CENNI DI METODI STATISTICI
|
|
|
- Cornelio Mancini
- 10 anni fa
- Visualizzazioni
Transcript
1 Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1
2 Page 2
3 Page 3
4 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento dell altro. P( A e B) = P( A) xp( B) ovvero: P( E e E e E e E ) = P( E ) n n i = 1 i Due eventi si dicono dipendenti quando il verificarsi di uno influisce sulla probabilità di accadimento dell altro P ( A e B ) P ( A / B ) = e P ( B / A ) = P ( B ) P ( A e B ) P ( A ) P( A e B) = P( A) P( B / A) = P( B) P( A / B) Page 4
5 Grandezze tipiche in analisi statistica Funzione di Distribuzione Cumulativa Una Funzione di Distribuzione Cumulativa, F(t), è definita come la probabilità che una variabile stocastica, T, assuma un valore inferiore od uguale ad un certo valore specifico t. Probabilità che un componente o sistema si guasti al di là di un certo tempo t F( t) = P( T t) 0 F( t) 1 F( t): monotona crescente funzione di densità di probabilità f ( t ) = d t F( t) + f ( u) du = 1 f ( t) 0 d t F( t) = f ( u) du P( t T t ) = f ( u) du 1 2 t2 t1 Page 5
6 Media In statistica la media è un insieme di indicatori di posizione, anche se spesso con questo termine si intende la media aritmetica. Si hanno ad esempio: la media aritmetica, la media geometrica, la media armonica, la media di potenza ecc. x = µ = 1 n n i= 1 x µ = b 1 a b a f ( x) dx Page 6
7 Mediana In statistica descrittiva, data una distribuzione X di un carattere quantitativo oppure qualitativo ordinabile (ovvero le cui modalità possano essere ordinate in base a qualche criterio), si definisce la mediana come il valore/modalità (o l'insieme di valori/modalità) assunto dalle unità statistiche che si trovano nel mezzo della distribuzione. Me f ( x) dx = 0,5 Page 7
8 Moda In statistica, la moda o norma di una distribuzione è la modalità (o la classe di modalità) caratterizzata dalla massima frequenza e viene spesso rappresentata con la simbologia ν0. In altre parole, è il valore che compare più frequentemente Page 8
9 Varianza La varianza è un indice di dispersione che serve per descrivere sinteticamente una distribuzione statistica quantitativa, e, in modo particolare, la misura con la quale i suoi valori sono distanti da un valore centrale. σ 2 1 = n ( x µ ) i n i= 1 2 Page 9
10 Deviazione standard La deviazione standard o scarto quadratico medio è un indice di dispersione (vale a dire una misura di variabilità di una popolazione o di una variabile casuale) derivato direttamente dalla varianza, ha la stessa unità di misura dei valori osservati (mentre la varianza ha come unità di misura il quadrato dell'unità di misura dei valori di riferimento). La deviazione standard misura la dispersione dei dati intorno al valore atteso. Page 10
11 Alberi di probabilità e distribuzioni Page 11
12 Distribuzione Binomiale : rappresenta processi stocastici i cui risultati sono ripetitivi, indipendenti e a due sole alternative per selezione (processi dicotomici) la cui probabilità di occorrenza rimane costante (processi bernoulliani ). n P r r p r p n r ( ) = ( ), 1 r = 0,1,2, n dove: n n = Cr = r n! ( n r)! r! Page 12
13 Distribuzione Binomiale : Esempio di sistema di trasporto con probabilità di incidente del 10% per viaggio. Caso 1: Probabilità di due viaggi Caso 2: Probabilità su 10 viaggi P(0 incid.) = 0.81 P(1 incid.) = 0.18 P(2 incid.) = P(0 incid.) = P(1 incid.) = P(2 incid.) = P(3 incid.) = P(4 incid.) = P(5 incid.) = P(5 incid.) = P(6 incid.) = P(7 incid) P(8 incid)... P(10 incid) 0 Page 13
14 Distribuzione di Poisson : si applica, come la distribuzione binomiale, a processi dicotomici, stazionari ed indipendenti, per i quali non si considera (perché nonmisurabile od illogico) l evento di non-occorrenza. P( r) µ r µ e = con r = r! 0, 1, 2, 3, r = numero di eventi nel tempo di esposizione μ = λ t; λ = valore medio di eventi per unità di tempo; t = tempo di esposizione Page 14
15 Page 15
16 Page 16
17 Distribuzioni Collegate alla distribuzione esponenziale: Gamma, Γ POLITECNICO DI MILANO Quando r è un intero, la distribuzione gamma è il risultato della somma di r variabili casuali esponenziali indipendenti e identicamente distribuite, ciascuna di parametro λ Page 17
18 Distribuzioni Collegate alla distribuzione esponenziale: Weibull POLITECNICO DI MILANO Quando β = 1, la distribuzione Weibull si reduce alla distribuzione esponenziale. Page 18
19 Page 19
20 Distribuzioni Collegate alla Normale: Distribuzione Log-normale POLITECNICO DI MILANO La distribuzione log-normale, rappresenta la trasformata logaritmica della distribuzione normale relativamente alla variabile t. 1 f ( t) = exp 1 / 2 ln x 2 xσ 2π x = variabile aleatoria [( µ ) ] 1 σ 1 μ 1 = media del logaritmo della variabile x σ 1 = deviazione standard del logaritmo di x E (x) = Media E( x) = exp( µ + 1 2σ ) V (x) = Varianza 2 σ V( x) = exp( 2µ + σ ) ( e 1) 2 Page 20
21 Distribuzioni Collegate alla Normale: χ 2 Page 21
22 Distribuzioni Collegate alla Normale: T di Student Page 22
23 Distribuzioni Collegate alla Normale: F Page 23
24 Cenni di Algebra Booleana Un supporto fondamentale alla comprensione dei principi dell algebra booleana sono i diagrammi di Venn, che sono una forma di rappresentazione graficageometrica degli insiemi di eventi e delle loro probabilità. C A B Figura 1. Diagramma di Venn Page 24
25 Page 25
26 Page 26
27 Grazie per la Vostra attenzione Page 27
DISTRIBUZIONI DI PROBABILITÀ
Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI
Corso di Automazione Industriale 1. Capitolo 4
Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione
Il concetto di valore medio in generale
Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo
Prova di autovalutazione Prof. Roberta Siciliano
Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.
Un po di statistica. Christian Ferrari. Laboratorio di Matematica
Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di
Statistica descrittiva
Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)
Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:
La variabile casuale Binomiale
La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola
Grafici delle distribuzioni di frequenza
Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma
Statistica inferenziale
Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo
LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di
STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica
CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL TEMPO
CORSO DI MISURE ANALISI DEI SEGNALI NEL DOMINIO DEL EMPO ing Emanuele Zappa SEGNALI: grandezze di base nel dominio del tempo: Ampiezza picco-picco (pk.pk) Ampiezza massima positiva empo Ampiezza massima
LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010
LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno
Facciamo qualche precisazione
Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione
Indici di dispersione
Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo
Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca
Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche
11. Analisi statistica degli eventi idrologici estremi
. Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello
Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici
Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una
UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA
Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità
ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE
ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114
1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:
Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi
TECNICHE DI SIMULAZIONE
TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione
Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva
Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione
Appunti di complementi di matematica
Appunti di complementi di matematica UITA STATISTICA: è l unità su cui si raccolgono le informazioni oggetto dell indagine e possono essere individui, famiglie, oggetti. UIVERSO STATISTICO O POLAZIOE STATISTICA
LEZIONE n. 5 (a cura di Antonio Di Marco)
LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad
STATISTICA E PROBABILITá
STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano
La statistica multivariata
Cenni di Statistica Multivariata Dr Corrado Costa La statistica multivariata La statistica multivariata è quella parte della statistica in cui l'oggetto dell'analisi è per sua natura formato da almeno
Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice
cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze
Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue
Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1
1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.
Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi
La categoria «ES» presenta (di solito) gli stessi comandi
Utilizzo delle calcolatrici FX 991 ES+ Parte II PARMA, 11 Marzo 2014 Prof. Francesco Bologna [email protected] ARGOMENTI DELLA LEZIONE 1. Richiami lezione precedente 2.Calcolo delle statistiche di regressione:
La distribuzione Gaussiana
Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione
Probabilità II Variabili casuali discrete
Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una
Corso di. Dott.ssa Donatella Cocca
Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile
Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo
Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO
Elementi di Psicometria con Laboratorio di SPSS 1
Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 [email protected] 1 Dipartimento di Psicologia, Università di Milano-Bicocca
LOGISTICA APPUNTI DI STATISTICA
Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione
Esercitazioni di Statistica
Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni [email protected] Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda
SOLUZIONI D = (-1,+ ).
SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni
Statistica descrittiva: prime informazioni dai dati sperimentali
SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni
Metodi statistici per le ricerche di mercato
Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per
Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004
Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità
Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco
Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Alfonso Iodice D Enza April 26, 2007 1...prima di cominciare Contare, operazione solitamente semplice, può diventare complicata se lo scopo
Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che
Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x
Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?
Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento
1 Valore atteso o media
1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è
2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale
BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health [email protected]
Relazioni tra variabili
Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina
Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA
Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3
L Analisi della Varianza ANOVA (ANalysis Of VAriance)
L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni
Corso di Automazione Industriale 1. Capitolo 4
Simona Sacone - DIST 1 Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: analisi
Indici (Statistiche) che esprimono le caratteristiche di simmetria e
Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica
Dall'analisi dei prospetti informativi diffusi dalla Borsa di Paperopoli Gastone ricava le seguenti informazioni sul rendimento dei tre titoli:
ESERCIZIO 1 Gastone investe i suoi risparmi in tre titoli (A: Paperone & Co; B: Rockerduck & Co; C: Bassotti & Co) quotati sul mercato di Paperopoli. La composizione percentuale del portafoglio di Gastone
Affidabilità nel tempo tasso di guasto. h( t) =! dt N dt N ( ) ( ) = =! N N
Affidabilità nel tempo tasso di guasto 1 N=numero componenti N s (t)=numero componenti sopravvissuti al tempo t N f (t)=numero componenti rotti al tempo t N ( ) ( ) s t N f t R( t) = = 1! N N dr( t) 1
ELEMENTI DI STATISTICA PER IDROLOGIA
Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono
Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE
Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una
RAPPRESENTAZIONE DEI DATI
Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del
Statistica. Alfonso Iodice D Enza [email protected]
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura
LE CARTE DI CONTROLLO (4)
LE CARTE DI CONTROLLO (4) Tipo di carta di controllo Frazione difettosa Carta p Numero di difettosi Carta np Dimensione campione Variabile, solitamente >= 50 costante, solitamente >= 50 Linea centrale
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA. Programma del modulo di STATISTICA I (6 crediti)
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA A. A. 2008-2009 FACOLTÀ DI ECONOMIA Programma del modulo di STATISTICA I (6 crediti) ECOCOM (lettere A-Lh): ECOCOM (lettere Li-Z): ECOBAN: ECOAMM (Lettere A-Lh):
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica
Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi
Relazioni statistiche: regressione e correlazione
Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica
Statistica. Alfonso Iodice D Enza [email protected]
Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16
= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:
Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del
Matematica II: Calcolo delle Probabilità e Statistica Matematica
Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,
2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011
2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici
La distribuzione Normale. La distribuzione Normale
La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una
Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)
STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
Probabilità e statistica
Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità
VERIFICA DELLE IPOTESI
VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi
Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle
Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema
LEZIONI DI STATISTICA E CALCOLO DELLE PROBABILITA STATISTICA
LEZIONI DI STATISTICA E CALCOLO DELLE PROBABILITA UMBERTO MAGAGNOLI Materiale per il Corso di lezioni di STATISTICA Laurea magistrale in Matematica Facoltà di Scienze Matematiche, Fisiche e Naturali Università
Slide Cerbara parte1 5. Le distribuzioni teoriche
Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle
ESERCIZI SVOLTI PER LA PROVA DI STATISTICA
ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI
STATISTICA PER L INNOVAZIONE
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 TRASFORMAZIONI DI VARIABILI ALEATORIE TVE: Gumel dei valori minimi
RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?
Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management
Dott.ssa Caterina Gurrieri
Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo
Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.
CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza
Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,
E naturale chiedersi alcune cose sulla media campionaria x n
Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile
RETI DI TELECOMUNICAZIONE
RETI DI TELECOMUNICAZIONE SISTEMI M/G/1 e M/D/1 Sistemi M/G/1 Nei sistemi M/G/1: i clienti arrivano secondo un processo di Poisson con parametro λ i tempi di servizio hanno una distribuzione generale della
INDICI DI TENDENZA CENTRALE
INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici
ESAME DI STATISTICA Nome: Cognome: Matricola:
ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo [email protected] Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio
PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE
Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -
INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)
INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;
Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica
Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -
Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria
Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria [email protected] Standardizzazione di una variabile Standardizzare una variabile statistica
INDICE PREFAZIONE VII
INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione
1. la probabilità che siano tutte state uccise con pistole; 2. la probabilità che nessuna sia stata uccisa con pistole;
Esercizi di Statistica della 5 a settimana (Corso di Laurea in Biotecnologie, Università degli Studi di Padova). Esercizio 1. L FBI ha dichiarato in un rapporto che il 44% delle vittime di un omicidio
La Funzione Caratteristica di una Variabile Aleatoria
La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione
Anteprima Finale Categoria Corsi di Statistica
1 di 8 08/04/2011 9.01 SiS-Scuola-28-SEZIONE STATISTICA fad TC128STAT Quiz Finale Categoria Corsi di Statistica Tentativo 1 Sei collegato come piero zulli. (Esci) Info Risultati Anteprima Modifica Anteprima
