RAPPRESENTAZIONE DEI DATI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RAPPRESENTAZIONE DEI DATI"

Transcript

1 Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone significato. di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente il loro significato. Strumenti Strumenti di uso frequente sono: tabelle, diagrammi a barre, istogrammi. di uso frequente sono: tabelle, diagrammi a barre, istogrammi. Consideriamo, ad ad esempio, due due sperimentatori, A e AB, eche B, abbiano effettuato che abbiano ciascuno effettuato 10 misurazioni ciascuno 10 di tempo misurazioni con strumenti di a sensibilità tempo con diversa. strumenti I dati asono sensibilità registrati diversa. nella tabella: I dati sono registrati nella tabella: tempo (in secondi) A B

2 Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone significato. di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente il loro significato. Strumenti Strumenti di uso frequente sono: tabelle, diagrammi a barre, istogrammi. di uso frequente sono: tabelle, diagrammi a barre, istogrammi. Consideriamo, ad ad esempio, due due sperimentatori, A e AB, eche B, abbiano effettuato che abbiano ciascuno effettuato 10 misurazioni ciascuno 10 di tempo misurazioni con strumenti di a sensibilità tempo con diversa. strumenti I dati asono sensibilità registrati diversa. nella tabella: I dati sono registrati nella tabella: tempo (in secondi) A B

3 UENZE Frequenze FREQUENZE TA: n i numero di volte che si (dato). M j=1 n j = N FREQUENZA ASSOLUTA: ni numero di volte che si verifica un certo evento (dato). FREQUENZA FREQUENZA ASSOLUTA: ASSOLUTA: n i numero di volte che si verifica un certo evento (dato). n i numero di volte che si M verifica un certo evento (dato). j=1 n j = MN j=1 M rappresenta il nu- n j = N M rappresenta il numero di gruppi in cui insi cui sono si suddivise le Misure A Freq. ass. Misure B Freq. ass. M rappresenta il numero di gruppi in cui si Freq. ass. Misure A Freq. ass. Misure B Freq. ass. gruppi mero1.50 di gruppi 3 in cui si sono suddivise le misure (M N). M = N misure (M sono suddivise le misure 3 (M sono N). suddivise M =N le mis- solo in caso di misure N). 1 M = 2Nsolo in caso di (M misure senza N). M ripetizioni. = N senza ripetizioni. solo in caso di misure solo 2 in caso 1.53 di misure 1 1 senza ripetizioni. FREQUENZA RELATIVA: RELATIVA: rapportotrafrequenza senza ripetizioni. rapporto tra assoluta e il numero totale di prove (misure). assoluta FREQUENZA e il numerorelativa: totale di prove rapporto (misure). trafrequenza A: rapportotrafrequenza ale di prove (misure). n j f i = n i N M j=1 FREQUENZE assoluta e il numero totale di prove (misure). N =1 Misure Af Freq. rel. Misure B Freq. rel. i = n i N M n j j=1 N = M rappresenta il numero di Misure A Freq. rel. Misure B Freq. rel. 1.4 Misure 0.3A Freq rel. Misure 0.3 B Freq. rel p.32/ p.32/49

4 Diagrammi In ascissa a Barre i valori delle misure; in ordinata le freq. assolute o relative. In ascissa i valori delle misure; in ordinata le freq. assolute o relative. Si utilizzano Si utilizzano quando le grandezze quando le assumono grandezze valori che discreti. possono assumere solo valori discreti. Indicazione Indicazione lampante: I lampante: dati di B sono IdatidiB molto raggruppati sono molto intorno raggruppati ad un valore prossimo intorno ada 1.5 unmentre valorei prossimo dati di A sono a 1.5 mentre molto più dati dispersi. A sono Qual è molto la serie piùdi dispersi. misure più Qualèlaseriedi precisa? misure più precisa?

5 DIAGRAMMI A BARRE Diagramma a Barre Sperimentatore A: seconda serie di 100 misure. Sperimentatore A: secondaseriedi100 misure. diagramma in frequenze assolute diagramma in frequenze relative Idiagrammiinfreq.realtivesidicononormalizzati. I diagrammi in freq. realtive si dicono normalizzati. Sono utili per il confronto di campioni Sonodi utili grandezza per il confronto diversa di dati diversi. All aumentare del numero delle misure il diagramma All aumentare tende adel diventare numero delle molto misure più regolare. il diagramma tende a diventare più regolare Precisione di un esperimento larghezza della distribuzione di frequenza. Precisione di un esperimento larghezza della distribuzione di frequenza.

6 Istogrammi Rappresentazione utile quando + La grandezza misurata si presenta con valori discreti + Il numero dei dati è grande Si raggruppano i dati in intervalli successivi di valori. Nel caso di misure, a causa della loro precisione finita (numero finito di cifre significative), conviene raggrupparle in M intervalli successivi di valori, la cui ampiezza non potrà mai essere inferiore alla sensibilità dello strumento. In altre parole, la più piccola ampiezza degli intervalli corrisponde alla cifra significativa più piccola apprezzabile.

7 Istogramma L asse delle ascisse suddiviso in K intervalli, detti classi di frequenza. Queste possono essere uguali o diverse. Frequenza: numero ni o frazione ni/n di dati compresi nell intervallo i-esimo. Se le classi sono di ampiezza diversa, le frequenze non sono direttamente confrontabili Densità di frequenza: rapporto tra la frequenza e l ampiezza di una classe di = ni/ xi o di = fi/ xi Ad ogni classe è associato un rettangolo: la base è pari all ampiezza della classe xi (ascissa); l altezza è pari alla densità di frequenza di(ordinata); l area è per costruzione la frequenza (assoluta o relativa) associata alla classe.

8 ME COSTRUIRE GLI ISTOGRAMMI Come costruire gli Istogrammi Definire il numero K delle classi e le loro ampiezze x i,i=1,k Definire il numero K delle classi e le loro ampiezze xi, i = 1, K In un piano catesiano porre in In un piano catesiano porre in: ascissa la variabile x evidenziando le suddivisioni delle classi; ordinata ordinata la densità la densità di di frequenza. ascissa la variabile x evidenziando le suddivisioni delle classi;

9 Istogrammi in Frequenze Assolute Ad ogni singola misura è associato un rettangolo di area unitaria. Area del rettangolo relativo all intervallo i-esimo pari alla frequenza assoluta ni (xi xi 1) hi = x hi =ni Area totale dell istogramma x1 h1 + x2 h2 + xk hk =n1+n2+ +nk =N

10 Istogrammi in frequenze relative Ad ogni singola misura associato un rettangolo di area pari a 1/N Area del rettangolo relativo all intervallo i-esimo pari alla frequenza realtiva ni/n (xi xi 1) hi = x hi = ni/n Area totale dell istogramma è unitaria L istogramma si dice normalizzato. x1 h1+ x2 h2+ xk hk=n1/n+n2/n+ nk/n =1 OSS: Se le classi di frequenza sono uguali hi frequenza Se le classi di frequenza sono diverse hi densità di frequenza

11 p.40/4 Un errore frequente Nel caso le classi di frequenza siano diverse occorre prestare attenzione a come si costruisce l istogramma. Nel caso le classi di frequenza siano diverse occorre prestare attenzione a come Le si costruisce altezzel istogramma. dei rettangoli non scalano come le Le altezze frequenze, dei rettangoli ma non come scalano lecome densità le frequenze, di frequenza. ma come le densità di frequenza. Consideriamo Consideriamo i dati ISTAT i2001 datisull ISTAT età della 2001 popolazione sull etàitaliana. della popolazione italiana.

12 Un errore frequente... corretto Un errore frequente... corretto Calcoliamo Calcoliamo l ampiezza l ampiezza delle classi dellee classi densità eladi densità frequenza. di frequenza. p.41/49

13 ISTOGRAMMI: il caso Old Faithful ISTOGRAMMI: il caso Old Faithful La significatività di un istogramma dipende dalla scelta dell ampiezza La significatività di un istogramma dipende dalla scelta delle classi di frequenza. dell ampiezza delle classi di frequenza. Consideriamo, come esempio, la variabile durata temporale delle eruzioni Consideriamo, del geyser Old come Faithful, esempio, presso lalo variabile Yellowstone durata National Park. temporale delle eruzioni del geyser Old Faithful, presso lo Yellowstone National Park.

14 ISTOGRAMMI: il caso Old Faithful Le eruzioni seguono un andamento quasi regolare, quindi per motivi turistici c è interesse a studiare e prevedere quando esse si manifesteranno e quanto dureranno. Lo studio statistico ha dimostrato che esistono 2 gruppi di eruzioni: eruzioni brevi ( 3 min) ed eruzioni lunghe (> 3 min). Costruiamo l istogramma Ampiezze troppo piccole producono fluttuazioni troppo forti non significative. Ampiezze troppo grandi nascondono la natura bimodale dei dati

15 Dipendenza dalla base dell istogramma Dipendenza dalla base dell istogramma 100 misure 100 misure del periodo del periodo di un pendolo di un pendolo con cronometro con cronometro digitale S=1 s 1, ripetute in identiche condizioni. digitale S=1 s 1,ripetuteinidentichecondizioni. p.44/49

16 Dipendenza dalla base dell istogramma Dipendenza dalla base dell istogramma 100 misure 100 misure del periodo del periodo di un pendolo di un pendolo con cronometro con cronometro digitale S=1 s 1, ripetute in identiche condizioni. digitale S=1 s 1,ripetuteinidentichecondizioni. p.44/49

17 Dipendenza dalla base dell istogramma Dipendenza dalla base dell istogramma 100 misure 100 misure del periodo del periodo di un pendolo di un pendolo con cronometro con cronometro digitale S=1 s 1, ripetute in identiche condizioni. digitale S=1 s 1,ripetuteinidentichecondizioni. p.44/49

18 Dipendenza dalla base dell istogramma Dipendenza dalla base dell istogramma 100 misure 100 misure del periodo del periodo di un pendolo di un pendolo con cronometro con cronometro digitale S=1/100 s 1, ripetute in identiche condizioni. digitale S=1 s 1,ripetuteinidentichecondizioni. p.44/49

19 Come suddividere i dati in classi? La morfologia di un istogramma dipende dalla scelta delle classi. Non esiste una legge rigorosa. Se le classi sono troppo ampie caratteristiche importanti possono essere omesse. Se le classi sono troppo strette l informazione può risultare poco significativa, poiché essendo poco popolate, le classi sono soggette a fluttuazioni statistiche. È sempre meglio effettuare dei test, variando l ampiezza delle classi per verificare la sensibilità dei dati. Generalmente il numero di classi varia tra 5 20, ma dipende dal caso specifico. Il numero degli intervalli K viene fissato, solitamente, dell ordine di N (scarto quadratico medio della statistica di Poisson...vedremo piu avanti).

20 FREQUENZA CUMULATIVA Frequenza Cumulativa Frequenza cumulativa F (x) (assoluta o relativa), per Frequenza ogni valore cumulativa di x, èilnumero(ass.orel.)divoltepercui F (x) (assoluta o relativa), ogni valore Frequenza cumulativa F (x) (assoluta relativa), per di ilx, risultato è il numero (ass. o rel.) di volte per cui il risultato della ognidella valoremisura di x, èilnumero(ass.orel.)divoltepercui è stato minore o uguale a x. misura è il stato risultato minore dellao misura uguale èa stato x. F (x) = n i (frequenza cumulativa minore ass.) oouguale a x. x i x F (x) = x i x n i (frequenza cumulativa ass.) o F (x) = x i x f i (frequenza cumulativa rel.) F (x) = x i x f i (frequenza cumulativa rel.) funzione funzione monotona monotona non non decrescente decrescente con uno con scalino uno pari scalino rispettivamente ad 1 o a 1/N in corrispondenza di ognuno degli pari rispettivamente ad 1 o a 1/N in corrispondenza di N valori osservati. ognuno degli N valori osservati. funzione monotona non decrescente con uno scalino pari rispettivamente ad 1 o a 1/N in corrispondenza di ognuno degli N valori osservati. (ass.) 0 = F ( ) F (x) F (+ ) = N (ass.) 1 (rel.) 0 = F ( ) F (x) F (+ ) = 1 (rel.) p.46/49

21 REQUENZA CUMULATIVA: un esempio FREQUENZA CUMULATIVA: un esempio Consideriamo N = 100 studenti maschi dei quali si voglia studiare la distribuzione del peso Consideriamo N = 100 studenti maschi dei quali si voglia studiare la distribuzione dei pesi. Massa in kg numero di studenti Le classi scelte siano M =5 Totale 100 Le classi (59.5 scelte siano 62.5; M 62.5 = 5 ( ; 62.5; ; 65.5; ; 68.5; ) 71.5; ) frequenza assoluta (in ordine di classe): numero studenti per ogni frequenza assoluta (in ordine di classe): numero studenti per ogni classe di pesi ni = {5, 18, 42, classe di pesi n 27, 8} i = {5, 18, 42, 27, 8} frequenza relativa: frequenzaassolutadivisaperilnumerodidati frequenza f i relativa: = n i /N frequenza = {5/100, assoluta 18/100, divisa 42/100, per il 27/100, numero di 8/100} dati fi = ni/n = {5/100, 18/100, 42/100, 27/100, 8/100} frequenza cumulativa relativa: sommadellefrequenzeassolutedelle frequenza varie cumulativa classi divisa relativa: per somma il numero delle frequenze di dati) assolute delle varie classi divisa per il numero F di (x) dati) ={5/100, F (x) = {5/100, (5 + 18)/100, (5 + 18)/100, (23 ( )/100, + 42)/100, ecc.} ecc.} p.47/49

22 FREQUENZA CUMULATIVA: un esempio p.48/49

23 Istogramma Cumulativo È utile per determinare quanti o quale percentuale dei dati (campione) sono al di sotto (o uguali) ad un certo valore. Vantaggi dell istogramma cumulativo 1. Le fluttuazioni risultano ridotte rispetto all istogramma: scostamenti di segno opposto si annullano sommando; 2. Non dipende dalla suddivisione in classi mentre l istogramma dipende dalla suddivisione scelta dello sperimentatore Svantaggi dell istogramma cumulativo La forma di questa funzione non è utile per suggerirci ipotesi sulla distribuzione della variabile

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Esempio di introduzione. della statistica a scuola

Esempio di introduzione. della statistica a scuola 1 Esempio di introduzione della statistica a scuola 2 3 4 5 RAPPRESENTAZIONE GRAFICA (EXCEL) IMPARARE A DEDURRE E IPOTIZZARE DAI VARI TIPI DI GRAFICI 6 La rappresentazione grafica: impariamo a rappresentare

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V

Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Corso integrato di informatica, statistica e analisi dei dati sperimentali Altri esercizi_esercitazione V Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows.

