Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo"

Transcript

1 ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i versori tangenti τ (t). Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = : pur riuscendo si ha lim x(t) = lim x(t), t t + lim t x (t) = lim t x (t) =, + La lunghezza L si calcola per ciascun tratto lim y(t) = lim y(t) t t + lim t y (t) = lim t y (t) =. + L = = (t) + (t ) dt + (t ) + (t) dt = 4t + 9t 4 dt = t 4 + 9t dt = t = 8 ( ). 7 I versori tangenti esistono in tutti i punti di r meno che nel punto (, ) corrispondente a t = : si ha ( ) x (t) τ (t) = ± x (t) + y (t), y (t). x (t) + y (t) Le espressioni di x (t) e y (t) sono naturalmente diverse a seconda che riesca t [, ) oppure t (, ]. Esercizio Sia r(t) la curva regolare a tratti x = cos(t), y = sin(t), z = t t [, π) t t [π, π]. (i) alcolare la lunghezza di r, (ii) determinare la funzione s(t) ascissa curvilinea su r, (iii) determinare i punti di non derivabilità di s(t). Risposta La curva r è composta di due due eliche separate: la prima x = cos(t), y = sin(t), z = t, punto (,, π) la seconda x = cos(t), y = sin(t), z = t, nel punto (,, 4π) t [, π], parte dal punto (,, ) e termina nel t [π, π], parte dal punto (,, π) e termina

2 La lunghezza totale, somma delle lunghezze delle due parti, è quindi L ascissa curvilinea è L = π s(t) = π ( ) + dt + + 4dt = π + 5 π t se t [, π] π + (t π) 5 se t (π, π] La funzione s(t) è derivabile in tutto [, π] privato del punto π: infatti s se t [, π) (t) = 5 se t (π, π] Esercizio Assegnato il campo F = (x, y ): determinare il lavoro di F lungo il segmento dall origine al punto (, ), determinare il lavoro di F lungo la poligonale (, ) (, ) (, ). Risposta Il lavoro del campo F è, per definizione, F. τ ds dove S è il segmento (, ), (, ) : x = t, y = t, t [, ], e Si ha quindi S S τ = (/ 5, / 5). F. τ ds = (t + 6(t) )dt = 6. Il lavoro lungo i due segmenti della poligonale (, ) (, ) (, ) è x dx + y dy = + 8 = 6 ome si è osservato già con l Es.8 del /, il campo F è conservativo, con potenziale dato da U(x, y) = x + y. I due lavori del campo F lungo il segmento (, ), (, ) e lungo la poligonale (, ) (, ) (, ) quindi coincidono tra loro e coincidono con l incremento di U tra gli estremi del segmento e della poligonale. Esercizio 4 Assegnato il campo F = (y, x, x + y + z ) :

3 determinare il lavoro di F lungo il segmento dall origine al punto (,, ), detto L(a, b, c) il lavoro di F lungo il segmento dall origine al punto (a, b, c), determinare il gradiente della funzione L(a, b, c), servirsi del punto precedente per verificare che F non è conservativo. Risposta Una rappresentazione parametrica del segmento S è x = t, y = t, z = t, t [, ]; il versore tangente è da cui τ = 4 (,, ) F. ( τ ds = (t). + t. + (4t ). ) dt = S = 48t dt = 48 = 6. Il lavoro L(a, b, c) di F lungo il segmento dall origine al punto (a, b, c) si calcola in modo analogo: il versore tangente è da cui L(a, b, c) = x = at, y = bt, z = ct, t [, ]; τ = a, b, c } a + b + c ( (bt). a + (at). b + (a + b + c )t. c ) dt = = a b + b a + (a + b + c ) c Il gradiente L(a, b, c) della L(a, b, c) è pertanto ( L a, L b, L ) ( a(b + c) + b c, =, b(a + c) + a, a + b + c ), vettore che non coincide con F calcolato in (a, b, c). In altri termini, L(a, b, c) non è un potenziale per F, e questo sarebbe un modo molto lungo per constatare che F non è conservativo: questo peraltro l avevamo già visto con l Es.8 del /, semplicemente constatando che il campo F non ha rotore nullo, dal momento che x F = x y F = y. Esercizio 5 Assegnato il campo F = (e x + y, e y + x)

4 determinare un suo potenziale con la tecnica dell aperto stellato, determinare il lavoro di F sui segmenti da (ρ, ) a (, ρ) al variare di ρ R. Risposta Nell Es.8 del / si è visto che in R il campo, essendo irrazionale, è conservativo, e si è costruito un suo potenziale con la tecnica dell integrazione indefinita. Procediamo qui invece con la tecnica dell aperto stellato, calcolando il lavoro del campo lungo il segmento [, ] t (tx, ty) dall origine al punto (x, y): = V (x, y) = (e xt + yt)x + (e yt + xt)y } dt = (e xt ) + (e yt ) + xy(t ) } dt = e x + e y + xy. Il lavoro richiesto sui segmenti da (ρ, ) a (, ρ) corrisponde, naturalmente a V (, ρ) V (ρ, ) =. Esercizio 6 Dato il campo F = cos(x + y), sin(x + y)} e detti r i cerchi di centro l origine e raggio r, determinare lim F. τ ds r r r Risposta Dalla formula di Stokes si ha F. τ ds = da cui, tenuto presente che si ha rot z ( F ) dx dy rot z ( F ) = cos(x + y) + sin(x + y) F. τ ds = [cos(x + y) + sin(x + y)] dx dy. r r Per passare al limite dell integrale doppio a secondo membro conviene utilizzare la seguente considerazione di carattere generale: Se una funzione f(x, y) è continua in un intorno dell origine le sue medie sui dischi r verificano Infatti πr r f(x, y) dx dy f(, ) per r. πr f(x, y) dx dy = f(, ) + r πr [f(x, y) f(.)] dx dy, r e il secondo membro tende a per r : infatti, grazie alla continuità di f(x, y) in (, ), dato comunque ε > esiste un δ > tale che f(x, y) f(, < ε per x + y < δ 4

5 e quindi πr f(x, y) f(.) dx dy < ε per r < δ. r Nel caso della funzione f(x, y) = cos(x + y) + sin(x + y), che vale in (, ), otteniamo dunque F. τ ds = r r r rot z ( F ) dx dy π per r. r Esercizio 7 Assegnate due funzioni continue f e g, calcolare l integrale curvilineo (f(x) + y)dx + (g(y) x)dy essendo la circonferenza di centro (, ) e raggio percorsa nel verso antiorario. Risposta Il campo vettoriale E = f(x), g(y)} è conservativo: un suo potenziale è infatti U(x, y) = F (x) + G(y) essendo F e G due primitive di f e g, certamente esistenti se f e g sono almeno continue. Il campo E = y, x} non è conservativo: infatti rot(e ) = 4 e quindi (f(x) + y)dx + (g(y) x)dy} = f(x)dx + g(y)dy} + = ydx xdy} = 4 dx dy = 4π ydx xdy} = Esercizio 8 alcolare l integrale curvilineo I = (xy 5) dx + (x + y ) dy essendo il segmento da (, ) a (, ), oppure l arco di parabola y = x percorso da (, ) a (, ). Risposta sul segmento: (xy 5) dx + (x + y ) dy } = 5 dx = 5

6 sull arco di parabola: x = t, y = t, t [, ] (xy 5) dx + (x + y ) dy } [ = t(t ) 5 + [t + (t ) ]t ] dt = L uguaglianza dei due valori era del resto prevedibile dal momento che il campo (xy 5, x +y ) ha rotore nullo e, essendo definito in tutto il piano, è conservativo: pertanto il lavoro lungo una curva dipende solo dagli estremi, e il segmento e l arco di parabola hanno gli stessi estremi. Esercizio 9 alcolare il lavoro compiuto dal campo di forze ( ) F (x, y) = x y, cos y x y lungo l arco di parabola y = x 4x + dal punto (, ) al punto (4, ). Risposta L insieme di definizione E di F è il semipiano x > y, che è (ad esempio) stellato; F è irrotazionale, dunque conservativo, in E, e i suoi potenziali U si calcolano imponendo ( ) U(x, y) = x y dx = x y x + g(y), y ( x y x) + g (y) = cos y x y da cui g(y) = sin y +: i potenziali di F sono le funzioni x y x+sin y +, e quindi il lavoro è + sin. A questo stesso risultato si arriva naturalmente anche calcolando l integrale curvilineo. Esercizio Assegnato il campo vettoriale y v = x + y, calcolare il lavoro relativo alla circonferenza G di centro (, ) e raggio r =, alla circonferenza P di centro (, ) e raggio r = 4. } x x + y alla curva : x = cos(t), y = sin(t), t [, kπ], k >. Risposta Il campo v ha rotore nullo in R (, )}: quindi è conservativo in ogni aperto semplicemente connesso Ω. la circonferenza G di centro (, ) e raggio r = è contenuta nell aperto Ω : y > semplicemente connesso contenuto in R (, )}: quindi il lavoro di v lungo essa è nullo. la circonferenza P di centro (, ) e raggio r = 4 include l origine al suo interno, quindi non è contenuta in alcun aperto semplicemente connesso di R (, )}. L aperto Ω = disco aperto di centro (, ) e raggio 4} \ disco chiuso di centro l origine e raggio } è ammissibile per la formula di Gauss Green, o Stokes; la sua frontiera Ω, con l orientamento positivo richiesto, è costituita da P percorsa in senso antiorario insieme alla 6

7 circonferenza di centro l origine e raggio percorsa in senso orario (fare il disegno!); siccome rot( v ) = si ottiene = rot z ( } y v ) dx dy = r Ω x + y dx + x x + y dy } } y = x + y dx + x y x + y dy x + y dx + x x + y dy = v. τds v. τds P P e quindi, siccome si ottiene π v. τds = (sin (ϑ) + cos (ϑ))dϑ = π P v. τds = π. L integrale sulla curva assegnata si calcola direttamente kπ v. τds = (sin (ϑ) + cos (ϑ))dϑ = kπ. Esercizio Assegnato il campo vettoriale y w = r n, x } r n calcolare il lavoro w. τ ds essendo la circonferenza di centro l origine e raggio r >. Risposta Il calcolo diretto produce π r(sin (ϑ) + cos (ϑ)) w. τ ds = r n rdϑ = = r n π dϑ = π r n Esercizio alcolare il flusso del campo di forze F (x, y) = (x y, x y ) uscente dalla frontiera del dominio D intersezione del cerchio di centro (, ) e raggio col semipiano y. Risposta Si usa il teorema della divergenza: F ν ds = div F dxdy = D D 7 D x y dxdy.

8 Il calcolo dell integrale doppio si fa passando alle coordinate polari: x = ϱ cos ϑ, y = + ϱ sin ϑ con ϱ, ϑ π : I = π ϱ dϱ cos ϑ( + ϱ sin ϑ)dϑ = [ ] ϱ 4 [ ] ϑ sin ϑ π = π ϱ dϱ cos ϑ dϑ + ] [ cos ] π ϑ [ ϱ 5 5 = π π ϱ 4 dϱ cos ϑ sin ϑ dϑ Esercizio alcolare il flusso del campo F = (x, xy) uscente dal dominio D = (x, y) R : x y, x y }. Risposta Siccome il dominio è un parallelogramma, si può applicare il teorema (di Gauss-Green e quindi quello) della divergenza: flusso = F ν ds = div F dxdy = x dxdy. + D L ultimo membro, col cambiamento affine di variabili u = x y, D v = x yt x = v u con determinante jacobiano det [ (x, y)/ (u, v)] = /, diventa [,] [,] v u dudv = du 4 (v u) dv = 4 D, y = v u, ] [ v uv dv = [ ] 4 u u =. Esercizio 4 Dato il dominio D di R costituito dai punti che si trovano nel quarto di spazio y, z e tra le sfere di centro l origine e raggio e, calcolare Risposta In coordinate sferiche l integrale diventa D z(x + y ) (x + y + z ) dxdydz. π π/ dϑ dϕ ϱ cos ϕ(ϱ sin ϕ) ϱ 6 ϱ sin ϕ dϱ = π π/ cos ϕ sin dϱ ϕ dϕ ϱ dϱ [ sin 4 ϕ = π 4 ] π/ [log ϱ] = π log. 4 y Esercizio 5 Dato il campo F = ( +xy y x, +xy xy), calcolare il lavoro compiuto dal campo lungo la curva di equazioni parametriche x(t) = t, y(t) = t, t [, ], 8

9 percorsa nel verso delle t crescenti. Risposta Nell aperto stellato x >, y > /x dove giace la curva il campo è conservativo, con potenziali log( + xy) xy +, per cui il lavoro richiesto è [log( + xy) xy ] (4,) (,) = log 9 5. Naturalmente a questo risultato si arriva anche calcolando l integrale curvilineo [( ) ( )] t t + t t t + + t t = [log( + t ) t 4 ]. Esercizio 6 Sia E il seguente sottoinsieme di R : E := (x, y, z) R, tali che x + y, x + y z x y }. alcolare il volume di E. Soluzione: In coordinate cilindriche sul dominio si ottiene π r r dr dz = π r E := r, r z r } r( r + r) dr = π + ( y) dy = 4π. A questo risultato si arriva anche con considerazioni geometriche: E è un cilindro E di raggio privato in basso di un cono E e sormontato da mezza sfera E di raggio, i cui i rispettivi volumi sono dati da Vol(E ) = π, Vol(E ) = π/, Vol(E ) = π/. Ne segue che Vol(E) =Vol(E ) Vol(E )+Vol(E ) = 4π/. Esercizio 7 Dato il campo vettoriale ( x ) F = 4 + x + y, y 4 + x + y calcolarne il lavoro sull arco di curva x = t + con t [, ]. y = t + 9

10 Soluzione: F è ben definito per x 4 + y, quindi in tutto il semipiano x e in particolare lungo l arco di curva in considerazione. F è inoltre conservativo con potenziale V (x, y) := ln(4 + x + y ) da cui segue che il lavoro è L = V (, 5) V (, ) = ln(7) ln(9). Esercizio 8 alcolare il lavoro compiuto dal campo lungo la curva sostenuta dalla semicirconferenza ed orientata in senso antiorario. ( yx e (y/x), x e (y/x) ) S : (x ) + (y ) =, y x Risposta In ciascuno dei due semipiani x > (dove si trova S) e x < (aperti stellati!) il campo è conservativo perché irrotazionale, ed un suo potenziale è la funzione f(x, y) = e (y/x). Gli estremi di S sono le intersezioni della circonferenza con la retta y = x, per cui il lavoro richiesto è nullo.

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 6.6.7, Versione A Cognome e nome:....................................matricola:......... es. es. es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 1.6.17, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es. es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Terzo esonero. 21 marzo Esercizio

Terzo esonero. 21 marzo Esercizio Terzo esonero 2 marzo 27. Esercizio Disegnare l insieme D : x, y) : x y 2 x, 2x 2 y 2x} e calcolarne l area. Determinare una trasformazione lineare che mandi D in un rettangolo. Calcolare l integale doppio

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010

Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 2010 Esercizi su curve e funzioni reali di più variabili reali 1Febbraio 1 1.Si calcoli la lunghezza della curva di equazione g y = 1 x 1 log x x [1, e].. Sia f(x, y, ) = x + y e sia il sostegno della curva

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016

Prove scritte dell esame di Analisi Matematica II a.a. 2015/2016 Prove scritte dell esame di Analisi Matematica II a.a. 5/6 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 6 giugno 6. Determinare massimi e minimi

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati:

12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: ANALISI Soluzione esercizi 2 gennaio 212 12.1. Esercizio. Disegnare i seguenti insiemi di R 2 e dire se sono o meno aperti, chiusi, limitati: (x, y) R 2 : x < y} (x, y) R 2 : 2 x 3} (x, y) R 2 : x 2 +

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli

Esempi di esercizi d esame A.A. 2006/07 Analisi Matematica 2 Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli Esempi di esercizi d esame A.A. 6/7 Analisi Matematica Ingegneria Elettronica Proff. G. Vergara Caffarelli e L. Giacomelli versione preliminare, si prega di segnalare eventuali errori *) Determinare e

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Provadiprova 2 - aggiornamento 7 giugno 2013

Provadiprova 2 - aggiornamento 7 giugno 2013 Università di Trento - Corso di Laurea in Ingegneria Civile e Ambientale Analisi matematica 2 - a.a. 2012-13 - Prof. Gabriele Anzellotti Provadiprova 2 - aggiornamento 7 giugno 2013 La seconda provetta

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017

Prove scritte dell esame di Analisi Matematica II a.a. 2016/2017 Prove scritte dell esame di Analisi Matematica II a.a. 6/7 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 5 giugno 7. Assegnati ( l insieme E {(x,

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012 Prove scritte dell esame di Analisi Matematica II a.a. / C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 7 giugno. ( punti) Disegnare l insieme E (x,

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013

Esame di Analisi Matematica 2 18/9/2013 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 2012/2013 Esame di Analisi Matematica 18/9/13 Corsi di Laurea in Ingegneria Meccanica e Energetica A.A. 1/13 A Esercizio 1. Sia C la regione aperta di R compresa tra le circonferenze di centro l origine e raggi

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

6. Integrali curvilinei

6. Integrali curvilinei 6. Integrali curvilinei Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 2 A.A. 2016/17 Integrali curvilinei di campi scalari Integrali curvilinei di campi vettoriali Campi vettoriali

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12.

1 x 2 y 2 dxdy D. 3 (1 ρ2 ) 3/2 = 1 3. = π 12. INGEGNERIA CIVILE - AMBIENTE E TERRITORIO ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 19-6-15 ESERCIZIO 1 Calcolare 1 x y dxdy D dove D è il dominio piano delimitato dalla curva x + y = x e

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Prove d Esame A.A. 2012/2013

Prove d Esame A.A. 2012/2013 Complementi di Analisi Polo di Savona Complementi di Analisi Matematica Prove d Esame A.A. 2012/2013 1- PrCam.TEX [] Complementi di Analisi Polo di Savona Prima Prova parziale 23/11/2011 Prima Prova parziale

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

Esercizi sull integrazione

Esercizi sull integrazione ANALII MAMAICA -B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.8-9 - Prof. G.Cupini sercizi sull integrazione (Grazie agli studenti del corso che comunicheranno eventuali errori) sercizio.

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica 2: Scritto Generale, 21.02.2017 Cognome e nome:....................................matricola:......... es.1 es.2 es.3 es.4 es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 30 6/9cr. 5 5 5 5 5

Dettagli

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 300607 Cognome e nome: Matricola: es es es3 es4 es es6 es7 somma cr 6 6 6 6 6 - - 30 9cr/6cr 3 30 Determinare, nel punto ( 0, 0, z 0 ), l equazione del piano tangente

Dettagli

Analisi Vettoriale - Primo esonero - 26 ottobre 2006

Analisi Vettoriale - Primo esonero - 26 ottobre 2006 Analisi Vettoriale - Primo esonero - 26 ottobre 26 Esercizio 1. ia F (x, y) = e xy + x 2 y 2x 2y + 1. a) imostrare che l equazione F (x, y) = definisce implicitamente, in un intorno del punto P = (1, ),

Dettagli

Analisi Matematica 3

Analisi Matematica 3 Testi delle prove d esame del corso di Analisi Matematica 3 presso la Facoltà di Ingegneria Bruno Rubino L Aquila, 2006 Indice 1 Curve 3 2 Superfici 4 3 Teorema di Gauss-Green e formula dell area 4 4 Campi

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi dell 1.XII.18 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

ISTITUZIONI DI MATEMATICHE II

ISTITUZIONI DI MATEMATICHE II ISTITUZIONI DI MATEMATIHE II SEONDO ESONERO Esercizio 1. Data la funzione f(x, y) = (x + y )(1 y) i) se ne studi il segno. ii) Si trovino i punti critici di f e se ne studi le natura. iii) Sia D = {(x,

Dettagli

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1.

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1. Calcolare l area di una superficie. Calcolare l area della porzione del piano x + 2y + z = 5 sopra il cono z = 3(x 2 + y 2 ). 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al

Dettagli

Analisi II, a.a Soluzioni 9. dx 1 + y 2 2xy

Analisi II, a.a Soluzioni 9. dx 1 + y 2 2xy Calcolare l integrale γ ω dove Analisi II, a.a. 7-8 Soluzioni 9 ω = + y xy ( + y mentre γ è la curva ( γ(t = e sin t cos t, + cos, t π/. t Non scriviamo neanche la complicata espresssione che si ottiene

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 7/8. Prof. M. Bramanti Tema n 3 4 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014 Silvano Delladio September 8, 2014 Chapter 1 Integrali multipli 1.1 Sia B R 3 la palla di raggio 2 centrata

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 2018 Analisi Matematica II - Ingegneria Meccanica/Energetica - 21 Giugno 218 1 Data la funzione f, y y 2 + y 4 α, α >. a Determinare al variare del parametro α > il dominio di definizione di f. b tudiare al

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1)

Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) M.Guida, S.Rolando, 14 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti (1) ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y,

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 15 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 15 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

; y x su {(x, y) : x 2 + y 2 4, 1 x}.

; y x su {(x, y) : x 2 + y 2 4, 1 x}. Analisi Matematica II, Anno Accademico 07-08. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMBI DI VARIABILE NEGLI INTEGRALI: CALCOLO DI INTEGRALI IN COORDINATE CURVILINEE

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Es. 1 Es. 2 Es. 3 Totale

Es. 1 Es. 2 Es. 3 Totale Es. 1 Es. 2 Es. 3 Totale Analisi e geometria 2 Seconda Prova in Itinere Docente: 2 7 212 Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello

Dettagli

Teoremi Gauss e Stokes / Alcuni esercizi svolti

Teoremi Gauss e Stokes / Alcuni esercizi svolti M.Guida, S.Rolando, 18 1 Teoremi Gauss e Stokes / Alcuni esercizi svolti ESERCIZIO. R 3 definito da Usando il teorema di Stokes, calcolare il flusso del rotore del campo vettoriale F : R 3 F(x, y, z) =

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(, y, z)d + B(, y, z)dy + C(, y, z)dz Data

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Analisi Matematica (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 martedì novembre 8 Istruzioni generali.

Dettagli

Roberto Capone Esercizi di Analisi Matematica 2 Superfici e Integrali superficiali. Superfici

Roberto Capone Esercizi di Analisi Matematica 2 Superfici e Integrali superficiali. Superfici uperfici i calcoli la matrice jacobiana delle seguenti funzioni: f(x, y) = e x+y i + cos (x + y)j f(x, y, z) = (x + y + 3z 3 )i + (x + sin3y + e z )j i calcoli la divergenza dei seguenti campi vettoriali

Dettagli

Istituzioni di Matematica II 3 luglio 2014

Istituzioni di Matematica II 3 luglio 2014 Istituzioni di Matematica II 3 luglio 14 1. i Si dica se la matrice é diagonalizzabile. A = 1 1 1 ii Si studi il carattere della forma quadratica q(, y, z = + y + z Soluzioni. i La matrice é simmetrica

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es.

Analisi Matematica 2 5 febbraio Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. Analisi Matematica 2 5 febbraio 2013 Nome, Cognome, Matricola: Cognome del Docente: Risposte. (Giusta = 3, non data = 0, sbagliata = 1) Versione Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 Es. 6 Es. 7 1 Esercizio 1.

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del -6- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Alcuni esercizi risolti da esami di anni passati

Alcuni esercizi risolti da esami di anni passati Alcuni esercizi risolti da esami di anni passati Andrea Braides ( x. Calcolare, se esiste, il limite lim (x,y (, x + y log + y + x 3 y. x + y Dato che log( + s = s + o(s per s, abbiamo lim (x,y (, ( x

Dettagli

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy =

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy = ANALII VTTORIAL COMPITO PR CAA DL 6// sercizio Calcolare l integrale y x + y dxdy dove è l intersezione del cerchio del piano di centro l origine e raggio con il semipiano dato da y x. Risposta In questo

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

ARGOMENTI MATEMATICA PER L INGEGNERIA

ARGOMENTI MATEMATICA PER L INGEGNERIA ARGOMENTI DI MATEMATICA PER L INGEGNERIA VOLUME 2 Esercizi proposti Quando non diversamente precisato, nel seguito si intenderà( sempre che nel piano sia stato introdotto un sistema cartesiano ortogonale

Dettagli

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E.

Soluzione della Prova Scritta di Analisi Matematica 4-27/06/11. C.L. in Matematica e Matematica per le Applicazioni. Proff. K. R. Payne e E. Soluzione della Prova Scritta di Analisi Matematica 4-27/6/ C.L. in Matematica e Matematica per le Applicazioni Proff. K. R. Payne e E. Terraneo Esercizio. a. La successione di funzioni {f n } + n definite

Dettagli

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4

Quesito 1. f(x, y) = xy log (x 2 + y 2 ) Quesito 2. Quesito 3. y = 2y3 +x 3. xy 2 y(1) = 1. Quesito 4 Corso di laurea in Ing. Meccanica, a.a. 2002/2003 Prova scritta di Analisi Matematica 2 del 7 gennaio 2003 Determinare gli eventuali estremi relativi della funzione f(x, y) = xy log (x 2 + y 2 ) Calcolare

Dettagli

h (y) = e y2 (1 2y 2 )

h (y) = e y2 (1 2y 2 ) . Sia f(x, y = (x+ye x y. eterminare gli estremi assoluti di f nel triangolo chiuso di vertici (0, 0, (a, a, (0, a ( a. Soluzione Poniamo O = (0, 0, A = (a, a, B = (0, a. Il triangolo giace nel primo quadrante

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli