Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali"

Transcript

1 Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1

2 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e φ: R n continua φ = T Possiamo indicarla con la notazione γ φ,, T Definizione (Parametrizzazione di classe C k ): γ C k φ C k Se è chiuso allora γ C k esiste un intervallo aperto I γ φ, I, T C k Definizione (Parametrizzazione regolare): γ φ,, T C 1 è detta regolare se φ t 0 in R n t Se φ è C 1 a tratti (Ma globalmente C 0 ) deve essere regolare su ogni tratto di una partizione. Definizione (Parametrizzazione semplice): Una parametrizzazione γ φ,, T è semplice se φ: R n è iniettiva. Se è chiusa dobbiamo dimostrare che valgono le proprietà per un I aperto e φ estensione. Definizione (Parametrizzazioni equivalenti): Date due parametrizzazioni: γ 0 φ 0, 0, T γ 1 φ 1, 1, T Tali che Imm φ 0 = Imm φ 1, allora: φ è equivalente a φ X: 0 1 diffeomorfismo, di classe C 1 e invertibile, con X t 0 t 0 tale che φ 0 t = φ 1 X t Definizione (Curva orientata): Fissata l'immagine T di una parametrizzazione è la classe di equivalenza delle parametrizzazioni su quell'immagine. La notazione per indicare una curva è mediante una qualsiasi delle sue parametrizzazioni φ equivalenti. Definizione (Orientamento): Se due parametrizzazioni sono equivalenti e X è positiva si dice che l'orientamento è coincidente. Se due parametrizzazioni sono equivalenti e X è negativa si dice che l'orientamento è opposto. Quindi abbiamo due classi di equivalenza distinte. Curva regolare e curva semplice seguono dalla definizione di parametrizzazione regolare e semplice. 2

3 Lemma di equivalenza (ND pagina 7): Dati due intervalli chiusi 0 ; 1, se: φ 0 : 0 T R n regolare e semplice e φ 1 : 1 T R n funzione di classe C 1 allora sono equivalenti: φ 1 s 0 s 1 γ 0 φ 0, 0, T ~γ 1 φ 1, 1, T Lemma (ND pagina 8): φ, a, b, T ~ φ 0, 0,1, T Inoltre le due parametrizzazioni della curva hanno la stessa orientazione. Somma fra due cammini (Curve orientate): Date due curve C 1 ; C 2 con estremi coincidenti la somma è la curva riparametrizzata dal primo punto della prima al secondo della seconda. Si indica con C 1 + C 2 Data una curva C si può trovare sempre un'altra curva che sommata alla prima dia una curva chiusa, si indica con C Curve rettificabili: Data una partizione dell'intervallo possiamo definire la lunghezza di un elemento della partizione e dunque la lunghezza della poligonale è: n i=1 φ t i, φ t i 1 Definiamo perciò la lunghezza della curva come: n L φ = sup Partizioni φ t i, φ t i 1 i=1 Se questo valore è finito diciamo che la curva è rettificabile. La lunghezza non dipende dalla parametrizzazione La lunghezza non dipende dall'orientazione L C 1 + C 2 = L C 1 + L C 2 b a Formula pratica per curve C 1 φ t dt 3

4 Integrale curvilineo di 1 a specie (Integrale di linea): Υ = φ: a, b = R n Curva ; f: R n R continua, φ C 1, l'integrale curvilineo di prima specie è definito come: f Υ b a f φ t φ t dt Proprietà: Υ 1, Υ 2 C 1 con φ 1 b 1 = φ 2 a 2 Υ C 1 Υ f = f Υ Υ 1 +Υ 2 f = f Υ 1 L'integrale di 1 a specie non dipende dall'orientazione. + f Υ 2 Integrale curvilineo di 2 a specie: Υ = φ: a, b = R n ; F: R n R continua, φ C 1, l'integrale curvilineo di seconda specie è definito come: F Υ F t dt Υ b = F φ t, φ t a Proprietà: Υ 1, Υ 2 C 1 con φ 1 b 1 = φ 2 a 2 Υ C 1 Υ F = F Υ Dipende dall'orientazione. Υ 1 +Υ 2 dt F = F Υ 1 + F Υ 2 4

5 Forme differenziali: Dato lo spazio R n dotato della base canonica e 1,, e n, definiamo il funzionale: dx j e j con dx j e i = δ ji Questi formano una base dello spazio duale, generano dunque tutti i funzionali. Definizione (Forma differenziali di grado 1): E' una applicazione x ω x definita su di un aperto U R n a valori nel duale R n ω: R n R lineare, ω è una forma differenziali di grado 1 in R n ha una rappresentazione locale: ω = n j =1 ω j x dx j con ω j x C u aperto Integrale di una forma differenziale: Υ = φ: a, b = R n ; φ C 1, l'integrale curvilineo è definito come: n Υ ω j =1 ω j dx Υ j = j =1 ω j φ t φ j t dt a Proprietà: Υ 1, Υ 2 C 1 con φ 1 b 1 = φ 2 a 2 Υ C 1 Υ ω = ω Υ Dipende dall'orientazione. n b Υ 1 +Υ 2 ω = ω Υ 1 + ω Υ 2 Definizione (Forma esatta): Se F ω = F (Equivalente ω j = j F) la forma si dice esatta. Proprietà (D1 3 1 Lemma di Poincarè ; 1 2 ; 4.22): Se ω è una 1-forma di classe C n sono equivalenti: 1) ω è esatta. 2) curva chiusa Υ di classe C 1 (o C 1 a tratti) vale ω Υ 3) Υ 1, Υ 2 con φ 1 a = φ 2 a ; φ 1 b = φ 2 b risulta: ω Υ 1 = ω Υ 2 (Il cammino dipende solo dagli estremi) Definizione (Forma chiusa): n Sia ω = j =1 ω j x dx j C 1 in un aperto U R n ω è una forma chiusa se x k ω j x = x j ω k x Osservazioni: Forma esatta Forma chiusa Una forma chiusa su di un semplicemente connesso è esatta. 5

6 Integrale di funzioni complesse: Data una funzione f: U C si dice olomorfa se è differenziabile in senso complesso in ogni punto z 0 di un aperto U di C. f x, y = u x, y + iv x, y olomorfa allora (Equazioni di Cauchy Riemann): le derivate parziali. Vale u = v ; u = v x y y x Esempi: f z = cos z f z = sin z f z = pol z f z = e z Composizione di olomorfe è olomorfa. 6

7 Integrale di superficie: Definizione (Superficie): E' uno spazio T2 tale che x 0 esiste V aperto tale che x 0 V ed esiste un omeomorfismo φ: U R 2 V ; φ 1 : V U Definizione (Carta locale o parametrizzazione di ): E' una coppia φ, U con φ: U continua. La notazione con cui si indica è σ φ, U Definizione (Parametrizzazione di classe C k ): Se φ C k U Definizione (Parametrizzazione regolare di R 3 ): Se è di classe C 1 e φ u ha rango 2 per ogni u U Definizione (Parametrizzazioni equivalenti): σ 0 φ 0, U 0 e σ 1 φ 1, U 1 sono equivalenti σ 0 ~σ 1 se esiste un diffeomorfismo: X: φ 0 1 V 01 φ 1 1 V 01 Con V 01 = φ 0 U 0 φ 1 U 1 Se rispettano: φ 0 u = φ 1 X u ; u φ 0 1 V 01 det X u 0 ; u φ 0 1 V 01 Definizione (Orientazione): Se il Jacobiano è positivo hanno la stessa orientazione. Se il Jacobiano è negativo hanno orientazione opposta. Definizione (Superficie regolare): Sia R n ; n 3 ed F = σ k φ k, U k, W k, k = 1,, una famiglia di parametrizzazioni (Atlante) tali che: 1) U k, W k sono aperti φ k : U k W k è una funzione C 1 U k tale che φ k u ha rango 2 per ogni u U k 2) W k B x k, r k dove B x k, r k = x R n ; x x k < r k e k B x k, r k cioè sono un ricoprimento di 3) U k sono intervalli aperti in R 2 4) i j tale che W k W j esiste un diffeomorfismo: X jk : φ j 1 W k W j φ k 1 W k W j tale che: φ j u j = φ k X jk u j ; u j φ j 1 W j W k Allora, F si chiama superficie regolare. Se è compatto allora l'atlante può essere scelto finito. 7

8 Aggiungere due parole pagina 64, partizione dell'unità e superfici orientabili, superfici con bordo, superfici con bordo orientabili 8

9 Integrale di superficie di 1 a specie: Date: Una superficie con parametrizzazione φ: U R 2 R n Una funzione f: R n R fds = f φ u, v U u φ u, v v φ u, v dudv Osservazioni: La seconda parte è l'area, infatti: Area U = ds = U u φ u, v v φ u, v dudv U Non dipende dall'orientazione. Osservazione (Prodotto vettore): i j k a 2 b 3 a 3 b 2 a b = det a 1 a 2 a 3 = a 3 b 1 a 1 b 3 b 1 b 2 b 3 a 1 b 2 a 2 b 1 Lemma (ND ; 3.76): Date due parametrizzazioni 1 φ, U e 2 θ, V equivalenti e tali che φ U = θ V allora esiste un diffeomorfismo X: U V con det X u 0, u U ; φ u = θ X u Inoltre se f è una funzione continua allora 1 fds = fds 2 L'integrale di superficie di 1 a specie non dipende dalla parametrizzazione e dall'orientazione. 9

10 Forme differenziali di grado 2 nello spazio euclideo: Definizione (Forme bilineari): E' una mappa φ: R n R n R che sia lineare su entrambe le componenti. Definizione (Forme antisimmetriche): φ v, w = φ w, v Indichiamo con A 2 R n lo spazio vettoriale delle forme bilineari antisimmetriche di R n Ogni forma bilineare antisimmetrica può essere rappresentata come: φ u, v = u, Av ; A t = A Lemma (ND ; 4.79): Una forma è antisimmetrica se e solo se φ v, v = 0 v R n Lemma (ND): Se φ è una forma bilineare antisimmetrica, v 1, v 2 due vettori in R n allora abbiamo la relazione: 2 k 1,k 2 =1 b k1,k 2 φ v k1, v k2 = det B φ v 1, v 2 Per ogni matrice B = b 11 b 12 b 21 b 22 Osservazione (Scomposizione): Ogni matrice antisimmetrica si scrive come: 0 a 12 a 13 A = a 12 0 a 23 a 13 a 23 0 Dunque ammette una scomposizione della forma: A = a 12 J 12 + a 13 J 13 + a 23 J 23 Con: J 23 = ; J 13 = ; J 12 =

11 Definizione (dx 1 dx 2 ): Sia dx 1 dx 2 A 2 R 3 la forma bilineare antisimmetrica che corrisponde a J 12. Se e 1, e 2, e 3 è una base canonica di R 3 e v = v 1 e 1 + v 2 e 2 + v 3 e 3 ; w = w 1 e 1 + w 2 e 2 + w 3 e 3 sono due vettori allora: dx 1 dx 2 v, w = v, J 12 w Definizione (dx k1 dx k2 ): Questa base delle forme bilineari antisimmetriche in R n è definita come: dx k1 dx k2 A 2 R n ; n 3 con: dx k1 dx k2 e j1, e j2 = 0 se j 1, j 2 k 1, k 2 1 se j 1 = k 1 ; j 2 = k 2 1 se j 1 = k 2 ; j 2 = k 1 Osservazioni: dx k1 dx k2 = dx k2 dx k1 dx k dx k = 0 Ogni forma bilineare si può scrivere come: φ = dx k dx j Definizione (2-forma): Una 2-forma è un'applicazione x a x definita su di un aperto U R n che ad ogni x U associa una forma bilineare antisimmetrica a x = a jk dx j dx k Osservazione (Differenziale di una 1-forma): Data la 1-forma ω = ω j x dx j Siccome dω dω j x dx j e dω j = xk ω j x dx k otteniamo: dω = xk ω j x xj ω k x dx k dx j Osservazione (Forma esatta): La 2-forma a si dice esatta se esiste una 1-forma ω tale che a = dω Pull Back delle forme differenziali: ROBA ROVA ROBA Lemma (ND ; 4.84): Lemma (ND ; 4.85): Lemma (ND ; 4.86): 11

12 Integrali delle forme differenziali di grado 2 sulle superfici: ROBA Definizione (Integrale di superficie di ω): ROBA Dipende dall'orientazione. MANCA UN MUCCHIO DI ROBA 12

13 Formula di Stokes - Green: Lemma (D ; 4.93): Se il punto x, W intorno di x con parametrizzazione φ: U R 2 W ed a una forma con coefficienti con supporto in W allora: da W = 0 Lemma (D ; 4.94): Se il punto x, W intorno di x con parametrizzazione φ: U R 2 W ed a una forma con coefficienti con supporto in W allora: da W = a W Formula di Stokes - Green (D ; 4.96): Se = R n ; n 3 è una superficie regolare orientabile con bordo e a x è una 1-forma allora: da = a 13

14 Formula di Stokes - Gauss in R 3 : Sia U R 3 un aperto connesso e limitato con frontiera regolare di classe C 1 tale che U = 1 n unione disgiunta di superfici regolari e connesse. Data una 2-forma ω = ω 1 x dx 2 dx 3 ω 2 x dx 1 dx 3 + ω 3 x dx 1 dx 2 sappiamo che il differenziale di ω è: dω = 2 j =1 xj ω j x dx 1 dx 2 dx 3 Formula di Stokes nello spazio (D?????): N Se U aperto R 3 e U = j =1 j superfici regolari, compatte e connesse allora: dω = U ω U 14

15 Formula di Gauss - Green: Sia U R 3 un aperto connesso e limitato con frontiera regolare di classe C 1 tale che U = 1 unione disgiunta di superfici regolari e connesse. Dato un campo vettoriale: A x : U R 3 ; A x = A 1 x, A 2 x, A 3 x Siccome Digitare l'equazione qui. n ROBA ROBA ROBA Lemma (D ; 4.114): Formula di Gauss- Green (D ; 4.115): Se U aperto R 3 15

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Teorema sulla condizione affinchè φ(t) = e λt sia una soluzione di un equazione differenziale lineare d ordine n a coefficienti costanti. Siano a 1, a

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann

Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann Analisi a più variabili: Misura di Peano - Jordan ed Integrale di Riemann 1 Definizione (Algebra): T P Ω è un'algebra se: A, B T A B T, Ω T A T A C T Se A i T A i T si dice σ-algebra Definizione (Misura):

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2016/17 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2017/18, aggiornata il 27 gennaio 2018

ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2017/18, aggiornata il 27 gennaio 2018 1 ERRATA CORRIGE e AGGIUNTE: Traccia delle lezioni del corso di Analisi Matematica 2, A.A. 2017/18, aggiornata il 27 gennaio 2018 p. 5, riga 1: sostituire E E F F p. 5, riga 3: sostituire E E in E F F

Dettagli

1-Forme Differenziali

1-Forme Differenziali 1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Analisi a più variabili: Schemi Super Pratici

Analisi a più variabili: Schemi Super Pratici Analisi a più variabili: Schemi Super Pratici 1 CAPITOLO 1: Calcolo differenziale Limiti in più variabili: Si studiano con i seguenti metodi: Mediante la definizione Per limite a 0 maggiorando con una

Dettagli

Integrale curvilinei (o di densità) 19 Novembre 2018

Integrale curvilinei (o di densità) 19 Novembre 2018 Integrale curvilinei (o di densità) 19 Novembre 2018 Indice: urve parametrizzate nello spazio. Lunghezza di una curva. Integrali curvilinei. Applicazioni geometriche e fisiche. Federico Lastaria. Analisi

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica - Ing. dell Automazione (Prof. Ravaglia) Anno Accademico 2012/13 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C

Dettagli

ANALISI MATEMATICA 2 A.A. 2015/16

ANALISI MATEMATICA 2 A.A. 2015/16 ANALISI MATEMATICA 2 SCHEMA PROVVISORIO DELLE LEZIONI A.A. 2015/16 1 Distribuzione degli argomenti Argomento lezioni tot Calcolo differenziale 12 12 Forme differenziali lineari 4 16 Funzioni implicite

Dettagli

Elementi di analisi matematica e complementi di calcolo delle probabilita T

Elementi di analisi matematica e complementi di calcolo delle probabilita T Elementi di analisi matematica e complementi di calcolo delle probabilita T Presentiamo una raccolta di quesiti per la preparazione alla prova orale di Elementi di analisi matematica e complementi di calcolo

Dettagli

Quesiti di Analisi Matematica B

Quesiti di Analisi Matematica B Quesiti di Analisi Matematica B Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica B. Per una buona preparazione è consigliabile rispondere ad alta

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2018/19 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Campi conservativi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Campi conservativi Analisi Matematica B 1 / 99 Premessa Riccarda Rossi (Università di

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH Libro di testo di riferimento: M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica,

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 24/9/2018.

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1] (E) Trovare i punti critici e i punti di massimo e di minimo relativo della seguente funzione: f : R 3 R, (x, y, z) x 2 xy + z 2 + 1 [2] (E) Calcolare il seguente

Dettagli

Quesiti di Analisi Matematica II

Quesiti di Analisi Matematica II Quesiti di Analisi Matematica II Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica II. Per una buona preparazione è consigliabile allenarsi a rispondere

Dettagli

Integrali di curva e di superficie

Integrali di curva e di superficie Capitolo 8 Integrali di curva e di superficie Studiamo ora gli integrali definiti, invece che su intervalli o su parti di piano, su curve e su superfici. Conviene premettere alcune considerazioni sui limiti

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g.

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g. Istituzioni di geometria superiore - prova scritta del 4 febbraio 6 Prima parte Su R dotato delle coordinate cartesiane {x, y} si considerino la metrica g data da e il campo vettoriale g = dx dx + e x

Dettagli

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Fuori corso. Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 26.11.216, Fuori corso Cognome e nome:....................................matricola:......... es.1 es.2 es. es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 6/9cr. 5 5 5 5

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

REGISTRO DELLE LEZIONI 2006/2007. Tipologia

REGISTRO DELLE LEZIONI 2006/2007. Tipologia Introduzione al corso. Definizione di varietà topologiche di dimensione n. Esempi. La bottiglia di Klein. Definizione di spazi proiettivi reali e complessi. Addì 05-12-2006 Addì 05-12-2006 18:00-19:00

Dettagli

Ψ(U i ). Dalla proposizione 0.3 segue che per ogni i R h esiste c i ( δ, δ) n k tale che ϕ 2 Ψ(U i ) c i, quindi ϕ 2 (L h ) = i R h

Ψ(U i ). Dalla proposizione 0.3 segue che per ogni i R h esiste c i ( δ, δ) n k tale che ϕ 2 Ψ(U i ) c i, quindi ϕ 2 (L h ) = i R h Foliazioni Definition 0.1 Siano date una varieta M, C, una distribuzione involutiva di dimensione k ed una immersione iniettiva Ψ : N M con N varieta connessa di dimensione k. Diremo che N e una sottovarieta

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Esercizi e complementi di Analisi Complessa

Esercizi e complementi di Analisi Complessa Esercizi e complementi di Analisi Complessa Samuele Mongodi - s.mongodi@sns.it 1 Il piano complesso Esistono molte definizioni possibili per l insieme dei numeri complessi. In particolare C è: uno spazio

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 1 uperfici ia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 (u, v) R ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), cioè tale che le componenti x(u,

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Superfici. Commento - La richiesta che il rango di Dϕ sia 2 significa che i due vettori. 3 u. 3 v

Superfici. Commento - La richiesta che il rango di Dϕ sia 2 significa che i due vettori. 3 u. 3 v Superfici Ultimo aggiornamento: 18 febbraio 2017 1. Superfici parametriche Si considerino un insieme A R 2 un applicazione ϕ : A R 3. che sia aperto e connesso e Definizione 1.1 Superficie regolare. Diciamo

Dettagli

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO 28-9 Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Integrali doppi. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Integrali doppi Hynek Kovarik Università di Brescia nalisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei nalisi Matematica 2 1 / 47 Motivazione: calcolo di volume Hynek Kovarik

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera.

3 ore Integrali di Fresnel Serie bilatere. Sviluppo in serie di Laurent. Teorema di Laurent, sviluppabilità in serie bilatera. Lezioni Svolte Curve (14 ore) Presentazione del corso. Funzioni a valori vettoriali. Definizione di limite e di funzione continua. Curve (arco di curva parametrica). Definizione di curva continua, semplice

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Analisi Matematica II. (1) Topologia di R n

Analisi Matematica II. (1) Topologia di R n Programma d esame di Analisi Matematica II e Complementi di Analisi Matematica per i corsi di laurea triennale in Ingegneria Chimica ed Ingegneria dell Energia Anno Accademico 2018/2019 (1) Topologia di

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO (PROF. D. PUGLISI)

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO (PROF. D. PUGLISI) DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA II - INGEGNERIA ELETTRONICA. ANNO ACCADEMICO 2015-2016 (PROF. D. PUGLISI) 12-10-2015 Successioni di Funzioni Successioni di funzioni. Convergenza puntuale.

Dettagli

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009)

ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) ANALISI MATEMATICA II PROVA DI TEORIA (23/6/2009) 1. Sia S = { } (x, y, z) : x 2 + y 2 = 4, 0 z 3 + x. Scrivere le equazioni parametriche di una superficie regolare che abbia S come sostegno. 2. Enunciare

Dettagli

Anno accademico

Anno accademico Scuola Normale Superiore Ammissione al 4 anno della Classe di Scienze Prova di Analisi per l ammissione alla Laurea Specialistica in Fisica applicata, Informatica, Matematica, Scienze fisiche, Tecnologie

Dettagli

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni Fondamenti di Analisi Matematica 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meccanica e Meccatronica Valentina Casarino Appunti sulle superfici 1. Superfici regolari Ricordiamo

Dettagli

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26 Analisi Matematica 2 Forme differenziali lineari Forme differenziali lineari 1 / 26 Forme differenziali lineari Sia F(x, y, z) = F 1 (x, y, z)i + F 2 (x, y, z)j + F 3 (x, y, z)k un campo vettoriale di

Dettagli

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora)

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) 1. Equazione del trasporto omogenea su R: esistenza, unicità e stabilità. Si consideri il problema u t + 3u x =, u(x, ) = cos(2πx). Si ha u(x,

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni

1. Mar. 17/1/06 2 ore Presentazione del corso. Libro di testo e altri testi consigliati. Alcune informazioni Università degli Studi di Firenze Anno Accademico 2005/2006 Ingegneria per l Ambiente e il Territorio Corso di Analisi Matematica 2 (IAT) Docente: Francesca Bucci Periodo: II periodo (16 gennaio 2006 17

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

Elementi di analisi matematica e complementi di calcolo delle probabilita T

Elementi di analisi matematica e complementi di calcolo delle probabilita T Elementi di analisi matematica e complementi di calcolo delle probabilita T Presentiamo una raccolta di quesiti per la preparazione alla prova orale di Elementi di analisi matematica e complementi di calcolo

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

Analisi Matematica II

Analisi Matematica II Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini

Dettagli

Corso di Analisi Matematica 2

Corso di Analisi Matematica 2 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 27 ottobre 2016 Appello del 15 gennaio 2016 Tempo: 150 minuti 1. Enunciare le definizioni di campo

Dettagli

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy.

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy. Analisi Matematica II Integrali curvilinei svolgimenti Svolgimento esercizio Si ha, successivamente, t t, t, t 9t 4 + 4t t 9t + 4, l t dt t 9t + 4 dt a 8 dove in a si è usata la sostituzione 9t + 4 8t

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015

Corso di Analisi Matematica 2. Corso di Laurea in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Corso di Analisi Matematica 2 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2014/2015 Appello del 21 novembre 2014 Tempo: 150 minuti 1. Enunciare la definizione di forma differenziale esatta

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

Geometria 3 primo semestre a.a

Geometria 3 primo semestre a.a Geometria 3 primo semestre a.a. 2014-2015 Esercizi Forme differenziali Ricordiamo alcune definizioni date a lezione. s-forma definite da Siano ω una k-forma e φ una ω = I a I dx I, φ = J b J dx J Definizione

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(, y, z)d + B(, y, z)dy + C(, y, z)dz Data

Dettagli

PARTE 3: Funzioni di più variabili e funzioni vettoriali

PARTE 3: Funzioni di più variabili e funzioni vettoriali PROGRAMMA di Fondamenti di Analisi Matematica 2 (Versione estesa del 14/1/ 10) A.A. 2009-2010, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica,

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

GAAL: Capitolo dei prodotti scalari

GAAL: Capitolo dei prodotti scalari GAAL: Capitolo dei prodotti scalari Teorema di Rappresentazione rappresentabile Aggiunto Autoaggiunto Unitariamente diagonalizzabile Teorema spettrale reale Accoppiamento Canonico Forme bilineari Prodotti

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2014/2015 Prof. MARCO SPADINI Settore inquadramento MAT/05 - ANALISI MATEMATICA Scuola Ingegneria Dipartimento Matematica e Informatica 'Ulisse Dini' Insegnamento

Dettagli

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Lezione 1 (27/02/2012) - Richiami sullo spazio euclideo Rn: operazioni di spazio vettoriale,

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni

Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni 2018-19 1-10-2018 Struttura vettoriale euclidea dello spazio R N. Dimostrazione della disuguaglianza di Cauchy-Schwarz. Norma euclidea

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni

Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni Analisi Matematica 3 Corso di laurea in Matematica Diario delle lezioni 2015-16 29-9-2015 Struttura vettoriale euclidea dello spazio R N. Dimostrazione della disuguaglianza di Cauchy-Schwarz. Norma euclidea

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2014-2015 - CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 23 febbraio 2015 Presentazione del corso. Curve parametriche: definizione.

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

I parte. Nome e cognome: Matricola: Attenzione: riportare i dati personali su ogni foglio consegnato

I parte. Nome e cognome: Matricola: Attenzione: riportare i dati personali su ogni foglio consegnato Prova di geometria complessa del 8-2-202 I parte Nome e cognome: Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio.. Si dia la definizione di funzione olomorfa in più variabili

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli