IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)"

Transcript

1 IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO 28-9 Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori Lavoro e campi conservativi Lavoro e campi irrotazionali: il Teorema del rotore 3. Il flusso di un campo di vettori e il Teorema della divergenza 4 4. Esercizi 7. Campi di vettori e operatori Consideriamo solo il caso degli spazi metrici R 2 e R 3, e ricordiamo che ad ogni punto P =, R 2 abbiamo associato lo spazio tangente T P R 2 con base i vettori {e, e 2 }. e =, e 2 = ; ad ogni punto P =,, z R 3 abbiamo associato lo spazio tangente T P R 3 con base i vettori {e, e 2, e 3 }.2 e =, e 2 =, e 3 =. Definizione. Campo di vettori. Un campo di vettori in R 3 è una funzione F che associa a ogni punto P R 3 un elemento dello spazio tangente T P R 3, che si scrive come F,, z R 3 P =,, z FP = F 2,, z T P R 3 F 3,, z per funzioni F i : R 3 R continue. Il dominio naturale X R 3 di un campo vettoriale F è l intersezione dei domini naturali delle funzioni F i. In maniera analoga si definiscono i campi di vettori in R 2. Un campo di vettori si dice differenziabile se tutte le funzioni F i sono differenziabili. L insieme dei campi di vettori su R 3, che indichiamo con CV R 3, si comporta come uno spazio vettoriale, ma rispetto alla moltiplicazione per una funzione continua. Dati due campi F e G con

2 funzioni {F i } e {G i }, si ottiene F + G = F + G F 2 + G 2, f,, z F = F 3 + G 3 f,, zf,, z f,, zf 2,, z f,, zf 3,, z per ogni funzione continua f : R 3 R. Usando la nozione di campi di vettori, si possono definire alcuni operatori differenziali utili nelle applicazioni. Poniamo := allora data una funzione f,, z : R 3 R differenziabile e un campo di vettori F CV R 3 di classe C, definiamo.3 gradiente di f := f,, z =.4 rotore di F := F,, z =, f f f F 3 F 2 F F 3 F 2 F CV R3 CV R3.5 divergenza di F := F,, z = F + F 2 + F 3 C R 3 Le definizioni sono analoghe nel caso di una funzione f : R 2 R e di un campo di vettori F CV R 2, con una differenza solo per quanto riguarda il rotore. Valgono le seguenti formule gradiente di f := f, = f f CV R 2 rotore di F := F, = F 2 F C R 2 divergenza di F := F, = F + F 2 C R 2 Teorema.2. Per ogni funzione f e per ogni campo di vettori F differenziabili due volte valgono, nei punti interni ai loro domini naturali, le relazioni: i div rot F = ; ii rot grad f = ; iii divgradf = 2 f f f 2. 2

3 Definizione.3 Campo di vettori irrotazionale. Siano F CV R 3 differenziabile e X R 3 il suo dominio naturale. Il campo di vettori F si dice irrotazionale se rotf,, z = per ogni,, z X. Definizione.4 Campo di vettori conservativo. Sia F CV R 3 con dominio naturale X R 3, e sia Ω X un aperto connesso. Il campo di vettori F si dice conservativo in Ω se esiste una funzione f : Ω R di classe C Ω tale che F,, z = f,, z per ogni,, z Ω. In tal caso la funzione f si dice potenziale o primitiva di F in Ω. Naturalmente i potenziali di un campo conservativo su un aperto connesso sono infiniti, e differiscono per una costante. Inoltre, applicando il Teorema.2-ii si deduce che Corollario.5. Se F CV R 3 è differenziabile e conservativo in Ω X aperto connesso, allora rotf,, z = per ogni,, z Ω. Viceversa esistono campi di vettori irrotazionali che non sono conservativi nel dominio naturale. Esempio.6. Il campo di vettori F,, z = 2 2+z 2 è conservativo nell aperto connesso Ω = {,, z : > } o su Ω = {,, z : < }. verifica infatti che la funzione f,, z = 2 + z è definita su Ω e f,, z = 2 2+z 2 = F,, z Esempio.7. Un esempio di campo di vettori irrotazionale e non conservativo nel dominio naturale è dato da.6 F, = 2 + 2, che ha come dominio naturale X = R 2 \ {, }. La verifica che questo campo sia irrotazionale è immediata, infatti F 2, = = e quindi F, = = rotf, = F, = F 2, F, = per ogni, X= X. Che questo campo non sia conservativo in X, quindi non esista un suo potenziale in X, lo verificheremo più avanti, usando una caratterizzazione dei campi conservativi 3 Si

4 che utilizza il concetto di lavoro. Osserviamo comunque che F è conservativo in alcuni sottoinsiemi di X. Consideriamo infatti la funzione f, = arctan definita su Ω = {, R 2 : > }. Si ha F, = f, e F 2, = f, per ogni, Ω. Dunque F è conservativo in Ω. Esempio.8. Studiamo il campo di vettori su R F,, z = che ha come dominio naturale R 3. Il suo rotore è rotf,, z = 2 + z z 2 2z 2 2 quindi F non è irrotazionale, e per il Corollario.5, non può essere conservativo in alcun aperto contenuto nel dominio. I Abbiamo fin qui ricavato le seguenti implicazioni per i campi di vettori differenziabili: e la condizione F CONSERVATIVO = F IRROTAZIONALE F NON IRROTAZIONALE = F NON CONSERVATIVO Abbiamo anche visto che l implicazione inversa di I non vale in generale, ma vediamo ora che diventa vera sotto un ipotesi aggiuntiva per il dominio di F. Definizione.9 Insieme semplicemente connesso. Un insieme Ω R 3 si dice semplicemente connesso se ogni curva chiusa contenuta in Ω può essere deformata con continuità fino a diventare un punto. Esempi di insiemi semplicemente connessi sono la parte interna delle sfere e degli ellissoidi, i semipiani e i semi-spazi, mentre insiemi non semplicemente connessi sono per esempio le corone circolari e sferiche. Non è semplicemente connesso il piano R 2 meno un punto, mentre è semplicemente connesso lo spazio R 3 meno un punto. Per rendere non semplicemente connesso lo spazio R 3 bisogna togliere, ad esempio, una retta o una circonferenza. Teorema. Lemma di Poincaré. Se F CV R 3 è irrotazionale con dominio naturale X, allora è conservativo in ogni Ω X aperto semplicemente connesso. Troviamo quindi la condizione II F IRROTAZIONALE e INSIEME Ω SEMPL. CONNESSO = F CONSERVATIVO IN Ω Esempio.. Nell Esempio.6 abbiamo fatto vedere che il campo F,, z = z 2

5 è conservativo in Ω = {,, z : > } trovando esplicitamente un suo potenziale. Tuttavia a volte può essere difficile trovare esplicitamente il potenziale di un campo, ma la condizione II basta per determinare che un potenziale esiste. Nel nostro caso possiamo applicare II, infatti rotf,, z = = e il dominio Ω = {,, z : > } è un semi-spazio di R 3 che è semplicemente connesso. Lo studio del lavoro di un campo di vettori lungo una curva ci fornirà una condizione per verificare se un campo irrotazionale è conservativo anche su insiemi non semplicemente connessi. 2. Il lavoro di un campo di vettori Diamo le definizioni per campi di vettori definiti in sottoinsiemi di R 3. Per campi di vettori con dominio in R 2 le definizioni sono analoghe. Definizione 2. Lavoro di un campo di vettori. Sia γ : [a, b] R 3 una curva di classe C e F un campo di vettori con dominio naturale X che contiene il sostegno di γ, γ[a, b] X. Si definisce lavoro di F lungo γ, LF, γ, l integrale b LF, γ := < F, ˆt > ds = < Fγt, γ t > dt = γ dove ˆt è il versore tangente alla curva orientato nel verso di percorrenza e γ t è il vettore velocità della curva. Osserviamo che la funzione da integrare è ben definita essendo il prodotto scalare tra due vettori nello spazio tangente T P R 3 con P = γt. Esempio 2.2. Sia F il campo di vettori definito nell Esempio.7 con dominio X = R 2 \ {, }, e sia γt = R cos t, R sin t con t [, 2π], una curva con sostegno la circonferenza di raggio R e centro,. Vale γ[, 2π] X e calcoliamo R sin t γ t = R cos t Allora LF, γ = 2π a R sin t R cos t 2π R 2 cos 2 t + R 2 sin 2 R sin t + t R 2 cos 2 t + R 2 sin 2 R cos t dt = dt = 2π t Teorema 2.3. Sia F un campo di vettori con dominio naturale X e siano γ e γ due curve di classe C, equivalenti e con sostegno contenuto in X. Allora se γ e γ hanno lo stesso verso di percorrenza si ha LF, γ = LF, γ, se invece γ e γ hanno verso di percorrenza opposto si ha LF, γ = LF, γ. Esempio 2.4. Consideriamo il campo di vettori F,, z = 5 z

6 con dominio naturale X = R 3, e la curva Abbiamo quindi Consideriamo adesso la curva γt = cos t, 2 sin t, t t [, 2π] LF, γ = γ t = 2π sin t 2 cos t 4 sin t cos 2 t + t dt = 2π 2 γ t = cos t, 2 sin t, 2π t t [, 2π] Questa curva è equivalente alla precedente ma è orientata in senso opposto. Calcoliamo LF, γ = 2π 4 sin t cos 2 t 2π + t d t = 4π 2 + 2π 2 = 2π 2 Definizione 2.5. Sia γ : [a, b] R 3 una curva di classe C a tratti, ossia γ sia l unione di un numero finito di curve γ, γ 2,..., γ k di classe C, e sia F un campo di vettori con dominio naturale X che contiene il sostegno di γ, γ[a, b] X. Allora k LF, γ = LF, γ i i= 2.. Lavoro e campi conservativi. Il calcolo del lavoro per un campo di vettori è più semplice nel caso in cui il campo sia conservativo. Vale infatti il seguente risultato. Teorema 2.6. Sia F un campo di vettori con dominio naturale X R 3. Allora le seguenti affermazioni sono equivalenti: i F è conservativo in Ω X aperto connesso; ii per ogni coppia di curve γ e γ di classe C a tratti, con sostegno contenuto in Ω e con gli stessi punti iniziali e finali, si ha LF, γ = LF, γ iii per ogni curva chiusa γ di classe C a tratti e con sostegno contenuto in Ω, si ha LF, γ = Proof. i ii e iii. Sia γ : [a, b] R 3 una curva chiusa di classe C e poniamo F = f per una funzione f C Ω. Allora LF, γ = b a < fγt, γ t > dt = b a d fγt dt = fγb fγa dt Da questa espressione segue ii, essendo γa = γã e γb = γ b se γ : [a, b] R 3 e γ : [ã, b] R 3, e segue iii, essendo γa = γb se γ : [a, b] R 3. iii ii. Siano γ e γ curve di classe C a tratti, con sostegno contenuto in Ω e con gli stessi punti iniziali e finali. Indichiamo con γ la curva ottenuta da γ invertendo il verso di percorrenza. Allora γ γ è una curva chiusa di classe C a tratti, e quindi = LF, γ γ = LF, γ + LF, γ = LF, γ LF, γ 6

7 ii iii Sia γ : [a, b] R 3 di classe C a tratti e chiusa, quindi P = γa = γb. Definiamo γt = P per ogni t [, ]. Allora γ e γ sono di classe C a tratti, con sostegno contenuto in Ω e con gli stessi punti iniziali e finali, quindi essendo γ t = per ogni t. LF, γ = LF, γ = < F γt, γ t > dt = ii i cenno Nel caso in cui Ω = R 2, basta mostrare che f, = F t, dt + F 2, t dt è un potenziale del campo F = F, F 2. Per domini diversi basta adattare la scelta della funzione f,. Abbiamo in particolare dimostrato un utile espressione per il calcolo del lavoro di un campo conservativo. Corollario 2.7 Lavoro di un campo conservativo. Sia F un campo di vettori conservativo in un aperto connesso Ω di R 3, e sia γ : [a, b] R 3 una curva di classe C a tratti e con sostegno contenuto in Ω. Allora, se f è un potenziale di F in Ω si ha Esempio 2.8. Dato il campo di vettori LF, γ = fγb fγa F, = vogliamo calcolare il lavoro che compie lungo la curva 2 cos sin γt = 2 t 3, t t [, ] Disegnando il sostegno della curva, notiamo che è contenuto nell aperto connesso Ω = {, : > 3}. Inoltre il campo F è conservativo in Ω, con un potenziale dato dalla funzione Allora f, = sin LF, γ = fγ fγ = 3 sin Vediamo ora come determinare quando un campo è conservativo e trovare un potenziale. Il primo punto l abbiamo in parte affrontato nella sezione precedente. Il campo dell esempio 2.8 è irrotazionale e l insieme Ω è semplicemente connesso si tratta di un semi-piano, quindi applicando II otteniamo che il campo è conservativo in Ω. Adesso usiamo il Teorema 2.6 per studiare il problema per un campo irrotazionale in un insieme non semplicemente connesso. Nella pratica è impossibile verificare che il lavoro di un campo lungo tutte le possibili curve chiuse sia nullo, ma enunciamo il seguente criterio: supponiamo che l insieme in cui studiamo il campo F non sia semplicemente connesso, ma abbia N buchi, siano {γ i }, per i =,..., N, circonferenze di centro i buchi e di raggio qualsiasi ma scelto in modo che ciascuna contenga esattamente un solo buco e il suo sostegno sia contenuto nel dominio di F, allora III Se γ i t.c. LF, γ i = F NON CONSERVATIVO 7

8 IV Se LF, γ i = per ogni i =,..., N = F CONSERVATIVO Esempio 2.9. Nell esempio 2.2 abbiamo calcolato il lavoro del campo F, = lungo la parametrizzazione γ di una circonferenza di centro l origine, e abbiamo trovato LF, γ = 2π. Poiché F è irrotazioniale e il suo dominio naturale è l aperto non semplicemente connesso X = R 2 \ {, }, per verificare se si tratta di un campo conservativo in X dobbiamo studiare il lavoro di F lungo una circonferenza di centro il buco di X, ossia una circonferenza di centro l origine. Ma questa curva è esattamente γ e abbiamo LF, γ, dunque per III si ha che F non è conservativo. Esempio 2.. Determiniamo se il campo di vettori F, = è conservativo nel suo dominio naturale. Prima di tutto stabiliamo che il suo dominio naturale è l aperto X = {, : > } che non è semplicemente connesso. Scegliamo allora una circonferenza di centro l origine e raggio 2, parametrizzata da γt = 2 cos t, 2 sin t t [, 2π] e calcoliamo LF, γ. Applicando la definizione di lavoro otteniamo 2π 2 cos t LF, γ = 2 sin t + 2 sin t 2 cos t dt = 3 3 Quindi applicando IV otteniamo che F è conservativo in X. Esempio 2.. Determiniamo se il campo di vettori F,, z = z 2 +z 2 2 +z 2 è conservativo nel suo dominio naturale. Prima di tutto stabiliamo che il suo dominio è l aperto X = R 3 \ {,, z : = z = } che non è semplicemente connesso, in quanto si tratta di R 3 meno l asse. Una circonferenza di centro il buco di X e contenuta nel dominio di F è allora una qualsiasi circonferenza che abbia centro sull asse e non intersechi l asse. Per semplicità scegliamo la circonferenza di raggio, parametrizzata da γt =, cos t, sin t t [, 2π] e calcoliamo LF, γ. Applicando la definizione di lavoro otteniamo LF, γ = 2π + sin t sin t + cos t cos t dt = 8 2π dt = 2π

9 dunque per III si ha che F non è conservativo in X. È possibile che sia conservativo in un qualche sottoinsieme Ω X? Veniamo ora al secondo punto, la ricerca di un potenziale per un campo conservativo. Esempio 2.2. Dato il campo di vettori F, = determiniamo se si tratta di un campo conservativo nel suo dominio naturale e, in caso affermativo, calcoliamo un potenziale. Prima di tutto stabiliamo che il suo dominio naturale è X = R 2, che è semplicemente connesso. Inoltre il campo è irrotazionale, infatti rotf, = F 2, F, = = Quindi applicando II otteniamo che F è conservativo in X. Cerchiamo ora un potenziale. Dalla Definizione.4 dobbiamo trovare una f C R 2 che risolva il sistema { f, = f, = Se integriamo rispetto alla variabile la prima equazione, abbiamo che f, = c, dove c è una qualsiasi funzione che dipende solo dalla. Sostituendo il valore di f, così ottenuto nella seconda equazione troviamo c = c = da cui una soluzione è c =. Dunque un potenziale del campo F in X è la funzione che è definita su R 2 e di classe C. Esempio 2.3. Dato il campo di vettori f, = , F,, z = determiniamo se si tratta di un campo conservativo nel suo dominio naturale e, in caso affermativo, calcoliamo un potenziale. Prima di tutto stabiliamo che il suo dominio naturale è X = R 3 \ { = = }, che non è semplicemente connesso. Il campo è irrotazionale, infatti rotf,, z = F 3 F 2 F F 3 F 2 F = =

10 Quindi per stabilire se è conservativo in X dobbiamo calcolare il lavoro di F lungo una circonferenza con centro sull asse z e che non interseca l asse z. Scegliamo la parametrizzazione per cui vale LF, γ = γt = cos t, sin t, t [, 2π] 2π 2 cos t sin t + 2 sin tcos t dt = Dunque applicando IV otteniamo che F è conservativo in X. Cerchiamo ora un potenziale. Dalla Definizione.4 dobbiamo trovare una f C X che risolva il sistema f,, z = f,, z = f,, z = Se integriamo rispetto alla variabile la prima equazione, abbiamo che f,, z = log c, z dove c, z è una qualsiasi funzione che dipende solo da, z. Sostituendo il valore di f,, z così ottenuto nella seconda equazione troviamo log c, z = c, z =, da cui ricaviamo che c, z = cz, ossia la funzione c, z può essere scelta come dipendente solo dalla funzione z. Sostituendo il valore di f,, z così ottenuto nella terza equazione troviamo log cz = c z =, da cui una soluzione è cz = z. Dunque un potenziale del campo F è la funzione che è definita su X e di classe C. f,, z = log z 2.2. Lavoro e campi irrotazionali: il Teorema del rotore. Abbiamo visto che il calcolo del lavoro per un campo conservativo è molto semplice, dipendendo solo dai punti iniziali e finali della curva e dal potenziale del campo Corollario 2.7. Non è così semplice la situazione per i campi non conservativi. In generale il calcolo del lavoro deve avvenire utlizzando la Definizione 2., e quindi il calcolo può risultare laborioso. L unico caso in cui le cose possono semplificarsi è quando si vuole calcolare il lavoro di un campo lungo una curva chiusa, anche se serve un ipotesi in più, grazie al Teorema del rotore. Nel Teorema del rotore gioca un ruolo l orientazione di una curva. Ricordiamo che una curva piana, chiusa e semplice si dice orientata positivamente quando è percorsa in senso anti-orario. L ipotesi fondamentale in più rispetto al teorema per i campi conservativi è che, non solo il sostegno della curva deve essere contenuto nel dominio del campo, ma tutta la parte racchiusa dalla curva deve essere contenuta nel dominio. Teorema 2.4 del rotore - caso R 2. Sia F un campo di vettori differenziabile con dominio naturale X R 2. Sia γ : [a, b] R 2 una curva chiusa, semplice, di classe C a tratti e orientata positivamente. Supponiamo inoltre che U, l insieme racchiuso dalla curva, sia un aperto connesso contenuto in X. Allora LF, γ = U rotf dd

11 Per enunciare il teorema nel caso di R 3, se una curva chiusa è il bordo di una superficie regolare, diremo che è orientata positivamente se il vettore ˆn γ, prodotto vettoriale tra il versore normale alla superficie e il vettore tangente alla curva, punta verso la parte racchiusa dalla curva. Mentre una superficie regolare si dice orientabile se è possibile determinare in maniera univoca e con continuità il verso del vettore normale alla superficie in ogni suo punto. Teorema 2.5 del rotore - caso R 3. Sia F un campo di vettori differenziabile con dominio naturale X R 3. Sia γ : [a, b] R 3 una curva semplice, chiusa e di classe C a tratti. Supponiamo inoltre che il sostegno di γ sia il bordo di una superficie Σ, regolare e orientabile, e contenuta in X, e che fissato il versore normale ˆn, la curva sia orientata positivamente. Allora LF, γ = < rotf, ˆn > ds Σ Ricordiamo che nel caso in cui la curva sia orientata negativamente, per il Teorema 2.3, basta cambiare il segno dell integrale. Esempio 2.6. Consideriamo per esempio il campo irrotazionale F, = che ha dominio naturale X = R 2 \ {, }. Se scegliamo la curva γ che ha come sostegno la circonferenza di centro l origine e raggio, abbiamo visto nell esempio 2.2, che LF, γ = 2π. Questo risultato non è in contraddizione con il Teorema 2.4 perché non tutte le ipotesi del teorema sono soddisfatte. Infatti, il campo è irrotazionale e differenziabile, e la curva è chiusa e di classe C, ma l insieme racchiuso dalla curva è U = {, : } X, infatti, si trova in U ma non in X. Esempio 2.7. Consideriamo ancora il campo irrotazionale dell esempio precedente, e calcoliamo il suo lavoro lungo la curva γt = cos t cos t, cos t sin t t [, 2π] La curva è chiusa e di classe C, rimane da determinare se la parte racchiusa U è contenuta nel dominio naturale del campo, che è X = R 2 \{, }. Per farlo basta verificare se l origine sta o non sta in U. Poiché il sostegno della curva è contenuto nel semipiano { 3}, si verifica che, U e dunque U X. Possiamo allora applicare il teorema e trovare LF, γ =. Esempio 2.8. Consideriamo ora il campo irrotazionale dell esempio 2., che ha come dominio naturale X = R 3 \ { = z = }, e calcoliamo il suo lavoro lungo la curva γt = cos t, 2 + sin t, + 2 cos t t [, 2π] La curva è chiusa e di classe C, rimane da determinare se si può interpretare come bordo di una superficie Σ, regolare e orientabile, contenuta in X. A questo scopo basta determinare che la curva non giri intorno al buco di X, ossia, in questo caso, che l asse non passi dentro la curva. Per far questo, basta osservare che per ogni t [, 2π] vale t > e zt >. Possiamo allora applicare il Teorema 2.5 e trovare LF, γ =.

12 Esempio 2.9. Calcolare il lavoro del campo di vettori arctan 3 F, = 2 lungo la curva γt = cos t, sin t t [, 2π] Il campo F è differenziabile e con dominio naturale X = R 2. La curva γ è piana, chiusa, semplice ed è orientata positivamente. La parte racchiusa U è data da U = {, : } X. Allora possiamo applicare il Teorema del rotore. Calcoliamo e quindi rotf, = F 2, F, = 2 LF, γ = U 2 dd = Esempio 2.2. Calcolare il lavoro del campo di vettori dell esempio 2.9 lungo il bordo di U = {, :,, } orientato in senso anti-orario. In questo caso la curva U è chiusa e di classe C a tratti, essendo l unione U = γ γ 2 γ 3 di tre curve di classe C. Inoltre la parte racchiusa U è contenuta nel dominio del campo, quindi possiamo applicare il Teorema del rotore e ottenere 2 LF, γ = 2 dd = 2 d d = 4 U Esempio 2.2 Formula dell area. Applichiamo adesso il Teorema del rotore in maniera inversa a quanto fatto finora. Osserviamo che il campo di vettori con dominio naturale R 2 F A, := verifica rotf A, = 2 per ogni, R 2. Sia poi U un insieme aperto connesso e U sia il sostegno di una curva chiusa, semplice e di classe C a tratti. Se parametrizziamo U in modo che sia orientata positivamente, possiamo allora scrivere che AreaU = dd = rotf A dd = U 2 U 2 LF A, U Abbiamo quindi ridotto il calcolo dell area di un insieme a un integrale curvilineo. Ricordiamo la curva detta cicloide, definita dalla parametrizzazione γt = t sin t, cos t t [, 2π]. Applichiamo la formula all insieme U = parte racchiusa dalla cicloide e dall asse.. Il bordo di U lo parametrizziamo dunque ponendo U = Γ Γ con Γ = Imm γ con γt = t sin t, cos t t [, 2π], Γ = Imm γ con γt = t, t [, 2π]. 2

13 La curva γ γ è chiusa, di classe C a tratti e orientata positivamente. Allora 2 AreaU = 2 LF A, U = 2 LF A, γ + 2 LF A, γ = 2π [ ] cos t 2 + t sin t sin t dt + 2π dt = 3π 2 Esempio Calcolare il lavoro del campo di vettori z 3 lungo la curva F = 2 z γt =, 2 cos t, 3 sin t t [, 2π] Il campo F è differenziabile e con dominio naturale X = R 3. La curva γ è chiusa e la possiamo interpretare come il bordo della superficie regolare { 2 } Σ =,, z : =, 4 + z2 9 Dato il verso di percorrenza della curva, se scegliamo una parametrizzazione di Σ che ha come versore normale ˆn = la curva γ risulta orientata positivamente. Allora possiamo applicare il Teorema del rotore 2.5. Calcoliamo F 3 F 2 rotf,, z = F,, z = F F 3 = 3z 2 z e quindi LF, γ = Σ F 2 F < rotf, ˆn > ds = Esempio Calcolare il lavoro del campo di vettori F = 2 lungo il bordo della superficie z 2 z 3 Σ = {,, z :,, z, z 2 = } con vettore normale che punta verso l esterno. 3

14 Il campo F è differenziabile e con dominio naturale X = R 3. La curva Σ è chiusa e unione di tre curve di classe C. Se parametrizziamo Σ con cos φ sin θ σθ, φ = sin φ sin θ cos θ definita nell insieme { D = θ, φ : θ π 2, φ π } 2 allora, scelto l ordine per le variabili, il vettore normale è nθ, φ = cos φ sin 2 θ sin φ sin 2 θ sin θ cos θ e punta verso l esterno. Allora possiamo applicare il Teorema del rotore. Calcoliamo e quindi rotf,, z = F,, z = LF, γ = Σ < rotf, ˆn > ds = D F 3 F 2 F F 3 F 2 F = z sin 2 θ cos θ sin φ dφdθ = 3 3. Il flusso di un campo di vettori e il Teorema della divergenza Consideriamo ora il flusso di un campo di vettori attraverso una superficie orientabile. Definizione 3.. Sia F un campo di vettori con dominio naturale X R 3 e Σ una superficie regolare e orientabile, con versore normale ˆn, e supponiamo che Σ X. Si definisce flusso di F attraverso Σ, Φ Σ F, l integrale Φ Σ F := < F, ˆn > ds Esempio 3.2. Calcoliamo il flusso del campo di vettori F,, z = Σ attraverso la sfera di raggio R e orientata in maniera naturale, ossia con versore normale verso l esterno. Il dominio naturale di F è X = R 3, e quindi certamente Σ X. Dobbiamo innanzitutto trovare una parametrizzazione della sfera che induca l orientazione naturale. Scegliamo la parametrizzazione σθ, φ = z R sin θ cos φ R sin θ sin φ 4 R cos θ

15 definita nell insieme D = {θ, φ : θ π, φ 2π} allora, scelto l ordine per le variabili, il vettore normale è R 2 cos φ sin 2 θ nθ, φ = R 2 sin φ sin 2 θ R 2 sin θ cos θ e punta verso l esterno. Quindi applichiamo la definizione e otteniamo nθ, φ Φ Σ F = < F, ˆn > ds = < F σθ, φ, > nθ, φ dθdφ = Σ D nθ, φ = < F σθ, φ, nθ, φ > dθdφ = R 3 cos 2 φ sin 3 θ + sin 2 φ sin 3 θ + sin θ cos 2 θ dθdφ = D D = R 3 sin θ dθdφ = 4πR 3 D Abbiamo visto che un punto importante per il calcolo del flusso è la ricerca di una parametrizzazione della superficie che induca l orientazione scelta. Se si trova che invece la parametrizzazione induce l orientazione opposta a quella scelta, allora basta cambiare poi il segno all integrale. Esempio 3.3. Calcoliamo il flusso del campo di vettori F,, z = attraverso la superficie Σ di parametrizzazione σu, θ = z 2 u cos θ u sin θ definita nell insieme D = {u, θ : u 2, θ π} e con orientazione indotta dalla parametrizzazione. Il dominio naturale di F è X = R 3, e quindi certamente Σ X. Il vettore normale calcolato usando la parametrizzazione è u cos θ nu, θ = u sin θ u Applichiamo la definizione e otteniamo nu, θ Φ Σ F = < F, ˆn > ds = < F σu, θ, > nu, θ dudθ = Σ D nu, θ = < F σu, θ, nu, θ > dudθ = u 2 cos 2 θ u 2 sin 2 θ + u 3 dudθ = D D = u 3 u 2 dudθ = 7 D 2 π u 5

16 Enunciamo adesso il Teorema della divergenza, che permette di calcolare il flusso di un campo di vettori uscente da una superficie chiusa attraverso un integrale triplo, che a volte può risultare più semplice. Teorema 3.4 della divergenza. Sia F un campo di vettori differenziabile con dominio naturale X R 3. Sia Σ una superficie chiusa, regolare e orientabile, con orientazione naturale, ossia con versore normale che punta verso l esterno, e supponiamo che U, la parte racchiusa dalla superficie, sia contenuta in X. Allora Φ Σ F = divf dddz Lo stesso vale per superfici chiuse che sono unione finita di superfici regolare. Esempio 3.5. Calcoliamo il flusso del campo di vettori U F,, z = uscente dalla superficie Σ = U, bordo dell insieme U = {,, z :,, z }. Il dominio naturale di F è X = R 3, e quindi certamente U X. La superficie Σ è chiusa e unione finita di superfici regolari, ed è orientabile. Allora possiamo applicare il Teorema della divergenza. Calcoliamo divf,, z = F,, z + F 2,, z + F 3,, z = z e quindi, ponendo E = {, :, }, Φ Σ F = z dddz = = E U 2 2 z z dz dd = 4 Esempio 3.6. Calcoliamo il flusso del campo di vettori + z F,, z = arctanz 3 log uscente dalla superficie Σ = sfera di centro l origine e raggio R. Il dominio naturale di F è X = R 3 e Σ = U con U = { z 2 R 2}. Quindi Σ è una superficie chiusa, regolare e orientabile, e U X. Allora possiamo applicare il Teorema della divergenza. Calcoliamo e quindi divf,, z = F,, z + F 2,, z + F 3,, z = Φ Σ F = U dddz = Volume di U = 4 3 π R3 6

17 4. Esercizi Esercizio. Determinare se i seguenti campi di vettori sono irrotazionali e se sono conservativi nel proprio dominio naturale, e trovare un potenziale per quelli conservativi: + e F, = F e 2, = cos F 3, = F 4, = F 5, = 2 sin cos + cos sin sin cos + 2 cos sin F 6, = F 7,, z = z F 8,, z = 2 +z 2 z 2 +z 2 F 9,, z = log sin [Risultati: conservativo, f, = + e + sin ; 2 conservativo, f, = ; 3 conservativo, f, = + + ; 4 conservativo, f, = arcsin; 5 conservativo, f, = sin sin 2 cos cos ; 6 irrotazionale ma non conservativo; 7 irrotazionale ma non conservativo; 8 conservativo, f,, z = 2 log 2 + z ; 9 conservativo, f,, z = log cos + z.] Esercizio 2. Calcolare il lavoro del campo di vettori F, = lungo la curva γt = t sin t, cos t con t [, 2π]. [Risultato = 2π] Esercizio 3. Calcolare il lavoro del campo di vettori 2 F, = 3 lungo la curva γt = t 3, t 2 con t [, ]. [Risultato = ] Esercizio 4. Calcolare il lavoro del campo di vettori F,, z = z + + lungo la curva γt = t, t, t 2 con t [, ]. [Risultato = 6 ] Esercizio 5. Calcolare il lavoro del campo di vettori F, = lungo la curva γt = sin t 2, sin t con t [, π]. [Risultato = log 2] 7

18 Esercizio 6. Calcolare il lavoro del campo di vettori log + 2 F, = 2 lungo la curva γt = 2 cos t, + sin t con t [ π 2, π 2 ]. [Risultato = 2 2] Esercizio 7. Calcolare il lavoro del campo di vettori F, = lungo la curva γt = 2 cos t, 2 + sin t con t [, 2π]. [Risultato = ] Esercizio 8. Calcolare il lavoro del campo di vettori F,, z = 2 +z 2 z 2 +z 2 lungo la curva γt = cos t, sin t, sin 2 t con t [, 2π]. [Risultato = ] Esercizio 9. Calcolare il flusso del campo di vettori F,, z = attraverso la superficie Σ di parametrizzazione σθ, v = 2 cos θ + 2, 2 sin θ, v definita su D = {θ, v : θ 2π, v cos θ}, e orientazione indotta dalla parametrizzazione. [Risultato = ] Esercizio. Calcolare il flusso del campo di vettori z 2 F,, z = { } uscente attraverso la superficie Σ = U con U = z2. [Risultato = 24 5 π] 8

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO)

IL CALCOLO VETTORIALE (SUPPLEMENTO AL LIBRO) IL CALCOLO VETTORIALE SUPPLEMENTO AL LIBRO CLAUDIO BONANNO Contents. Campi di vettori e operatori 2. Il lavoro di un campo di vettori 5 2.. Lavoro e campi conservativi 6 2.2. Lavoro e campi irrotazionali:

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2 Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1.

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2x 2 + x 4 + 4y 4., x 2 + y 2 1. Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 05-06-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del -6- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del (x, y) = (0, 0) y 2 e x 2 +y 2 dx dy

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del (x, y) = (0, 0) y 2 e x 2 +y 2 dx dy Analisi Matematica II Corso di Ingegneria Gestionale Compito A del --8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A

Analisi Matematica II Corso di Ingegneria Gestionale Compito del A Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-5 - A Esercizio ( punti Data la funzione f(x, y = x + y + 4xy 8x 4y + 4 i trovare tutti i punti critici e, se possibile, caratterizzarli

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7-2 - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 0-0-0 - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + }

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = x 2 + y 3 4y. 4 1, y 2 2(1 + } Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8-09-07 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Campi conservativi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Campi conservativi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Campi conservativi Analisi Matematica B 1 / 99 Premessa Riccarda Rossi (Università di

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del 30-0-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = (x 2 2y 2 ) e x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = (x 2 2y 2 ) e x y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--5 - È obbligatorio consegnare tutti i fogli anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = sin( x 2 + 2y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

CAMPI VETTORIALI. 1. Introduzione Definizione 1.1. Sia A R N un aperto non vuoto, un campo vettoriale su A è una funzione F : A R N.

CAMPI VETTORIALI. 1. Introduzione Definizione 1.1. Sia A R N un aperto non vuoto, un campo vettoriale su A è una funzione F : A R N. CAMPI VETTORIALI Indice. Introduzione 2. Lavoro di un campo vettoriale 2 3. Campi vettoriali conservativi 3 4. Campi irrotazionali 6 5. Esercizi 9. Introduzione Definizione.. Sia A R N un aperto non vuoto,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2.

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log 1 + (x y 2 ) x 2. Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-7-6 - È obbligatorio consegnare tutti i fogli, anche la brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y

Analisi Matematica II Corso di Ingegneria Biomedica Compito del f(x, y) = x sin y Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(, y, z)d + B(, y, z)dy + C(, y, z)dz Data

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y)

Analisi Matematica II Corso di Ingegneria Biomedica Compito del A. f(x, y) = x + y 2 + log(x y) Analisi Matematica II Corso di Ingegneria Biomedica Compito del 4-6- - A - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 1 uperfici ia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 (u, v) R ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), cioè tale che le componenti x(u,

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente Analisi Matematica 2 (Corso di Laurea in Informatica) 2.02.2012 B Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--6 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1 Analisi Matematica II Corso di Ingegneria Gestionale Compito del --5 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del -09-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI 218-19 CLAUDIO BONANNO Richiamiamo le definizioni e le prime principali proprietà delle funzioni differenziabili di più variabili e a valori vettoriali

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del

Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del Matematica III Corso di Ingegneria delle Telecomunicazioni Prova scritta del 04-06-007 Esercizio. (8 punti) Si consideri il seguente campo vettoriale F = + y + z i y ( + y + z ) j z ( + y + z ) k a) (5

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del --9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R 3 un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A x, y, z dx + B x, y, z dy + C x, y, z dz

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29

Analisi Matematica 2. Trasformazioni integrali. Trasformazioni integrali 1 / 29 Analisi Matematica 2 Trasformazioni integrali Trasformazioni integrali 1 / 29 Trasformazioni integrali. 1) Formule di Gauss-Green: nel piano: trasformano un integrale doppio in un integrale curvilineo,

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi dell 1.XII.18 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018

Analisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 2018 nalisi Matematica II - Ingegneria Meccanica/Energetica - 29 Gennaio 218 1) ia data la funzione f(x, y, z) = (x 2 + y 2 1) 2 + 8 a) tudiare l esistenza di massimi e minimi assoluti della funzione f nella

Dettagli

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19

ANALISI MATEMATICA 2 - INGEGNERIA MECCANICA ED ENERGETICA A.A PROVA SCRITTA DEL 28/1/19 ANALISI MATEMATICA - INGEGNERIA MECCANICA E ENERGETICA A.A. 8-9 PROVA SCRITTA EL 8//9 Scrivere nome cognome e numero di matricola in stampatello su tutti i fogli da consegnare. Consegnare solo la bella

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Integrali di curva e di superficie

Integrali di curva e di superficie Capitolo 8 Integrali di curva e di superficie Studiamo ora gli integrali definiti, invece che su intervalli o su parti di piano, su curve e su superfici. Conviene premettere alcune considerazioni sui limiti

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 7 gennaio 2010 Indichiamo con R n, Z n 1, l insieme delle n-uple ordinate di numeri reali R n 4 {(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X

Dettagli

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste.

Campi vettoriali. 1. Sia F (x, y) = ye x i + (e x cos y) j un campo vettoriale. Determinare un potenziale per F, se esiste. Campi vettoriali. Sia F (x, y = ye x i + (e x cos y j un campo vettoriale. Determinare un potenziale per F, se esiste.. Sia F (x, y = xy i + x j un campo vettoriale. Determinare un potenziale per F, se

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g.

Istituzioni di geometria superiore - prova scritta del 4 febbraio y 2 ) 4xe (x. e γ(t) = t2 + 1 log (t 4 + 2) div g (X) ω g. Istituzioni di geometria superiore - prova scritta del 4 febbraio 6 Prima parte Su R dotato delle coordinate cartesiane {x, y} si considerino la metrica g data da e il campo vettoriale g = dx dx + e x

Dettagli

Prova scritta di Geometria differenziale - 27/9/2012

Prova scritta di Geometria differenziale - 27/9/2012 Prova scritta di Geometria differenziale - 27/9/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Geometria 3 primo semestre a.a

Geometria 3 primo semestre a.a Geometria 3 primo semestre a.a. 2014-2015 Esercizi Forme differenziali Ricordiamo alcune definizioni date a lezione. s-forma definite da Siano ω una k-forma e φ una ω = I a I dx I, φ = J b J dx J Definizione

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione).

Foglio 3 Esercizi su forme differenziali lineari ed integrali di seconda specie (alcuni con cenno di soluzione). Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e MeccanicaMeccatronica, V. Casarino P. Mannucci (-) Foglio 3 Esercizi su forme differenziali lineari ed integrali

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t

si ha La lunghezza L si calcola per ciascun tratto L = (2t)2 + (3t 2 ) dt+ 2 (3t2 ) 2 + (2t) 2 dt = 4t2 + 9t 4 dt = t ANALISI VETTORIALE Soluzione esercizi 1 gennaio 211 6.1. Esercizio. Sia Γ la curva regolare a tratti di rappresentazione parametrica x = t 2, y = t, t [, 1] e x = t, y = t 2, t [1, 2] calcolare la lunghezza,

Dettagli

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y),

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y), 1 INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 1-6-16 - COMPITO A ESERCIZIO 1 Studiare la convergenza assoluta, puntuale e totale della serie k + 1 e(k+1)(x+y),

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010

COMPLEMENTI DI ANALISI MATEMATICA A.A Primo appello del 5/5/2010 COMPLEMENTI DI ANALISI MATEMATICA A.A. 29- Primo appello del 5/5/2 Qui trovate le tracce delle soluzioni degli esercizi del compito. Ho tralasciato i calcoli da Analisi (che comunque sono parte della risoluzione),

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Teoremi della Divergenza e Stokes nello spazio

Teoremi della Divergenza e Stokes nello spazio Teoremi della ivergenza e tokes nello spazio Abbiamo visto come si definisce l area di una superficie, partendo da questo possiamo definire l integrale superficiale per una qualsiasi funzione f regolare

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Esempi di calcolo del potenziale

Esempi di calcolo del potenziale Esempi di calcolo del potenziale Nota di D. Canarutto per i corsi di Meccanica Razionale Ingegneria Civile ed Edile, Firenze (a.a. 211-212) 1 novembre 211 Indichiamo con F lo spazio vettoriale dei vettori

Dettagli

Analisi Matematica 2 (Corso di Laurea in Informatica)

Analisi Matematica 2 (Corso di Laurea in Informatica) COGNOME NOME Matr. Firma dello studente A Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

Esercizi 5 soluzioni

Esercizi 5 soluzioni Esercizi 5 soluzioni Alessandro Savo, Geometria Differenziale 27-8 Esercizi su geodetiche e curve su superfici. Esercizio Determinare l area della regione del paraboloide z = x 2 + y 2 compresa tra i piani

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Analisi Matematica III (Fisica) 07 Gennaio 2016

Analisi Matematica III (Fisica) 07 Gennaio 2016 Analisi Matematica III (Fisica 7 Gennaio 16 1. (1 punti Calcolare l area della sezione del cilindro x + y 4 determinata dal piano di equazione z x + y. (Possibilmente in due modi differenti Ci sono vari

Dettagli

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f:

ANALISI MATEMATICA 2 Prova scritta 02/07/2012. log(x 2 + 3y 2 ) ) [15 pt] Data la funzione f : dom f R 2 R, f(x, y) = 1 4. [1 pt] calcolare f: ANALISI MATEMATICA Prova scritta /7/1 COGNOME e Nome firma 1. [15 pt] Data la funzione f : dom f R R, fx, y) 1 4 logx + 3y ) ) [1 pt] calcolare f: [ pt] Disegnare l insieme dei punti stazionari di f [

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli