delle Olimpiadi della Fisica 01 Incontro su temi di termodinamica 14/1/01 Giuseppina Rinaudo - Dipartimento di Fisica dell Università di Torino Sommario dei quesiti
IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona [email protected]
IMPIANTI DI RISCALDAMENTO Ing. Guglielmo Magri Dipartimento di Energetica-Ancona [email protected] SISTEMI DI GENERAZIONE Tipologie più diffuse o in sviluppo Generatori a combustione Caldaie
Il Patto dei Sindaci Spunti per approfondimenti. Sistemi di riscaldamento Caldaie e Pompe di calore. Novembre 2011
Il Patto dei Sindaci Spunti per approfondimenti Sistemi di riscaldamento Caldaie e Pompe di calore Novembre 2011 Sistema di Riscaldamento Quando si parla di impianto di riscaldamento si comprendono sia
COGENERAZIONE. Tipologie di impianti di cogenerazione
COGENERAZIONE La cogenerazione, o produzione combinata di energia elettrica e calore, consente di ottenere da una singola unità produttiva energia elettrica e termica, o in alcuni casi, lavoro ed energia
Anno 2014. Rapporto ambientale
Anno 2014 Rapporto ambientale 1 ANNO 2014 Nell anno 2005 la SITI TARGHE S.r.l. ha ottenuto la certificazione ambientale secondo la norma internazionale ISO 14001:2004, rinnovata nel 2008, nel 2011 e nel
Fondamenti di Trasporti. Meccanica della Locomozione Utilizzazione della potenza a bordo
Università di Catania Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile AA 1011 1 Fondamenti di Trasporti Meccanica della Locomozione Utilizzazione della potenza a bordo Giuseppe Inturri Dipartimento
CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015
CORSO DI MACCHINE E SISTEMI ENERGETICI A.A. 2014/2015 --- Prova di valutazione intermedia del 9 Gennaio 2015 C= prima lettera del cognome C = 0 Nome e Cognome Matricola Corso di Studio A B C D E F G H
WHB / GXC CALDAIE A RECUPERO TERMICO
WHB / GXC CALDAIE A RECUPERO TERMICO ICI CALDAIE LE CALDAIE A RECUPERO TERMICO Le caldaie a recupero di calore sono macchine termiche che utilizzano il calore dei gas di scarico per la produzione di acqua
3. Le Trasformazioni Termodinamiche
3. Le Trasformazioni Termodinamiche Lo stato termodinamico di un gas (perfetto) è determinato dalle sue variabili di stato: ressione, olume, Temperatura, n moli ffinché esse siano determinate è necessario
Banco Prova Caldaie. per generatori di energia termica avente una potenza nominale inferiore a 100kW
Banco Prova Caldaie per generatori di energia termica avente una potenza nominale inferiore a 100kW 1 Generalità Il banco prova caldaie attualmente disponibile presso il nostro Laboratorio è stato realizzato
REAZIONI ORGANICHE Variazioni di energia e velocità di reazione
REAZIONI ORGANICHE Variazioni di energia e velocità di reazione Abbiamo visto che i composti organici e le loro reazioni possono essere suddivisi in categorie omogenee. Per ottenere la massima razionalizzazione
MACCHINE DA VERIFICARE (verifiche successive alla prima che è di competenza dell INAIL)
Network 0828 346474 [email protected] www.networkgtc.it 12358991003 C.F. MACCHINE DA VERIFICARE (verifiche successive alla prima che è di competenza dell INAIL) ATTERZZATURE DI LAVORO APPARTENENTI AL
CC C T U Gruppo turbogas 3
Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell
ALTRE MODALITA DI PRODUZIONE DI ENERGIA
Scheda 6 «Agricoltura e Agroenergie» ALTRE MODALITA GREEN JOBS Formazione e Orientamento LA COMPONENTE TERMICA DELL ENERGIA Dopo avere esaminato con quali biomasse si può produrre energia rinnovabile è
vosges di Moreno Beggio
vosges di Moreno Beggio tel. 0444-387119 r.a. Divisione catalizzatori magnetici telefax 0444-264228 Via Roma, 133 mail : [email protected] 36040 - TORRI DI QUARTESOLO - (VI) http://www.vosges-italia.it
Lavoro d anno Corso di Energetica Industriale Professore: Antonio Ficarella
Lavoro d anno Corso di Energetica Industriale Professore: Antonio Ficarella Nuova tecnologia per migliorare un impianto di riscaldamento ad uso domestico Sasha Luciana Catalini matricola: 10041516 a.a.
UNIVERSITÀ DEGLI STUDI DI PISA. 2. Sistemi motori gas/vapore. Roberto Lensi
Roberto Lensi 2. Sistemi motori gas/vapore Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 2. Sistemi motori gas/vapore Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2003-04 Roberto
CHIMICA GENERALE MODULO
Corso di Scienze Naturali CHIMICA GENERALE MODULO 6 Termodinamica Entalpia Entropia Energia libera - Spontaneità Relatore: Prof. Finelli Mario Scienza che studia i flussi energetici tra un sistema e l
ARGOMENTI CONTENUTI OBIETTIVI DIDATTICI TIPO DI VERIFICA
Periodo: Settembre - Ottobre La turbina a vapore La turbina a gas nella propulsione Funzionamento e struttura di una turbina a vapore Gli ugelli per la trasformazione dell entalpia in energia cinetica
Presentazione del progetto. I cicli termodinamici:
Presentazione del progetto I cicli termodinamici: OTTO DIESEL Obiettivi Presentare in modo sintetico ed efficace i concetti base relativi ai cicli termodinamici OTTO e DIESEL Organizzare e realizzare con
Lezione 7 I e II Prinicipio
Lezione 7 I e II Prinicipio Lavoro: W = pdv Serway, 17 ap. se la pressione é costante: Unitá di misura: 7.1 lavoro ed energia termica 7.1.1 XVII. 18 W = p V 1litro = 10 3 m 3 1atm 1.01310 5 P a = 1.01310
9. Urti e conservazione della quantità di moto.
9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due
4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0
Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice
BERICA IMPIANTI SPA- COGENERAZIONE
BERICA IMPIANTI SPA COGENERAZIONE COME ÉÈ COMPOSTO, COME FUNZIONA, COSA PRODUCE COME É COMPOSTO MOTORE: Viene scelto fra le migliori marche ricercando le caratteristiche e modelli adeguati alle esigenze
Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico
Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio
Secondo principio della termodinamica. Macchine termiche Rendimento Secondo principio della Termodinamica Macchina di Carnot Entropia
Secondo principio della termodinamica Macchine termiche Rendimento Secondo principio della ermodinamica Macchina di arnot Entropia Introduzione al secondo principio della termodinamica Da quanto studiato
LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante
IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /
Gruppi frigoriferi HF/TH/ZH
Gruppi frigoriferi HF/TH/ZH HF Generatore d'acqua refrigerata monoblocco E' un dispositivo refrigeratore d'acqua con condensatore ad acqua. La macchina è monoblocco e pronta a funzionare, una volta eseguiti
Eco Gas Comfort. Caldaia Modula NT (< 34 kw) Caldaia Modula II (< 115 kw) Tante identità, un unico gruppo
Eco Gas Comfort Caldaia Modula NT (< 34 kw) Caldaia (< 115 kw) Tante identità, un unico gruppo Paradigma, azienda leader nei sistemi ecologici di riscaldamento, dal 1988 offre massima qualità con grande
La norma UNI 10200: PROPOSTE DI AGGIORNAMENTO NEI CASI DI IMPIANTI STANDARD
La norma UNI 10200: PROPOSTE DI AGGIORNAMENTO NEI CASI DI IMPIANTI STANDARD 1 Per renderla più facile da applicare negli impianti centralizzati più comuni Ing. Antonio Magri [email protected] IMPIANTI
Cos è una. pompa di calore?
Cos è una pompa di calore? !? La pompa di calore aria/acqua La pompa di calore (PDC) aria-acqua è una macchina in grado di trasferire energia termica (calore) dall aria esterna all acqua dell impianto
Blade cooling Gas Turbine. Impianti per l Energia l
Blade cooling Gas Turbine Impianti per l Energia l 2010-2011 2011 Effetto della temperatura massima del ciclo sulle prestazioni dei turbogas Effetto della temperatura massima del ciclo sulle prestazioni
Il Process Engineering Manual: uno strumento di sussidio pratico alle attività dell ingegnere. Ing. Luigi Ciampitti Coordinatore GdL PEM, AIDIC
Associazione Italiana Di Ingegneria Chimica Il Process Engineering Manual: uno strumento di sussidio pratico alle attività dell ingegnere Ing. Luigi Ciampitti Coordinatore GdL PEM, AIDIC 1.0 I MANUALI
p atm 1. V B ; 2. T B ; 3. W A B 4. il calore specifico a volume costante c V
1 Esercizio (tratto dal Problema 13.4 del Mazzoldi 2) Un gas ideale compie un espansione adiabatica contro la pressione atmosferica, dallo stato A di coordinate, T A, p A (tutte note, con p A > ) allo
IMPIANTI TECNOLOGICI E DGR 1366 DEL 26/09/11: SOLUZIONI PRATICHE
IMPIANTI TECNOLOGICI E DGR 1366 DEL 26/09/11: SOLUZIONI PRATICHE 1 IMPIANTI SOSTENIBILI Sostenibilità: equilibrio fra il soddisfacimento delle esigenze presenti, senza compromettere la possibilità delle
Fusar Bassini Astorre e C. Snc BRUCIATORI SERIE HV. Fusar Bassini Astorre e C. Snc
BRUCIATORI SERIE HV APPLICAZIONI I bruciatori della serie HV sono adatti per applicazioni su forni industriali, per combustioni ad impulsi a rapporto stechiometrico o con eccesso d'aria; sono particolarmente
Analisi Impianto di Condizionamento del Velivolo MD-11
Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Analisi Impianto di Condizionamento del Velivolo MD-11 Michele Pinelli Febbraio 2013 Premessa La presente relazione analizza, attraverso valutazioni
Amplificatori Audio di Potenza
Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso
