La forma normale di Schur
|
|
|
- Albino Damiani
- 8 anni fa
- Visualizzazioni
Transcript
1 La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni 1 Introduzione Tra le diverse forme canoniche di una matrice disponibili sul mercato la forma di Schur è particolarmente utile poiché si ottiene con una trasformazione per similitudine data da una matrice unitaria Ricordiamo che una matrice U C n n è detta unitaria se U H U = UU H = I, dove I indica la matrice identica n n e A H indica la matrice trasposta hermitiana di A, cioè la matrice che si ottiene trasponendo A e coniugando gli elementi complessi Una matrice reale e unitaria è detta ortogonale Enunciamo questo risultato e ne diamo una dimostrazione costruttiva che non utilizza la forma normale di Jordan La dimostrazione che vedremo può essere opportunamente trasformata in un algoritmo di calcolo È importante osservare che il calcolo numerico della forma normale di Jordan è un compito numericamente intrattabile Infatti tale forma non è stabile sotto perturbazioni della matrice pur arbitrariamente piccole purché non nulle A questo riguardo si consideri un singolo blocco di Jordan di dimensione n, ad esempio con autovalore nullo 0 1 J = È evidente che la matrice J ha λ = 0 come unico autovalore di molteplicità algebrica n e di molteplicità geometrica 1 Si modifichi ora J alterando l elemento di posto (n, 1) con una perturbazione ɛ > 0 ottenendo 1
2 0 1 J ɛ = 0 1 ɛ 0 Non è difficile verificare che questa matrice ha polinomio caratteristico λ n ɛ e quindi ha n autovalori distinti dati da λ i = ɛ 1/n ω i n, i = 1,, n, dove ω n = cos(2π/n) + i sin(2π/n), dove i è l unità immaginaria tale che i 2 = 1 Quindi la sua forma normale di Jordan è data da una matrice diagonale La forma normale di Schur non presenta questo inconveniente 2 Forma normale di Schur Vale il seguente Teorema 1 (Forma normale di Schur) Per ogni matrice A C n n esistono una matrice triangolare superiore T e una matrice unitaria U tali che U H AU = T Dim Si procede per induzione sulla dimensione n della matrice A Se n = 1 la matrice A è un numero complesso e la decomposizione di Schur vale con R = A e U = 1 In generale, supponiamo che la fattorizzazione valga per dimensione n 1 Consideriamo A C n n e denotiamo con λ e x rispettivamente un autovalore e un autovettore di A, cioè Ax = λx Supponiamo che x sia normalizzato in modo che x H x = 1 e consideriamo una base ortonormale formata dai vettori y 2,, y n dello spazio ortogonale a x Costruiamo la matrice Q le cui colonne sono x, y 2,, y n Questa matrice è unitaria, cioè Q H Q = I e risulta Qe (1) = x, e (1) = Q H x dove e (1) = (1, 0,, 0) T Inoltre vale Q H λ u T AQ =, 0 A n 1 dove A n 1 C (n 1) (n 1) Per verificare quest ultima relazione basta considerare Q H AQe (1) che è la prima colonna di Q H AQ Vale Q H AQe (1) = Q H Ax = Q H λx = λq H x = λe (1) come richiesto Inoltre per l ipotesi induttiva si ha A n 1 = U n 1 T n 1 Un 1, H da cui posto 1 0 U n = Q, U n 1 si ottiene Un H λ u AU n = T Un 1 H 0 T n 1 2
3 che è una matrice triangolare Si osservi che per trasformare la dimostrazione del teorema precedente in algoritmo di calcolo è sufficiente disporre di due scatole nere: la prima che data in input una matrice A ci fornisce in output un suo autovalore λ e il corrispondente autovettore x; la seconda che dato in input un vettore x ci fornisce in output una base ortonormale del sottospazio ortogonale a x, o, equivalentemente, fornisce una matrice Q tale che Qx = e (1) Vedremo in un altro articolo come la seconda scatola nera sia di facile costruzione usando le matrici elementari di Householder Un altra osservazione utile è che la forma di Schur non è unica Infatti scegliendo diversi ordinamenti degli autovalori arriviamo a forme normali in generale diverse tra loro Seguendo l impostazione della dimostrazione del teorema precedente è possibile dimostrare un risultato specifico per le matrici reali Per questo abbiamo bisogno della seguente definizione Definizione 1 Una matrice T R n n si dice quasi triangolare se si può scrivere nella forma T 1,1 T 1,n T = T m,m dove T i,i per i = 1,, m possono essere matrici 2 2 con coppie di autovalori complessi coniugati, oppure matrici 1 1, cioè numeri reali Gli autovalori di una matrice quasitriangolare sono gli autovalori delle sottomatrici T i,i per i = 1,, m Ad esempio, la matrice è quasi triangolare I suoi autovalori sono dati dagli autovalori di che sono 2 + i e 2 i, dagli autovalori di che sono 3 + i, 3 i, e da Teorema 2 (Forma reale di Schur) Per ogni matrice A R n n esistono una matrice quasi triangolare superiore T R n n e una matrice ortogonale Q R n n tali che Q T AQ = T 3
4 3 Applicazioni La forma di Schur ha delle conseguenze interessanti, alcune di facile dimostrazione Una prima conseguenza riguarda le matrici hermitiane, cioè quelle matrici A tali che A = A H Infatti, se U H AU = T è la forma di Schur della matrice hermitiana A, allora la proprietà A = A H implica T H = U H A H U = U H AU = T Cioè T è hermitiana e quindi, essendo triangolare, è diagonale Inoltre gli elementi diagonali di T sono tali che t i,i = t i,i e quindi sono reali Cioè si ottiene che le matrici hermitiane sono diagonalizzabili con una trasformazione per similitudine unitaria Se A è anti-hermitiana, cioè se A = A H allora procedendo come sopra si ottiene che anche T è anti-hermitiana Ne segue che T è una matrice diagonale tale che t i,i = t i,i Cioè una matrice anti-hermitiana è diagonalizzabile da una trasformazione ortogonale e i suoi autovalori sono numeri immaginari Un risultato più generale è espresso dal seguente Teorema 3 Una matrice A C n n ha forma normale di Schur diagonale se e solo se A H A = AA H Dim Se T è la forma di Schur di A, allora A H A = AA H se e solo se T H T = T T H Ciò segue dal fatto che A H A = U H T H UU H T U = U H T H T U, AA H = U H T UU H T H U = U H T T H U Se T è matrice diagonale allora T H T = T T H e quindi A H A = AA H Viceversa, se A H A = AA H allora T H T = T T H Dimostriamo che la condizione T H T = T T H implica che T è matrice diagonale Per questo procediamo per induzione su n Se n = 1 non c è nulla da dimostrare Assumiamo vera la tesi per matrici di dimensione n 1 e consideriamo il caso di dimensione n Leggendo la relazione T H T = T T H sull elemento di posto (1, 1) otteniamo t 1,1 t 1,1 = n j=1 t 1,j t 1,j cioè t 1,1 2 = t 1,1 2 + t 1, t 1,n 2 da cui t 1, t 1,n 2 = 0 Data la non negatività degli addendi questo implica che t 1,j = 0 per j = 2,, n Quindi la matrice T ha la forma t1,1 0 T = 0 T n 1 La condizione T H T = T T H implica allora Tn 1T H n 1 = T n 1 Tn 1, H e, per l ipotesi induttiva segue che T n 1 è matrice diagonale 4