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Statistica. Le rappresentazioni grafiche

Statistica. Le rappresentazioni grafiche Statistica Le rappresentazioni grafiche Introduzione Le rappresentazioni grafiche costituiscono uno dei mezzi più efficaci, sia per descrivere in forma visiva i risultati di numerose osservazioni riguardanti

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

IL NONIO. Nelle misure di lunghezza non è possibile aumentare a piacere la sensibilità di un regolo, dato che una scala

IL NONIO. Nelle misure di lunghezza non è possibile aumentare a piacere la sensibilità di un regolo, dato che una scala Nelle misure di lunghezza non è possibile aumentare a piacere la sensibilità di un regolo, dato che una scala graduata troppo fitta non sarebbe leggibile. p. 2/4 IL NONIO Nelle misure di lunghezza non

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica descrittiva Cernusco S.N., giovedì 21 gennaio 2016 (9.00/13.00)

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI

ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI ANALISI GRAFICHE PER IL CONTROLLO DELLA QUALITA : ESEMPI DI APPLICAZIONI (sintesi da Prof.ssa Di Nardo, Università della Basilicata, http://www.unibas.it/utenti/dinardo/home.html) ISTOGRAMMA/DIAGRAMMA

Dettagli

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo

Dettagli

p. 3/4 COM È FATTO Sono presenti 2 scale: una scala principale incisa su un asta fissa e una scala secondaria, incisa su un corsoio mobile.

p. 3/4 COM È FATTO Sono presenti 2 scale: una scala principale incisa su un asta fissa e una scala secondaria, incisa su un corsoio mobile. p. 1/4 INFORMAZIONI Prossime lezioni Giorno Ora Dove 28/01 14:30 Laboratorio (via Loredan) 02/02 14:30 P50 08/02 14:30 P50? 09/02 14:30 P50 11/02 14:30 Laboratorio (via Loredan) 18/02 14:30 Aula informatica

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una

Dettagli

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate

Introduzione alle relazioni multivariate. Introduzione alle relazioni multivariate Introduzione alle relazioni multivariate Associazione e causalità Associazione e causalità Nell analisi dei dati notevole importanza è rivestita dalle relazioni causali tra variabili Date due variabili

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Capitolo 2 Distribuzioni di frequenza

Capitolo 2 Distribuzioni di frequenza Edizioni Simone - Vol. 43/1 Compendio di statistica Capitolo 2 Distribuzioni di frequenza Sommario 1. Distribuzioni semplici. - 2. Distribuzioni doppie. - 3. Distribuzioni parziali: condizionate e marginali.

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Esercitazione I. Serena Arima serena.arima@uniroma1.it. Distribuzioni di frequenza: frequenza assoluta, relativa, percentuale;

Esercitazione I. Serena Arima serena.arima@uniroma1.it. Distribuzioni di frequenza: frequenza assoluta, relativa, percentuale; Esercitazione I Serena Arima serena.arima@uniroma1.it In questa esercitazione: Popolazione, campione e variabili; Distribuzioni di frequenza: frequenza assoluta, relativa, percentuale; Rappresentazioni

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Introduzione all economia

Introduzione all economia Introduzione all economia 4.X.2005 Macro e microeconomia La teoria economica è divisa in due sezioni principali: la microeconomia e la macroeconomia La microeconomia studia il comportamento dei singoli

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Codifiche a lunghezza variabile

Codifiche a lunghezza variabile Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo marcog@di.unito.it, gribaudo@elet.polimi.it Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali 1 Sonetto di Trilussa Sai ched è la statistica? E E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere?

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Abbiamo visto nella lezione precedente che lo spazio degli eventi più idoneo a rappresentare l esperimento

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1 Informatica Pietro Storniolo storniolo@csai.unipa.it http://www.pa.icar.cnr.it/storniolo/info200708 Numeri razionali Cifre più significative: : sono le cifre associate ai pesi maggiori per i numeri maggiori

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Esercizio 1. Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli.

Esercizio 1. Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli. Esercizio 1 Nella Tabella A sono riportati i tempi di percorrenza, in minuti, di un tratto autostradale da parte di 40 autoveicoli. Tabella A 138 150 144 149 164 132 125 157 161 135 150 145 145 142 156

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video Video Librerie digitali Gestione di video Ogni filmato è composto da più parti Video Audio Gestito come visto in precedenza Trascrizione del testo, identificazione di informazioni di interesse Testo Utile

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli