Forme bilineari simmetriche
|
|
|
- Gianpaolo Mancuso
- 9 anni fa
- Visualizzazioni
Transcript
1 Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3 ) = b(v 1, v 3 ) + b(v 2, v 3 ), t R v 1, v 2 V b(tv 1, v 2 ) = tb(v 1, v 2 ), v 1, v 2, v 3 V b(v 1, v 2 + v 3 ) = b(v 1, v 2 ) + b(v 1, v 3 ), t R v 1, v 2 V b(v 1, tv 2 ) = tb(v 1, v 2 ) Equivalentemente, per ogni v V, b(, v) e b(v, ) sono forme lineari su V In generale, b(t 1 v 1 +t 2 v 2, t 3 v 3 +t 4 v 4 ) = t 1 t 3 b(v 1, v 3 )+t 1 t 4 b(v 1, v 4 )+t 2 t 3 b(v 2, v 3 )+t 2 t 4 b(v 2, v 4 ) Sia A = (a i j ) una matrice n n Possiamo definire una forma bilineare b A su R n nel modo seguente: per ogni coppia di vettori x, y di R n, pensati come vettori colonna poniamo cioè x = x 1 x n y = b A (x, y) = x T Ay, y 1 y n, a 1 1 a 1 n ( ) x1 x n a n 1 a n n Consideriamo la base canonica (e 1,, e n ) di R n, osserviamo che, per ogni i, j, b A (e i, e j ) = a i j In generale, sia V uno spazio vettoriale di dimensione finita n e sia b una forma bilineare su V Data B = (v 1,, v n ) una base di V, definiamo la matrice associata alla forma bilineare b rispetto alla base B M B (b) = (m i j ), matrice n n ottenuta ponendo per ogni i, j m i j = b(v i, v j ) y 1 y n 1
2 Cioè M B (b) = b(v 1, v 1 ) b(v 1, v n ) b(v n, v 1 ) b(v n, v n ) Per ogni coppia di vettori v, v in V, abbiamo b(v, v ) = (v B ) T M B (b)v B, dove v B è il vettore colonna delle coordinate di v rispetto alla base B Fissata una base B, l applicazione che a ogni forma bilineare b su V associa la matrice M B (b) è biettiva (in effetti è un isomorfismo di spazi vettoriali) Date due basi B 1 e B 2 di V, consideriamo la matrice di cambiamento di base M B1,B 2 (id V ) Per ogni forma bilineare b su V abbiamo M B2 (b) = (M B1,B 2 (id V )) T M B1 (b)m B1,B 2 (id V ) Infatti, (v B2 ) T (M B1,B 2 (id V )) T M B1 (b)m B1,B 2 (id V )v B 2 = = ( M B1,B 2 (id V )v B2 ) T MB1 (b)m B1,B 2 (id V )v B 2 = (v B1 ) T M B1 (b)v B 1 Due matrici A e B n n si dicono congruenti se esiste una matrice invertibile M tale che A = M T BM Due matrici n n rappresentano la stessa forma bilineare (rispetto a due basi eventualmente distinte) se e solo se sono congruenti Esercizio Consideriamo A = e definiamo b(x, y) = x T Ay Abbiamo A = M E (b) Consideriamo un altra base di R B = ( 0, 1, 1 ) Scrivere la matrice M B (b) Definizione 2 Una forma bilineare b su V si dice simmetrica se per ogni v 1, v 2 in V b(v 1, v 2 ) = b(v 2, v 1 ) 2
3 Una forma bilineare b su V è simmetrica se e solo se la sua matrice associata rispetto a una qualsiasi base B è una matrice simmetrica, cioè (M B (b)) T = M B (b) D ora in avanti consideriamo solo forme bilineari simmetriche Sia b una forma bilineare simmetrica fissata Due vettori v 1, v 2 si dicono ortogonali se b(v 1, v 2 ) = 0, si scrive anche v 1 v 2 Un vettore v si dice isotropo se b(v, v) = 0 Per ogni sottoinsieme U di V, l ortogonale è un sottospazio vettoriale di V Abbiamo Il radicale di b è U = {v V b(v, u) = 0 u U} U 1 U 2 U 1 U 2 (U 1 + U 2 ) = U 1 U 2 (U 1 U 2 ) = U 1 + U 2 V = {v V b(v, w) = 0 w V } Definizione 3 La forma bilineare simmetrica b si dice non degenere se il suo radicale V è zero Si dice definita positiva se b(v, v) > 0 per ogni v 0 Una forma bilineare simmetrica definita positiva è necessariamente nondegenere La forma bilineare simmetrica b è non-degenere se e solo se la matrice associata a b rispetto a una qualsiasi base di V è di rango massimo Infatti, fissato v V, b(v, ) è una forma lineare su V, e v V se e solo se b(v, ) è la forma lineare nulla La matrice associata all applicazione lineare b(v, ): V R rispetto alla base B (e alla base canonica in R) è uguale al vettore riga (v B ) T M B (b), quindi v V se e solo se tale vettore riga è zero, ovvero (trasponendo) se e solo se il vettore colonna M B (b)v B è zero, ovvero il vettore colonna v B appartiene a un sottospazio di R n di dimensione dim V rg(m B (b)) Teorema 1 (Teorema di Sylvester) Sia V uno spazio vettoriale di dimensione finita n, sia b una forma bilineare simmetrica su V Allora esiste una base B 3
4 di V tale che la matrice associata alla forma bilineare b rispetto alla base B è della forma a blocchi I p I q con p 0, q 0 e p + q n, dove p e q non dipendono dalla base B scelta, ma solo dalla forma bilineare b Attenzione, precisiamo che i blocchi sulla diagonale della matrice dell enunciato del Teorema di Sylvester sono rispettivamente della forma p p, q q e (n p q) (n p q), ma qualcuno di questi interi p, q, n p q può anche essere zero, quindi qualcuno di questi blocchi può anche non comparire Ad esempio, se p = n (quindi q = 0) la matrice diventa semplicemente I n La coppia di tali numeri naturali (p, q) si chiama segnatura della forma bilineare simmetrica b La forma bilineare simmetrica di segnatura (p, q) è non-degenere se e solo se p + q = n, ed è definita positiva se e solo se p = n Dimostrazione Prima di tutto dimostriamo che per ogni spazio vettoriale V di dimensione finita e per ogni forma bilineare simmetrica b su V esiste una base B di V rispetto alla quale la matrice associata a b sia diagonale Procediamo per induzione sulla dimensione n di V Se n = 1 è banale Supponiamo che sia vero per ogni spazio vettoriale di dimensione n 1, e consideriamo V di dimensione n con b forma bilineare simmetrica Se b è identicamente nulla allora tutte le basi di V vanno bene Supponiamo che b non sia identicamente nulla, prendiamo un vettore v 1 non isotropo Questo è sempre possibile infatti poiché b non è identicamente nulla esistono u 1, u 2 V tali che b(u 1, u 2 ) 0, ma se u 1 e u 2 sono entrambi isotropi, allora u 1 +u 2 non è isotropo: b(u 1 + u 2, u 1 + u 2 ) = b(u 1, u 1 ) + b(u 2, u 2 ) + 2b(u 1, u 2 ) = 2b(u 1, u 2 ) 0 Consideriamo {v 1 }, esso ha dimensione n 1, infatti coincide con Ker ( b(v 1, ) ) e per costruzione b(v 1, ) è una forma lineare non nulla su V Inoltre v 1 {v 1 } La restrizione di b a {v 1 } è una forma bilineare simmetrica, diciamo b, quindi per ipotesi induttiva esiste una base B = (v 2,, v n ) di {v 1 } rispetto alla quale la matrice associata a b è diagonale Ora (v 1, v 2,, v n ) è una base di V rispetto alla quale la matrice associata a b è della forma a blocchi ( b(v1, v 1 ) 0 0 M B (b ) Sia quindi B = (v 1,, v n ) una base rispetto alla quale la matrice associata a b è diagonale Gli elementi sulla diagonale sono ) m 1 1 = b(v 1, v 1 ),, m n n = b(v n, v n ) 4
5 Eventualmente riordinando i vettori della base possiamo supporre che i primi p elementi siano > 0, i successivi q siano < 0 e i restanti = 0 (per qualche p e q) Possiamo quindi riscalare i vettori della base nel modo seguente, v 1 (,, m1 1 v p mp p, ottenendo la matrice desiderata v p+1 mp+1 p+1,, v p+q mp+q p+q, v p+q+1,, v n ), Rimane da dimostrare che gli interi p e q non dipendono dalla base scelta La loro somma è uguale al rango della matrice quindi non dipende dalla base Mostriamo che p non dipende dalla base scelta, perché è la dimensione massima di un sottospazio vettoriale di V su cui la restrizione di b sia definita positiva Sia W un sottospazio di V su cui la restrizione di b è definita positiva Se dim W fosse > p, intersecando con W = Span{v p+1,, v n }, per la Formula di Grassmann avremmo dim(w W ) = dim W + dim W dim(w + W ) > p + (n p) n = 0, cioè che è impossibile W Span{v p+1,, v n } {0} Esercizio A = Trovare una matrice invertibile M tale che M T AM sia della forma prescritta dal Teorema di Sylvester (Si procede ricorsivamente come nella dimostrazione: se la forma è non nulla si trova un vettore non isotropo e ci si restringe al sottospazio ortogonale, e poi si ricomincia da capo fino a che non si arriva al sottospazio zero o a un sottospazio su cui la forma bilineare sia nulla) 5
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
Spazi Vettoriali ed Applicazioni Lineari
Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla
22 Coniche proiettive
Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di
Somma diretta di sottospazi vettoriali
Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria
Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula
Intersezione e somma di sottospazi vettoriali
Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
Prodotto interno (prodotto scalare definito positivo)
Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Esercizi di Geometria - 2
Esercizi di Geometria - 2 Samuele Mongodi - [email protected] La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel
0.1 Condizione sufficiente di diagonalizzabilità
0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali
Matematica Discreta e Algebra Lineare (per Informatica)
Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende
Omomorfismi e matrici
Capitolo 12 Omomorfismi e matrici 121 Introduzione Nel corso di Geometria è stato visto come associare una matrice ad un omomorfismo tra spazi vettoriali Rimandiamo al testo del corso per esempi e esercizi
Esercizi di Geometria - 1
Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi
Complemento ortogonale e proiezioni
Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali
1 Indipendenza lineare e scrittura unica
Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la
ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,
A.A. 2014/2015 Corso di Algebra Lineare
A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,
0.1 Coordinate in uno spazio vettoriale
.1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
Prodotti scalari e matrici
Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V
Applicazioni lineari e diagonalizzazione. Esercizi svolti
. Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)
Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni
Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base
Spazi affini e combinazioni affini.
Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
Appunti sui Codici di Reed Muller. Giovanni Barbarino
Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità
Appunti di Geometria - 3
Appunti di Geometria - 3 Samuele Mongodi - smongodi@snsit Cambi di base nel duale Richiami Sia V uno spazio vettoriale di dimensione n sul campo K e sia V il suo duale Supponiamo di avere fissate due basi
Spazi vettoriali euclidei.
Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti
LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),
LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:
SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)
Parte 7. Autovettori e autovalori
Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori
Applicazioni lineari e diagonalizzazione pagina 1 di 5
pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
Inversa di una matrice
Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0
AUTOVALORI. NOTE DI ALGEBRA LINEARE
AUTOVALORI. NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 GENNAIO 2011 1. Il polinomio minimo Sia f : V V un endomorfismo lineare di uno spazio vettoriale di dimensione finita sul campo K. Per ogni
Quadriche Maurizio Cornalba 7/6/2016
Quadriche Maurizio Cornalba 7/6/2016 Sia K un campo. Informalmente, una ipersuperficie (algebrica) nello spazio proiettivo P n K è il luogo dei punti [t 0 : t 1 : : t n ] tali che (t 0, t 1,..., t n )
Algebra lineare Geometria 1 11 luglio 2008
Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =
1 Il polinomio minimo.
Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene
Parte 12b. Riduzione a forma canonica
Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,
Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1
Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE
DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell
ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro
ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la
Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.
2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Geometria analitica: rette e piani
Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
Testi consigliati e contatti
Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
1) Hamming bound, coset, codici equivalenti
Argomenti della Lezione ) Hamming bound, coset, codici equivalenti 2) Esercizi sui codici lineari a blocchi Osservazione () Per effettuare la decodifica a rivelazione di errore si può seguire una delle
1 Cambiamenti di riferimento nel piano
1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Elementi di Algebra Lineare Spazi Vettoriali
Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
SPAZI VETTORIALI CON PRODOTTO SCALARE A =
SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
Prodotto scalare e norma
Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o