5 La classe di matrici che verificano la condizione A H A = AA H è detta classe delle matrici normali Una matrice unitaria è in particolare una matrice normale e quindi ha una forma di Schur diagonale Inoltre da A H A = I segue che t i,i 2 = 1 Cioè le matrici unitarie sono diagonalizzabili da una trasformazione ortogonale e hanno autovalori di modulo 1 4 Esercizi 1 Determinare una forma di Schur della matrice A = uv T dove u, v R n 2 Usando la forma normale di Schur determinare l insieme dei possibili autovalori delle matrici A ad elementi complessi n n che risolvono l equazione A 2 5A H + 6I = 0 3 Sia α un numero reale e si consideri la classe A n (α) delle matrici n n a elementi complessi tali che αa + A H A + A H = I Utilizzando la forma normale di Schur si descriva l insieme Λ(α) = {λ C : A A n (α), det(a λi) = 0} 4 Si ricavi la forma normale di Schur di una matrice A dalla forma normale di Jordan A = SJS 1 Riferimenti bibliografici [1] D Bini, M Capovani, O Menchi Metodi Numerici per l Algebra Lineare Zanichelli, Bologna
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
0.1 Condizione sufficiente di diagonalizzabilità
0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali
Matrici elementari e fattorizzazioni
Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per
Complemento ortogonale e proiezioni
Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
2.1 Esponenziale di matrici
¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
SPAZI VETTORIALI CON PRODOTTO SCALARE A =
SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo
Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari
Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Richiami di algebra delle matrici a valori reali
Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o
MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE
DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici
Forma canonica di Jordan
Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:
Algebra Lineare Autovalori
Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: [email protected] [email protected]
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
Autovalori ed autovettori di una matrice
Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo
Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.
1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3
Parte 7. Autovettori e autovalori
Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori
Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
Classificazione delle coniche.
Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica
CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: [email protected] http://www.dismi.unimo.it/members/csecchi
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.
Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
Parte 12b. Riduzione a forma canonica
Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
Operazioni tra matrici e n-uple
CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,
ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la
ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare
ESERCIZI sui VETTORI
ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di
Endomorfismi e matrici simmetriche
CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori
Operatori antisimmetrici
Operatori antisimmetrici F. Pugliese November 9, 2011 Abstract In questa breve nota ricordiamo le principali proprietà degli endomorfismi antisimmetrici di uno spazio vettoriale euclideo. Nel caso di spazi
GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A
Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),
AUTOVALORI. NOTE DI ALGEBRA LINEARE
AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni
AUTOVALORI E AUTOVETTORI DISPENSA PER IL CORSO DI ALGEBRA LINEARE
AUTOVALORI E AUTOVETTORI DISPENSA PER IL CORSO DI ALGEBRA LINEARE ENRICO GREGORIO 1. Introduzione La nozione di autovalore di una matrice quadrata nasce insieme al concetto stesso di matrice o, meglio,
Sistemi di equazioni differenziali
Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere
5 Un applicazione: le matrici di rotazione
5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta
Geometria BIAR Esercizi 2
Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2
1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione
Forme bilineari simmetriche
Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro
ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la
Geometria della programmazione lineare
Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non
Numeri di Fibonacci, Autovalori ed Autovettori.
Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due
11. Misure con segno.
11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.
ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio
Applicazioni lineari e diagonalizzazione pagina 1 di 5
pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +
NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.
Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
X = x + 1. X = x + 1
CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y
Corso di Calcolo Numerico
Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
POTENZE DI MATRICI QUADRATE
POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
Corso di Calcolo Numerico
Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due
Applicazioni eliminazione di Gauss
Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare
