Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali"

Transcript

1 Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Lorenzo Magliocchetti Arrigo Marchiori Michele Marino Ottobre 2006 Sommario Lo scopo di questo documento è ricavare le formule che descrivono l algoritmo di stima dei minimi quadrati ricorsivi, applicato a sistemi con grandezze vettoriali in ingresso e in uscita. In letteratura è possiblie trovare numerose descrizioni di tale algoritmo, ma con grandezze scalari. L argomento è introdotto a partire dalla formula dei minimi quadrati batch. 1 Sistema e stimatore Consideriamo un generico sistema con ingressi vettoriali x di dimensione qualunque e uscite y R m. L obiettivo è stimare alcuni parametri β R n di questo sistema. A tale scopo, si utilizza uno stimatore che sia caratterizzato da una dipendenza lineare dal vettore dei parametri da stimare: ỹ F x, β) Φx)β dove Φ è una funzione non necessariamente lineare dell ingresso x. La bontà dei valori assegnati ai parametri dello stimatore deve essere giudicata in base ad un criterio; normalmente si definisce una funzione di penalità da minimizzare. 1.1 Criterio dei minimi quadrati batch Si effettuano j esperimenti, cioè misure dell ingresso e dell uscita del sistema. I valori si organizzano in vettori di R jm : x 1 y 1 x 2 y 2 x m. y m.. x j y j Per ogni esperimento si considera l errore di stima, inteso come la differenza tra l uscita del sistema e quella dello stimatore: e i y i ỹ i y i Φx i )β 1) 1

2 Incolonnando gli errori di tutti gli esperimenti, si ottiene il vettore e m R jm : e 1 Φx 1 ) e 2 e m. y Φx 2 ) m. β y m Φx m )β 2) e j Φx j ) con Φx m ) R jm n. La funzione di penalità che si considera è la seguente: V j β) 1 2 e m Re m 3) dove R è una matrice simmetrica e definita positiva che ha la funzione di pesare opportunamente gli esperimenti. Con R I, ad esempio, tutti gli esperimenti hanno lo stesso peso. Sostituendo la 2) nella 3), derivando V j β) rispetto a β, annullando il risultato e risolvendo rispetto a β, si ottiene: β opt Φx m ) A Φx m ) ) 1 Φx m ) Ay m 4) dove A R + R ), anch essa simmetrica e definita positiva. Perché questo criterio funzioni, la matrice Φx m ) A Φx m ) deve essere invertibile; questo accade se l ingresso x m del sistema è sufficientemente eccitante. 1.2 Criterio dei minimi quadrati ricorsivi Per poter aggiornare in linea i parametri dello stimatore, bisogna modificare il criterio dei minimi quadrati, fornendone una formulazione ricorsiva. In questo modo, ad ogni passo di computazione k è possibile aggiornare la stima, tenendo conto di ciò che si è calcolato nei passi precedenti. Si desidera quindi adattare la relazione 4). Omettendo la dipendenza di Φ da x m e riscrivendo l espressione in funzione del passo k si ottiene: dove: β k) Φ k)a k) Φ k) ) 1 Φ k)a k) y m k) 5) Φ k) R km n, y m k) R km, A k) R km km La struttura di Φ k) è la stessa dell eq. 2), cioè ad ogni passo si aggiunge in basso una nuova sottomatrice. Di conseguenza, la matrice al passo k + 1 si può scrivere: [ ] Φ k) Φ k + 1) R ) m 6) dove R m n. Anche la matrice A k) ed il vettore y m k) si aggiornano ad ogni passo: [ ] ym k) y m k + 1) R )m 7) y 2

3 Nell aggiornamento di A, però, la parte che si riferisce al passato viene moltiplicata per un coefficiente λ: [ ] λa k) A k + 1) R )m )m, 0 < λ 1 8) A λ è detto fattore di dimenticanza : si può vedere, ad esempio, che al passo k + j la matrice Ak + j) contiene la sottomatrice Ak) moltiplicata per λ j. Se λ 1, non si effettua alcuna dimenticanza. Definiamo la matrice Pk) attraverso la sua inversa: P 1 k) Φ k)a k) Φ k) R n n 9) Al passo k + 1, secondo le definizioni appena date 6) e 8), ponendo λ c 2, si ottiene: P 1 k + 1) Φ k + 1)Ak + 1) Φk + 1) [ ] [ Φ k) Φ λa k) [ λ Φ k)a k) Φ A A ] [ Φ k) λ Φ k)a k) Φ k) + Φ A ] [ Φ k) ] ] λp 1 k) + Φ A 10) Ora si consideri l espressione di β 5) al passo k + 1: βk + 1) Φ k + 1)Ak + 1) Φk + 1) ) 1 Φ k + 1)Ak + 1)y m k + 1) riconoscendo nella prima parentesi l espressione di P 1 k + 1) dalla 9) e sostituendo le espressioni di Φk + 1) 6), Ak + 1) 8) e y m k + 1) 7) si ottiene: βk + 1) Pk + 1) Φ k + 1)Ak + 1)y m k + 1) Pk + 1) [ ] [ ] Φ k) Φ λa k) y A m k + 1) Pk + 1) [ λ Φ k)a k) Φ A ] [ ] y m k) y Pk + 1) λ Φ k)a k) y m k) + Φ ) A y 11) L espressione di Pk + 1) si ottiene invertendo la 10): Pk + 1) λp 1 k) + Φ A ) 1 siccome: allora: A + BCD) 1 A 1 A 1 B DA 1 B + C 1) 1 DA 1 12) Pk + 1) 1 λ Pk) 1 λ Pk)Φ ) 1 1 λ Pk)Φ + A 1 1 λ Pk) 13) 3

4 Per semplificare l espressione si introduce il termine Γk) R m m. Esso è invertibile, perché definito positivo. Γk) Pk)Φ + ) 1 λa 1 Pk + 1) 1 λ Pk) Pk)Φ Γk) Pk) ) 14) Sostituendo questa espressione appena trovata in quella di βk + 1) 11) si ottiene: βk + 1) Pk) Φ k)a k) y m k) + 1 λ Pk)Φ A y + Pk)Φ Γk) Pk) Φ k)ak)y m k) + 1 λ Pk)Φ Γk) Pk)Φ A y 15) Abbandonando per un attimo questa espressione, si consideri che per definizione di βk) 5) e di Pk) 9): βk) Pk) Φ k)a k) y m k) 16) e per la seconda delle 14): Pk + 1)Φ A 1 Pk)Φ λ A Pk)Φ ) Γk) A 1 λ Pk)Φ A Γk) Pk)Φ ) A 17) L espressione tra parentesi è pari a λγk): infatti, raggruppando per Γk): A Γk) Pk)Φ A λγk) Γk) λi + Pk)Φ A ) A moltiplicando a destra entrambi i membri per A 1 si ottiene: Γk) λa 1 + Pk)Φ ) I questa si rivela un identità se si considera l espressione di Γk) 14): Di conseguenza, la 17) diventa: Γk)Γ 1 k) I Pk + 1)Φ A Pk)Φ Γk) 18) Inserendo questa e la 16) nell espressione di β k + 1) che si stava calcolando 15) si ottiene: β k + 1) β k) + 1 λ Pk)Φ A y + Pk + 1)Φ A Pk) Φ k)ak)y m k) + 1 λ Pk + 1)Φ A Pk)Φ A y 4

5 β k) + 1 λ Pk + 1)Φ A Γ 1 k)a y + Pk 1)Φ A Pk) Φ k)ak)y m k) ) λ Φ A y 1 β k) + Pk + 1)Φ A λ Γ 1 k)a y + Pk) Φ k)ak)y m k) + 1λ )) Φ A y βk) + Pk + 1)Φ A 1 λ Pk)Φ ) A y + ) βk) Γ 1 k) + Sostituendo l espressione di Γ 1 k) 14) si vede che l espressione più interna, tra parentesi, diventa: Pk)Φ + A 1 Pk)Φ λa 1 Di conseguenza, l espressione di βk + 1) risulta: βk + 1) βk) + Pk + 1)Φ A y βk)) 19) Rispetto al caso batch, un segnale di ingresso non eccitante non pregiudica la stabilità numerica di questo criterio. Nel caso in cui un parametro non sia stimabile in base agli ingressi e alle uscite misurate, esso semplicemente non viene aggiornato. Riferimenti bibliografici [1] G. Ciccarella, P. Marietti, A. Trifiletti: Strumentazione e misure elettroniche, seconda edizione, Casa Editrice Ambrosiana 5

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Lezione Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Matrici. Somma Date due matrici n x m, A = A ij e B = B ij, con i =,,,

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI MATRICI E SISTEMI LINEARI - PARTE I - Felice Iavernaro Dipartimento di Matematica Università di Bari 27 Febbraio 2006 Felice Iavernaro (Univ. Bari) Matrici e Sistemi lineari 27/02/2006 1 / 1 Definizione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Tracking Adattativo di un Robot Car-Like mediante Feedback Linearization

Tracking Adattativo di un Robot Car-Like mediante Feedback Linearization Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Tracking Adattativo di un Robot Car-Like mediante Feedback Linearization Lorenzo Magliocchetti Arrigo Marchiori Michele Marino Ottobre 2006

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Fabrizio Silvestri December 14, 010 Matrice Sia R il campo dei numeri reali. Si indica con R m n l insieme delle matrici ad elementi reali con m righe ed n colonne. Se A R n

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare Errata corrige p. 9 esercizio 5. Modificare testo dell esercizio come segue: Dati una retta r e un punto P, esistono infiniti piani per P paralleli a r: si tratta dei piani che contengono la retta s per

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

9.3 Il metodo dei minimi quadrati in formalismo matriciale

9.3 Il metodo dei minimi quadrati in formalismo matriciale 8 CAPIOLO 9. IMA DEI PARAMERI MEODO DEI MINIMI QADRAI 9.3 Il metodo dei minimi quadrati in formalismo matriciale Nel caso si debba applicare il metodo minimi quadrati con molti parametri risulta vantaggioso

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Matematica II

Matematica II Matematica II 29..0. Somma di due matrici. Siano m ed n due interi positivi fissati. Date due matrici A, B R m n di tipo m n, sommando a ciascun elemento di A il corrispondente elemento di B, si ottiene

Dettagli

Algoritmo del simplesso

Algoritmo del simplesso Algoritmo del simplesso Ipotesi : si parte da una S.A.B. e dal tableau A=b in forma canonica. Si aggiunge una riga costituita dagli r j, j =,., n e da -z (valore, cambiato di segno, della f.o. nella s.a.b.)

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0.

3. Trovare, se esiste, una funzione di ingresso che porti il sistema da x(0) = x allo stato 0. Esempio Per il sistema a tempo discreto x(k + ) = Ax(k) + Bu(k) avente: A =, B =, si considerino i seguenti quesiti:. Il sistema è raggiungibile? è controllabile?. Lo stato x = [ ] è raggiungibile? è controllabile?.

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

Compito di MD A.A. 2013/14 4 Settembre 2014

Compito di MD A.A. 2013/14 4 Settembre 2014 Compito di MD A.A. 3/4 4 Settembre 4 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non saranno valutate risposte prive

Dettagli

SISTEMI DI EQUAZIONI LINEARI

SISTEMI DI EQUAZIONI LINEARI SISTEMI DI EQUAZIONI LINEARI Date le rette di equazioni ax + by + c = 0 e a x + b y + c = 0 quanti punti hanno in comune? Per rispondere devo risolvere il sistema ax + by + c = 0 ቊ a x + b y + c = 0 e

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5. Indice. 2. Esercizi 5

ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5. Indice. 2. Esercizi 5 ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5 Indice 1. Principali definizioni 1 2. Esercizi 5 Operazioni con le matrici 1. Principali definizioni Ricordiamo le principali definizioni legate alle matrici a coefficienti

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti PRIMA ESERCITAZIONE Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Dispense del corso di Metodi Numerici per le Equazioni Differenziali

Dispense del corso di Metodi Numerici per le Equazioni Differenziali Dispense del corso di Metodi Numerici per le Equazioni Differenziali Progetto numerico al calcolatore - Parte III Soluzione agli elementi finiti di un problema parabolico Mario Putti Dipartimento di Matematica

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Trasformazione di Problemi Non Lineari

Trasformazione di Problemi Non Lineari Capitolo 2 Trasformazione di Problemi Non Lineari 2.1 Trasformazione in problema di PL In questa sezione, verranno presentati tre classi di problemi di programmazione non lineare che, attraverso l uso

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Esercizi 12. David Barbato

Esercizi 12. David Barbato Esercizi 12 10\06\2015 David Barbato Esercizio 1. Nello spazio affine A 2 (R) consideriamo la retta r di equazione x + y = 1 ed il punto A di coordinate (4, 1). Sia s la retta passante per A ed ortogonale

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

22 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx ) 2 +(dx 2 ) 2 +(dx

Dettagli

B0 1 C A A C A , x y a h g 1 0 g f c 1

B0 1 C A A C A , x y a h g 1 0 g f c 1 Questa è una breve raccolta di esercizi, che verrà aggiornata man mano che andremo avanti nel corso. Se il testo di alcuni esercizi non vi è chiaro, non spaventatevi, e venite a parlarne con me. Prometto

Dettagli

Esercizi per Geometria II Geometria affine e euclidea

Esercizi per Geometria II Geometria affine e euclidea Esercizi per Geometria II Geometria affine e euclidea Filippo F. Favale 4 marzo 04 Esercizio Si dica, per ciascuno dei seguenti casi, se A ha la struttura di spazio affine o euclideo su V. A R 3 con coordinate

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

Cambiamento di coordinate e matrice di passaggio

Cambiamento di coordinate e matrice di passaggio Camiamento di coordinate e matrice di passaggio In queste note spieghiamo come usare le matrici di passaggio da una ase B ad una ase B per calcolare come camiano le coordinate di un vettore passando da

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

Compito di MD 13 febbraio 2014

Compito di MD 13 febbraio 2014 Compito di MD 13 febbraio 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Mauro Saita Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi...

Mauro Saita   Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi... ette e piani in ette e piani in. Esercizi e-mail: maurosaita@tiscalinet.it Gennaio 2016. Indice 1 Equazioni parametriche della retta 2 1.1 Esempi........................................ 2 2 Equazione cartesiana

Dettagli

2. ALGORITMO DEL SIMPLESSO

2. ALGORITMO DEL SIMPLESSO . ALGORITMO DEL SIMPLESSO R. Tadei Una piccola introduzione R. Tadei SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Nozioni e Richiami di Algebra Lineare

Nozioni e Richiami di Algebra Lineare Nozioni e Richiami di Algebra Lineare Chiara Giusy Genovese Università di Bologna Scuola di Economia, Management e Statistica CLAMEP Statistica per l analisi dei dati 11 Novembre 2014 Indice Introduzione

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Compito di MD 1 0 aprile 2014

Compito di MD 1 0 aprile 2014 Compito di MD aprile 24 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare in

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni 2. MATRICI

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni 2. MATRICI Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 2 MATRICI Siano m, n N \ {0}, sia K un campo Una matrice m n a coefficienti in K è una

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 25 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, se è possibile scrivere 3 come combinazione lineare di 507 e 2010,

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Parametri di Diffusione

Parametri di Diffusione Parametri di Diffusione Linee di trasmissione: richiami Onde di tensione e corrente Coefficiente di riflessione Potenza nelle linee Adattamento Parametri di Diffusione (S) Definizione Applicazioni ed esempi

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE210 - Geometria 2 a.a Prima prova di esonero TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 08-09 Prima prova di esonero TESTO E SOLUZIONI. Sia k 0 un numero reale. Sia V uno spazio vettoriale reale e sia e = {e,

Dettagli

Elementi di Algebra Matriciale. (richiami)

Elementi di Algebra Matriciale. (richiami) Elementi di Algebra Matriciale Definizione di matrice (richiami) Matrice quadrata, diagonale, identità, triangolare, simmetrica Matrice trasposta Principali operazioni su matrici e vettori: somma, sottrazione,

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

1) Hamming bound, coset, codici equivalenti

1) Hamming bound, coset, codici equivalenti Argomenti della Lezione ) Hamming bound, coset, codici equivalenti 2) Esercizi sui codici lineari a blocchi Osservazione () Per effettuare la decodifica a rivelazione di errore si può seguire una delle

Dettagli

Appunti di Geometria - 2

Appunti di Geometria - 2 Appunti di Geometria - Samuele Mongodi - s.mongodi@sns.it Cambi di base e applicazioni lineari Richiami Sia V uno spazio vettoriale di dimensione n sul campo K, con base assegnata e,..., e n } (ad esempio

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Approssimazione di dati e funzioni Approssimazione ai minimi quadrati Docente Vittoria Bruni Email:

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni

Lezione 2 Aprile 19, Il filtro di Kalman: derivazione delle equazioni PSC: Progettazione di sistemi di controllo III Trim. 2007 Lezione 2 Aprile 19, 2007 Docente: Luca Schenato Stesori: Schenato 2.1 Il filtro di Kalman: derivazione delle equazioni Si consideri il modello

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo 2. Rette e piani 5. Suggerimenti 9 2. Soluzioni 20 Capitolo 3. Gruppi, spazi e sottospazi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Metodi di identificazione

Metodi di identificazione Metodi di identificazione Metodo di identificazione LS per sistemi ARX Sia yt un processo ARX generico con parametri ignoti: S: yt= B z A z ut 1 1 A z et ota: scegliere ut 1 è la scelta più generica possibile,

Dettagli