Matrici diagonalizzabili

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matrici diagonalizzabili"

Transcript

1 Capitolo INTRODUZIONE 2 Matrici diagonalizzabili Se una matrice A ha n autovalori λ i reali distinti, allora ha anche n autovettori v i reali linearimente indipendenti tra di loro: Av i = λ i v i, i {, 2, 3,, n} In questo caso la matrice A può essere diagonalizzata utilizzando una trasformazione T le cui colonne coincidono con gli autovettori v i : T = [ v v 2 v 3 v n Sulla diagonale della matrice A = T AT sono presenti tutti gli autovalori λ i della matrice A secondo l ordine dato dalla sequenza degli autovettori v i presenti all interno della matrice T: A = T AT = λ λ 2 λ 3 UnamatriceApuòesserediagonalizzatase e solo seperessaèpossibiletrovare un numero di autovettori v i linearmente indipendenti pari alla dimensione n della matrice stessa Una matrice A può essere diagonalizzata anche se non ha tutti gli autovalori λ i reali distinti Le matrici non diagonalizzabili possono essere portate in forma canonica di Jordan Tale forma canonica è quella che maggiormente si avvicina ad una forma diagonale Una matrice A può essere diagonalizzata anche se ha degli autovalori λ i complessi coniugati In questo caso gli autovettori v i sono complessi coniugati e la matrice di trasformazione T è complessa λ n

2 Capitolo 2 FORME CANONICHE 22 Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico: A (λ) = (λ λ ) r (λ λ 2 ) r 2 (λ λ h ) r h Una matrice A posta in forma canonica di Jordan A ha la seguente forma diagonale a blocchi: A = T AT = J J J h Adogniautovaloredistintoλ i dellamatriceacorrispondeunblocco di Jordan J i di dimensione pari alla molteplicità algebrica r i dell autovalore λ i, cioè pari al grado di molteplicità r i dell autovalore λ i all interno del polinomio caratteristico A (λ) A sua volta ogni blocco di Jordan J i ha la struttura di una matrice diagonale a blocchi: J i, 0 0 dimj i = r i 0 J J i = i,2 0 i =,, h 0 0 J i,mi SulladiagonaledelbloccodiJordanJ i sonopresentim i miniblocchi di Jordan J i,j, dove m i è la molteplicità geometrica dell autovalore λ i, cioè il numero di autovettori linearmente indipendenti v i,j associati all autovalore λ i La struttura di tutti i miniblocchi di Jordan J i,j è la seguente: J i,j = λ i λ i λ i λ i λ i dimj i,j = ν i,j j =,, m i

3 Capitolo 2 FORME CANONICHE 23 La dimensione ν i,j di ciascun miniblocco di Jordan J i,j è pari al dimensione della catena di autovettori generalizzati che è possibile determinare a partire dall autovettore v i,j Valgono le seguenti relazioni: n = h i= r i, r i = m i j= ν i,j La matrice A è diagonalizzabile se e solo se la dimensione ν i,j di tutti i miniblocchi di Jordan J i,j è unitaria: ν i,j = In questo caso tutti i miniblocchi di Jordan J i,j = λ i coincidono con il corrispondente autovalore λ i e tutti i blocchi di Jordan J i sono diagonali e caratterizzati dallo stesso autovalore λ i : J i,j = λ i, J i = λ i λ i λ i, dimj i = r i i =,, h Una matrice A è diagonalizzabile se e solo se la molteplicità algebrica r i di ciascunautovaloreλ i èugualeallamolteplicitàgeometricam i,cioèseilnumero m i diautovettoriv i,j linearmenteindipendentiassociatiaciascunautovaloreλ i èugualeallamolteplicitàalgebricar i dell autovaloreλ i all internodelpolinomio caratteristico A (λ) Esempio Matrice in forma canonica di Jordan: A= , = J J 2, = J J 2,2 J 2, A (λ) = (λ+) 2 (λ+3) 3 n = 5, h = 2 λ =, λ 2 = 3 r = 2, r 2 = 3 m =, m 2 = 2 LamatriceAhadueautovaloridistintiλ = eλ 2 = 3 L autovaloreλ hamolteplicità algebrica r = 2 e molteplicità geometrica m = L autovalore λ 2 ha molteplicità algebrica r 2 = 3 e molteplicità geometrica m 2 = 2 Il blocco di Jordan J ha dimensione r = 2 ed è composto da un solo miniblocco J, Il secondo blocco di Jordan J 2 ha dimensione r 2 = 3 ed è composto da m 2 = 2 miniblocchi J 2, e J 2,2

4 Capitolo 2 FORME CANONICHE 24 Gli m i autovettori linearmente indipendenti v i,j associati all autovalore λ i si determinano risolvendo il seguente sistema lineare autonomo: (λ i I A)v i,j = 0, j =,, m i Il numero m i degli autovettori linearmente indipendenti v i,j è pari al numero di miniblocchi J i,j presenti all interno del blocco di Jordan J i Nel caso in cui si abbia m i < r i, il numero degli autovettori v i,j linearmente indipendenti non è sufficiente per diagonalizzare la matrice In questo caso occorreprocederealladeterminazionedellecatenev (k) i,j di autovettori generalizzati per i =, 2,, h, j =, 2,, m i e k =, 2,, ν i,j Gliautovettori generalizzativ (k) i,j si determinano risolvendo il seguente sistema di equazioni lineari: (A λ i I)v (2) i,j = v () i,j = v i,j (A λ i I)v (3) i,j = v (2) i,j (A λ i I)v (ν i,j) i,j = v (ν i,j ) i,j Il primo autovettore v () i,j = v i,j è noto Risolvendo la prima equazione del sistema si ricava l autovettore generalizzato v i,j, (2) il quale, sostituito nell equazione successiva permette di determinare l autovettore generalizzato v i,j, (3) e così via La particolare struttura quasi diagonale dei miniblocchi di Jordan J i,j si ottiene inserendo catene di autovettori generalizzati v (k) i,j tra le colonne della matrice di trasformazione T: T = [ v () i,j v (2) i,j v (ν i,j) i,j Se la molteplicità geometrica m i è uguale alla molteplicità algebrica r i, cioè se m i = r i, la catena di autovettori generalizzati v (k) i,j ha lunghezza unitaria ed è costituita dal solo autovettore v i,j

5 Capitolo 2 FORME CANONICHE 25 Esempio numerico in Matlab: clc; echo on % Matrice da portare in forma canonica di Jordan A =sym([ 73/29, -8/43, /29, 383/29, -23/258; 260/989, -249/989, -687/989, 759/989, -6889/978; 2885/989, 655/989, -4039/989, 230/989, -3905/989; 2273/989, -2079/989, 565/989, -326/989, -595/978; 4456/2967, -3052/989, 990/2967, 4778/2967, -3964/2967); % Il comando "jordan(a)" porta la matrice A in forma canonica di Jordan [V,AJ=jordan(A); AJ %%% Forma di Jordan della matrice A AJ = [ -3,, 0, 0, 0 [ 0, -3, 0, 0, 0 [ 0, 0, -,, 0 [ 0, 0, 0, -, 0 [ 0, 0, 0, 0, -3 V %%% Matrice degli autovettori generalizzati della matrice A V = [ -522/989, -242/989, 4760/2967, 23/989, / [ -406/989, -3334/2967, 2380/2967, 3334/2967, / [ -290/989, -3275/2967, 2975/2967, 3275/2967, / [ -348/989, -48/989, 785/989, 48/989, / [ -580/989, -78/2967, 4760/2967, 78/2967, /82338 % Verifica: le colonne di V sono gli autovettori generalizzati di A (A-(-3)*eye(5))*V(:,)==0 (A-(-3)*eye(5))*V(:,2)==V(:,) (A-(-)*eye(5))*V(:,3)==0 (A-(-)*eye(5))*V(:,4)==V(:,3) (A-(-3)*eye(5))*V(:,5)==0 % --> Vero % --> Vero % --> Vero % --> Vero % --> Vero

6 Capitolo 2 FORME CANONICHE 26 L evoluzione libera di un sistema discreto è la seguente: x(k) = A k x 0 = (TAT ) k x 0 = TA k T x 0 = T J J J h k T x 0 = T J k J k J k h T x 0 L evoluzione libera di un sistema tempo-continuo è la seguente: x(t) = e At x 0 = Te At T x 0 = Te J J J h t T x 0 = T e J t e J 2t e J ht T x 0 Per poter calcolare la potenza A k e l esponenziale e At della matrice generica A è sufficiente saper calcolare la potenza e l esponenziale del generico miniblocco di Jordan di dimensione ν: J = λ λ λ λ λ = λi+n La matrice J può essere espressa come somma della matrice diagonale λi e di una matrice nilpotente N che ha elementi non nulli e unitari solo sulla prima sovradiagonale Nel caso ν = 5, si ha: N =

7 Capitolo 2 FORME CANONICHE 27 Le potenze della matrice N hanno la seguente struttura: N 2 = N 3 = cioè, la matrice N k ha elementi non nulli solo sulla k-esima sovradiagonale La matrice N è nilpotente di ordine ν perchè soddisfa alla seguente relazione: N ν = 0 dove ν = dimn La potenza k-esima della matrice J può essere espressa nel seguente modo: J k = (λi+n) k = λ k I+ k λ k N+ k 2 λ k 2 N 2 ++N k Sapendo che le potenze N h sono nulle per h ν, si ha che: J k = (λi+n) k = λ k I+ = Con il simbolo k λ k N+ λ k kλ k k(k ) 2 λ k 2 0 λ k kλ k 0 0 λ k k λ k 2 N k ν 2 λ k ν+2 k ν k ν λ k kλ k λ k k λ k ν+ N ν ν λ k ν+ λ k ν+2 k si è indicato il seguente coefficiente binomiale: h k h = k(k )(k h+) h! Le funzioni f(λ,k) che compaiono all interno della matrice J k sono i modi del sistema discreto associati all autovalore λ

8 Capitolo 2 FORME CANONICHE 28 Nel caso tempo-continuo l esponenziale e Jt si calcola nel seguente modo: e Jt = e (λi+n)t = e λit e Nt = e λt Ie Nt = e λt n=0 t n n! Nn = e λt ν t n n=0n! Nn = e λt [ I+tN+ t2 2 N2 ++ tν (ν )! Nν = e λt te λt t2 2 t3 eλt 3! eλt t ν 3 tν 2 tν (ν 3)! eλt (ν 2)! eλt (ν )! eλt 0 e λt te λt t2 2 eλt 0 0 e λt te λt t ν 3 tν 2 (ν 3)! eλt (ν 2)! eλt t ν 3 (ν 3)! eλt e λt e λt te λt t2 2 eλt e λt te λt e λt Le funzioni del tempo f(λ,t) che compaiono all interno della matrice e Jt sono i modi del sistema tempo-continuo associati all autovalore λ La forma di Jordan è valida anche nel caso di autovalori λ i complessi coniugati Esempio numerico in Matlab: A =[ ; --> AJ=[ i 0 0 0; ; i 0 0; ; i 0; i [T,AJ=eig(A) % Porta la matrice A in forma di Jordan AJ T=[ i i ; i i; i i i i; i i i i Nel caso di autovalori λ i complessi coniugati anche le matrici T e AJ sono complesse e quindi di problematica utilizzazione In questo caso si preferisce utilizzare la forma reale di Jordan

9 Capitolo 2 FORME CANONICHE 29 Forma reale di Jordan Si faccia riferimento ad una matrice A di dimensione 6 caratterizzata da due autovalori complessi coniugati λ,2 con molteplicità algebrica r = 3 e molteplicità geometrica m = : λ,2 = σ ±jω, A (λ) = (λ λ ) 3 (λ λ 2 ) 3 = [(λ σ) 2 +ω 2 3 Sia v, v 2 e v 3 la catena di autovettori generalizzati associati all autovettore complesso v Applicando ad A la trasformazione di coordinate complessa : x = Tx, T = [ v v 2 v 3 v v 2 v 3 si ottiene una matrice complessa A in forma canonica di Jordan: A = T AT = λ λ λ λ λ λ Si ottengono due miniblocchi di Jordan complessi di dimensione 3 Siano v ir e v ii la parte reale e la parte immaginaria dell autovettore generalizzato v i Utilizzando la seguente trasformazione di coordinate: x = T x, T = [ vr v I v 2R v 2I v 3R v 3I la matrice A viene posta in forma reale di Jordan : Ã = T A T = σ ω ω σ σ ω ω σ σ ω ω σ () In questo modo le evoluzioni libere dei sistemi lineari possono essere espresse come combinazione lineare di soli termini reali: x(k) = A k x 0 = TÃk T x 0, x(t) = e At x 0 = TeÃt T x 0

10 Capitolo 2 FORME CANONICHE 20 Indichiamo con λ e θ il modulo e la fase del numero complesso λ = σ+jω: λ = σ 2 +ω 2 θ = arctan ω σ σ = λ cosθ ω = λ sinθ Il miniblocco reale di Jordan J può essere espresso nel seguente modo: J = σ ω ω σ Valgono le seguenti relazioni: e Jt = Esempio in Matlab: syms sig w t J=[sig w; -w sig EJt=simplify(expm(J*t)) e σt cosωt e σt sinωt e σt sinωt e σt cosωt = λ ω cosθ sinθ sinθ cosθ, J k = λ k λ θ σ λ coskθ sinkθ sinkθ coskθ J = EJt = [ sig, w [ exp(sig*t)*cos(t*w), exp(sig*t)*sin(t*w) [ -w, sig [ -exp(sig*t)*sin(t*w), exp(sig*t)*cos(t*w) La potenza k-esima Ãk della matrice reale di Jordan à k = [ coskθ sinkθ λ k sinkθ coskθ [ cos(k )θ sin(k )θ k λ k sin(k )θ cos(k )θ 0 λ k [ coskθ sinkθ sinkθ coskθ à in () è la seguente: [ k(k ) cos(k 2)θ sin(k 2)θ 2 λ k 2 sin(k 2)θ cos(k 2)θ [ cos(k )θ sin(k )θ k λ k sin(k )θ cos(k )θ 0 0 λ k [ coskθ sinkθ sinkθ coskθ L esponenziale eãt della matrice reale di Jordan eãt = à in () è la seguente: e σt cosωt e σt sinωt te σt cosωt te σt sinωt t 2 2 eσt cosωt t 2 2 eσt sinωt e σt sinωt e σt cosωt te σt sinωt te σt cosωt t2 2 eσt sinωt t 2 2 eσt cosωt 0 0 e σt cosωt e σt sinωt te σt cosωt te σt sinωt 0 0 e σt sinωt e σt cosωt te σt sinωt te σt cosωt e σt cosωt e σt sinωt e σt sinωt e σt cosωt

11 Capitolo 2 FORME CANONICHE 2 Esempio Dato il seguente sistema dinamico: ẋ(t) = x(t), x 0 = determinarel evoluzioneliberax(t)delsistemaapartiredallacondizioneinizialex(0) = x 0 La soluzione formale del problema è la seguente: x(t) = e At x 0 = Te At T x 0 dove T è la matrice di trasformazione che diagonalizza la matrice A Per determinare T occorre calcolare gli autovalori e gli autovettori di A: det(si A) = s 0 2 s s 2 = s(s 2 4s+5) = s[(s 2) 2 +) Gli autovalori sono s,2 = 2 ± j e s 3 = 0 L autovettore complesso v corrispondente all autovalore s = 2+j è il seguente: (s I A)v =o +j 0 2 +j j v =o v = L autovettore reale v 3 corrispondente all autovalore s 3 = 0 è: (s 3 I A)v 3 = Av 3 = o La seguente matrice di trasformazione T: T = [ v R v I v 3 = porta la matrice A nella forma reale di Jordan: A = T AT = 2 j +j v 3 = o v 3 =, T = =v R +jv I L evoluzioneliberax(t)delsistemaapartiredallacondizioneinizialex 0 èquindilaseguente: x(t) = T e 2t cost e 2t sint 0 e 2t sint e 2t cost T x 0

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

RIPASSO DI MATRICI. a 11 a 12 a 1m a 21 a 22 a 2m. a n1 a n2 a nm

RIPASSO DI MATRICI. a 11 a 12 a 1m a 21 a 22 a 2m. a n1 a n2 a nm RICHIAMI DI ALGEBRA LINEARE Appunti di supporto al corso di Fondamenti di Automatica Prof SILVIA STRADA RIPASSO DI MATRICI Definizione Una matrice `e una tabella di numeri o funzioni organizzati in righe

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TC Modi naturali di un sistema dinamico Analisi modale Esercizio 1 Costante di tempo Esercizio 2 2 Analisi modale per

Dettagli

TEORIA DEI SISTEMI ANALISI MODALE

TEORIA DEI SISTEMI ANALISI MODALE TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI MODALE Ing. Cristian Secchi Tel.

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica

CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI ANALISI DEI SISTEMI LTI Ing. Tel. 5 535 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Esercizio di modellistica a tempo discreto

Esercizio di modellistica a tempo discreto Esercizio di modellistica a tempo discreto Si consideri un corso di laurea triennale, e si indichi con k =,, 2,... l anno accademico dall attivazione del corso. Si indichi con x i (k) il numero di studenti

Dettagli

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) Ax(t)+Bu(t)

Dettagli

Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Analisi modale per sistemi dinamici LTI TD Richiami sull analisi modale Modi naturali e analisi modale per sistemi LTI TD Esercizio 1 Esercizio 2 2 Analisi

Dettagli

Esercizio Dato il sistema nonlineare a tempo continuo { ẋ1 (t) = x 1 (t)[ ln (x 2 (t)) 1] + e u(t) 1 ẋ 2 (t) = (1 e)x 1 (t) + [x 2 (t) 1][x 2 (t) 1 2

Esercizio Dato il sistema nonlineare a tempo continuo { ẋ1 (t) = x 1 (t)[ ln (x 2 (t)) 1] + e u(t) 1 ẋ 2 (t) = (1 e)x 1 (t) + [x 2 (t) 1][x 2 (t) 1 2 Esercizio Dato il sistema nonlineare a tempo continuo { ẋ1 (t) = x 1 (t)[ ln (x 2 (t)) 1] + e u(t) 1 ẋ 2 (t) = (1 e)x 1 (t) + [x 2 (t) 1][x 2 (t) 1 2 u2 (t) + α] nel quale α è un parametro reale: 1. Determinare

Dettagli

Soluzione per sistemi dinamici LTI TC Esercizi risolti

Soluzione per sistemi dinamici LTI TC Esercizi risolti Eserciio per sistemi dinamici LTI TC Esercii risolti Dato il seguente sistema dinamico LTI a tempo continuo: [ [ 5 ẋ(t) x(t) + u(t) 4 8 y(t) [ x(t) + 8u(t) determinare l espressione analitica del dello

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

AUTOVALORI E AUTOVETTORI

AUTOVALORI E AUTOVETTORI Capitolo 4 AUTOVALORI E AUTOVETTORI Abbiamo visto nel paragrafo 2.17 che la matrice associata ad una applicazione lineare f : R n R m dipende dalle basi scelte in R n e R m. Un problema interessante che

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

2.1 Esponenziale di matrici

2.1 Esponenziale di matrici ¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 12 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, quali delle seguenti equazione diofantee ammettono soluzioni e risolvere

Dettagli

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori.

Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. ËÈÇÆ Æ Á Ä Á Å ÌÊÁ Á Queste note (attualmente e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori 31 Sistemi lineari Consideriamo un sistema lineare nella

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

AM2: Tracce delle lezioni- Settimana 12 SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI

AM2: Tracce delle lezioni- Settimana 12 SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI AM2: Tracce delle lezioni- Settimana 12 SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI Sia A = (a ij ), i, j = 1,..., n matrice n n. Le soluzioni del sistema differenziale lineare di n equazioni nelle n incognite

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) = Ax(t) + Bu(t)

Dettagli

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d

Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata

Dettagli

Diagonalizzabilità di endomorfismi

Diagonalizzabilità di endomorfismi Capitolo 16 Diagonalizzabilità di endomorfismi 16.1 Introduzione Nei capitoli precedenti abbiamo definito gli endomorfismi su uno spazio vettoriale E. Abbiamo visto che, dato un endomorfismo η di E, se

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

GEOMETRIA 1 Autovalori e autovettori

GEOMETRIA 1 Autovalori e autovettori GEOMETRIA 1 Autovalori e autovettori Gilberto Bini - Anna Gori - Cristina Turrini 2018/2019 Gilberto Bini - Anna Gori - Cristina Turrini (2018/2019) GEOMETRIA 1 1 / 28 index Matrici rappresentative "semplici"

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

Autovalori e autovettori

Autovalori e autovettori Autovalori e autovettori Definizione 1 (per endomorfismi). Sia V uno spazio vettoriale su di un campo K e f : V V un suo endomorfismo. Si dice autovettore per f ogni vettore x 0 tale che f(x) = λx, per

Dettagli

Complementi di Algebra e Fondamenti di Geometria

Complementi di Algebra e Fondamenti di Geometria Complementi di Algebra e Fondamenti di Geometria Capitolo 3 Forma canonica di Jordan M. Ciampa Ingegneria Elettrica, a.a. 29/2 Capitolo 3 Forma canonica di Jordan Nel Capitolo si è discusso il problema

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI prof. Vincenzo LIPPIELLO A.A. 05 06 Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 5 FEBBRAIO 06

Dettagli

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica.

- ciascun autovalore di T ha molteplicità geometrica uguale alla moltplicitaà algebrica. Lezioni del 14.05 e 17.05 In queste lezioni si sono svolti i seguenti argomenti. Ripresa del teorema generale che fornisce condizioni che implicano la diagonalizzabilità, indebolimento delle ipotesi, e

Dettagli

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti

Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale e sistemi differenziali lineari a coefficienti costanti Matrice esponenziale Sia A R n,n una matrice quadrata n n Per definire l esponenziale di A, prendiamo spunto dall identità e

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 8 Forme quadratiche e loro applicazioni Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 2017 1 Introduzione Gli esercizi di questo capitolo riguardano i seguenti

Dettagli

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato 4 Analisi nel dominio del tempo delle rappresentazioni in variabili di stato Versione del 21 marzo 2019 In questo capitolo 1 si affronta lo studio, nel dominio del tempo, dei modelli di sistemi lineari,

Dettagli

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale fratta

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è.

Tempo a disposizione. 120 minuti. 1 Sia dato l endomorfismo f : R 3 R 3 la cui matrice rispetto alla base canonica di R 3 è. Dipartimento di Matematica e Informatica Anno Accademico 2015-2016 Corso di Laurea in Informatica (L-31) Prova in itinere di Matematica Discreta (12 CFU) 13 Giugno 2016 B2 Tempo a disposizione. 120 minuti

Dettagli

Applicazioni lineari e diagonalizzazione

Applicazioni lineari e diagonalizzazione Applicazioni lineari e diagonalizzazione Autospazi Autovettori e indipendenza lineare Diagonalizzabilità e autovalori 2 2006 Politecnico di Torino 1 Esempio (1/6) Utilizzando un esempio già studiato, cerchiamo

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

{Geometria per [Fisica e (Fisica e Astrofisica)]}

{Geometria per [Fisica e (Fisica e Astrofisica)]} {Geometria per [Fisica e (Fisica e Astrofisica)]} Foglio 9 - Soluzioni Esercizio (facoltativo) Un quadrato magico reale di ordine n è una matrice di M n n (R) tale che sommando gli elementi di ogni sua

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1

=. Il vettore non è della forma λ, dunque non è un. 2. Il vettore 8 2 non è della forma λ 1 a.a. 2005-2006 Esercizi. Autovalori e autovettori. Soluzioni. Sia A = e sia x =. Dire se x è autovettore di A. Se si dire per quale 8 autovalore. Sol. Si ha =. Il vettore non è della forma λ dunque 8 29

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. a gradoni Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiede l antitrasformazione di una funzione razionale

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Matrici jordanizzabili

Matrici jordanizzabili Capitolo 17 Matrici jordanizzabili 17.1 Introduzione Abbiamo visto che non tutte le matrici sono simili a matrici diagonali. Mostreremo in questo capitolo che alcune matrici sono simili a matrici di Jordan.

Dettagli

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che

Definizione. Sia f : V V un endomorfismo e λ R. Se esiste v V non nullo tale che Autovalori ed autovettori [Abate, 131] Sia f : V V un endomorfismo e λ R Se esiste v V non nullo tale che f(v) = λv, diremo che λ è un autovalore di f e che v è un autovettore di f associato a λ Lezioni

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Matrici diagonali 2 / 13 Ricordiamo che una matrice quadrata si dice matrice diagonale se a ij =

Dettagli

GEOMETRIA CORREZIONE DELLE PROVE D ESAME

GEOMETRIA CORREZIONE DELLE PROVE D ESAME GEOMETRIA CORREZIONE DELLE PROVE D ESAME 1. Prova del 27 settembre 2011 - A Esercizio 1.1. Si trovino i valori del parametro reale k per cui il sistema lineare (k + 1)x + (k 4)y + z = k (k + 2)x + (k 2)y

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici Evoluzione forzata di un equazione differenziale: la trasformata di Laplace Y(s) del segnale di uscita y(t) è uguale al prodotto della trasformata di Laplace X(s)

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Capitolo Diagonalizzazione e Triangolazione. Esercizio Diagonalizzare la matrice A =

Capitolo Diagonalizzazione e Triangolazione. Esercizio Diagonalizzare la matrice A = Capitolo 8 8 Diagonalizzazione e Triangolazione Esercizio 8 Diagonalizzare la matrice A = 3 3 Svolgimento Il polinomio caratteristico della matrice è dato da ( + t) p A (t) = ( + t) = (t + 3) (t 3) 3 3

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 5 luglio 2013 Tema A Tempo a disposizione: 1 ora e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all

Dettagli

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata.

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata. Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare 18 febbraio 1 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia CORSO DI ALGEBRA (M-Z) Prof. A. Venezia 2015-16 Complementi ed Esercizi 1. AUTOVETTORI e AUTOVALORI di ENDOMORFISMI e MATRICI Una applicazione lineare avente per dominio e condominio lo stesso spazio vettoriale

Dettagli

Compito di Analisi Matematica II del 28 giugno 2006 ore 11

Compito di Analisi Matematica II del 28 giugno 2006 ore 11 Compito di Analisi Matematica II del 28 giugno 26 ore Esercizio. ( punti) Calcolare il flusso del campo vettoriale F (,, z) = (z, z 2, z 2 ) } uscente dalla frontiera di D = (,, z) R 3 : 2 + z 2, z,. Svolgimento

Dettagli

Complementi sulla forma canonica di Jordan

Complementi sulla forma canonica di Jordan Complementi sulla forma canonica di Jordan In questa nota, facendo riferimento per definiioni e notaioni al Capitolo di Introduione ai sistemi dinamici del Prof. Guido Gentile (d ora in poi citato come

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI

DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI M.GUIDA, S.ROLANDO, 204 DIAGONALIZZAZIONE E FORME QUADRATICHE / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili o che possono considerarsi meno basilari. Autovalori, autospazi e diagonalizzazione

Dettagli

Università di Pisa. Corso di Laurea in Ingegneria Meccanica Geometria e Algebra Lineare

Università di Pisa. Corso di Laurea in Ingegneria Meccanica Geometria e Algebra Lineare Università di Pisa Corso di Laurea in Ingegneria Meccanica Geometria e Algebra Lineare Cognome e Nome: Corso di studi: Anno di iscrizione: Numero di matricola: Scritto n. 1 del 16 Esercizio 1. Si studi

Dettagli

AUTOVALORI. NOTE DI ALGEBRA LINEARE

AUTOVALORI. NOTE DI ALGEBRA LINEARE AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli