Prodotto scalare e norma

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prodotto scalare e norma"

Transcript

1 Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o dello spazio come una frecciolina, caratterizzata da una lunghezza, una direzione ed un verso (o orientamento); si vede subito che se il vettore v è spiccato dall origine, esso è completamente individuato dal suo secondo estremo. Abbiamo già visto che i punti di una retta orientata possono essere messi in corrispondenza biunivoca con i numeri reali; se ora consideriamo, invece, due rette, per comodità perpendicolari, e fissiamo su ciascuna di esse un unità di misura (in genere la stessa), ad ogni punto del piano corrisponde una coppia ordinata di numeri reali. Così facendo abbiamo fissato quello che si chiama un sistema di riferimento cartesiano 1 ortogonale. Nello spazio la generalizzazione non è immediata: bisogna considerare come assi tre rette orientate concorrenti 2 e a due a due perpendicolari e chiamare coordinate cartesiane del punto P le tre distanze di P dai tre piani che queste rette a due a due formano; se le tre rette si chiamano rispettivamente x, y e z si ha, per esempio: x P = distanza (P, yz), dove, con yz abbiamo indicato il piano individuato dai due assi y e z. Il punto P può anche essere visto come il secondo estremo di un vettore spiccato dall origine, che, come già detto, è completamente individuato dalle sue coordinate; in R 2 scriviamo quindi OP = v = [x, y], in cui x, y sono le coordinate cartesiane del punto P (x, y) nel sistema di riferimento scelto, mettendo così in luce che si tratta di un vettore del piano, cioè di R 2. In modo analogo parliamo di vettori nello spazio come di vettori di R 3 : OP = v = [x, y, z] in cui le coordinate cartesiane del punto P (x, y, z) sono x, y, z. Le operazioni tra vettori che abbiamo imparato a conoscere nel capitolo precedente si visualizzano tra i vettori geometrici. La somma di due vettori si definisce con la regola del parallelogrammo. Per il prodotto di un vettore per uno scalare λ prendiamo in considerazione i tre casi seguenti: λ > 0 allora λop è il vettore OP con la lunghezza moltiplicata per λ; λ = 0 allora λop è il vettore nullo; 1 da Cartesio: Renée DESCARTES, 1569, La Haye (Francia) 1650, Stoccolma (Svezia). 2 cioè passanti tutte e tre per un medesimo punto.

2 43 λ < 0 allora λop è il vettore OP con la lunghezza moltiplicata per λ e di verso opposto. Queste operazioni corrispondono alle operazioni già viste e in R 2 e e λ[x, y] = [λx, λy] [x, y] + [x, y ] = [x + x, y + y ] λ[x, y, z] = [λx, λy, λz] [x, y, z] + [x, y, z ] = [x + x, y + y, z + z ] in R 3. Anche i concetti di dipendenza ed indipendenza lineare hanno una facile interpretazione geometrica, infatti si vede subito che due vettori sono linearmente dipendenti se e solo se stanno su una stessa retta e tre vettori se e solo se sono complanari. Se identifichiamo gli elementi dello spazio vettoriale R 2 con i segmenti orientati spiccati dall origine nel piano riferito ad un sistema di coordinate cartesiane ortogonali, si nota che ad ogni vettore di R 2 risulta associato un numero reale non negativo: la lunghezza del segmento OP. Definiamo allora la norma 3 di un vettore v = [x, y] R 2 come [x, y] = x 2 + y 2 (7.1) e in R 3 v = [x, y, z] = x 2 + y 2 + z 2. (7.2) La norma verifica queste proprietà, dove, per noi, V R 2 oppure V R 3 : i) v 0 v V ; ii) v = 0 v = 0; iii) λv = λ v v V e λ R; iv) u + v u + v, u, v V. Le proprietài)... ii) sono banali; la iv) è la disuguaglianza triangolare che abbiamo già visto. Dalle proprietà della norma appare chiaro come si può definire una distanza in R 2 o in R 3. Infatti se poniamo d(u, v) = u v (7.3) si verifica immediatamente che valgono per ogni u, v, w le proprietà (caratterizzanti una distanza) 3 In realtà si puo dare una definizione di norma e di prodotto scalare in uno spazio vettoriale qualsiasi, e non solo in R n.

3 44 i) d(u, v) 0; ii) d(u, v) = 0 v = u; iii) d(u, v) = d(v, u); iv) d(u, v) d(u, w) + d(w, v). Osserviamo esplicitamente che se si identificano R 3 e R 2 con lo spazio ed il piano riferiti a coordinate cartesiane ortogonali, la distanza definita dalla (7.3) coincide con quella usualmente definita. Definiamo prodotto scalare 4 di due vettori v e w di R 2 il numero reale e in R 3 il numero reale v, w = [x 1, y 1 ], [x 2, y 2 ] = x 1 x 2 + y 1 y 2 (7.4) v, w = [x 1, y 1, z 1 ], [x 2, y 2, z 2 ] = x 1 x 2 + y 1 y 2 + z 1 z 2. (7.5) Occorre precisare che, formalmente, il prodotto scalare come è stato definito dalle (7.4) e (7.5) equivale al prodotto vw T, pensando v come matrice costituita da una sola riga e w T come matrice di una sola colonna. In realtà questa equivalenza è solo formale, in quanto, in quest ultimo caso, otteniamo una matrice composta da un solo elemento: uno scalare 5 (v. nota 4, pag. 15), che, in molti contesti, possiamo assimilare. Per esempio oppure [ 2 3 [4, 3, 1], [0, 3, 4] = ( 3) + ( 1)4 = 13 ] [ 3, 1 ] = 2( 3) = 3 (nel secondo esempio abbiamo usato vettori colonna, per sottolineare l assoluta intercambiabilità, in questo contesto, delle due notazioni). Il prodotto scalare è legato alla norma dalla relazione u, u = u. (7.6) Inoltre valgono le proprietà: i) u, u 0 u V ii) u, u = 0 u = 0 iii) u, v = v, u u, v V iv) λv, u = λ u, v = u, λv u, v V e λ R v) u, v + w = u, v + u, w u, v, w V 4 Da non confondere con il prodotto per uno scalare: si noti che il prodotto scalare, associa ad una coppia ordinata di vettori un numero reale, mentre il prodotto per uno scalare associa ad una coppia scalare vettore un vettore. 5 nel nosrto caso un numero reale

4 45 semplicissime da dimostrare tenendo conto della definizione, e la cui dimostrazione è proposta come esercizio. Sussiste il seguente teorema Teorema 7.1 Siano u e v due vettori di R 2 o di R 3 e si considerino i segmenti orientati ad essi associati nel piano o nello spazio riferiti a sistemi di coordinate ortogonali. Allora u, v = u v cos ϕ (7.7) dove ϕ [0, π] è l ampiezza dell angolo fra i due segmenti. La dimostrazione è un immediata conseguenza del Teorema del coseno e delle proprietà del prodotto scalare. Per esempio siano dati in R 2 i due vettori u = [1, 3] e v = [2, 5], vogliamo conoscere l angolo ϕ che formano i segmenti orientati ad essi associati; il loro prodotto scalare è u, v = ( 3)5 = 13. Inoltre u = 10 e v = 29 u, v u v = 2 2 si deduce che 3π 4 < ϕ < 5π 6. dunque l angolo fra i due segmenti orientati sarà tale che cos ϕ = 13 3 ; osservando che < 13 < 290 Un vettore u = [a, b, c] si dice unitario o versore se ha norma 1, cioè se u = 1, quindi se a 2 + b 2 + c 2 = 1. Dal Teorema 7.1 si ricava che le componenti a, b e c di u sono i coseni degli angoli che u forma con i versori fondamentali e 1 [1, 0, 0], e 2 [0, 1, 0] ed e 3 [0, 0, 1] e prendono il nome di coseni direttori del vettore u. Ogni vettore non nullo può essere normalizzato dividendolo per la propria norma, infatti è facile verificare che v v = v v = 1. Due vettori diversi dal vettore nullo si dicono perpendicolari o ortogonali se l ampiezza dell angolo tra u e v è ϕ = π 2. Segue immediatamente dal Teorema 7.1 che u, v = 0 ϕ = π 2 con u 0, v 0 (7.8) scriveremo dunque v u u, v = 0. Il discorso si generalizza: si dice che n vettori v 1, v 2,..., v n sono mutuamente ortogonali se v i, v j = 0 (7.9) per ogni i, j con i, j = 1... n. Se i v i sono anche normalizzati (cioè sono dei versori) diciamo che sono ortonormali. Una base ortogonale è una base costituita da vettori mutuamente ortogonali. Osserviamo che vettori ortogonali sono sempre indipendenti, mentre non vale in generale il viceversa. Ad esempio in R 3 la base B = {[1, 3, 1], [ 1, 0, 1], [6, 4, 6]} è una base ortogonale ma non ortonormale (verificarlo per esercizio). Sappiamo che in uno spazio vettoriale ogni vettore si può esprimere come combinazione lineare dei vettori di una base; se la base è ortogonale o ortonormale, si possono determinare in maniera semplice i coefficienti della combinazione lineare:

5 7.1 Generalizzazioni 46 Teorema 7.2 Sia {e 1, e 2, e 3 } una base ortogonale, allora v = λ 1 e 1 +λ 2 e 2 +λ 3 e 3 in cui λ i = v, e i e i, e i ; (7.10) se invece la base è ortonormale λ i = v, e i. Per esempio sia B la base ortogonale B = {e 1 = [1, 3, 1], e 2 = [ 1, 0, 1], e 3 = [6, 4, 6]} dell esempio precedente: abbiamo e 1, e 1 = 11, e 2, e 2 = 2, e 3, e 3 = 88. Se v = [3, 2, 5] usando i risultati trovati e la (7.10) si ha v = v, e 1 11 e 1 + v, e 2 e 2 + v, e e 3 = = e 1 + e e 3. Dal punto di vista geometrico la (7.10) significa che v, e i e i è la componente del vettore v nella direzione di e i o anche che è la proiezione ortogonale di v sulla retta su cui giace il vettore e i. Come è noto la proiezione ortogonale ha lunghezza v cos ϕ i ; lo stesso risultato si trova applicando il teorema 7.1: v, e i e i = v, e i e i = v e i 2 cos ϕ i = v cos ϕ i. 7.1 Generalizzazioni Il concetto di prodotto scalare è molto più generale di quello qui definito (che è il prodotto scalare standard in uno spazio vettoriale isomorfo a R 2 od a R 3. In generale dati due spazi vettoriali sul medesimo campo K un applicazione g da V W 6 a K per cui valgano le proprietà: i) g(v 1 + v 2, w) = g(v 1, w) + g(v 2, w) v 1, v 2 V, w W ii) g(v, w 1 + w 2 ) = g(v, w 1 ) + g(v, w 2 ) iii) g(αv, w) = g(v, αw) = αg(v, w) v V, w 1, w 2 W v V, w W, α K si chiama applicazione o forma bilineare 7 Un applicazione bilineare tale che si abbia g(v, w) = g(w, v) v V, w W si chiama simmetrica. Un applicazione bilineare simmetrica g : V V R per cui sia i) g(v, w) 0 v, w V 6 Si tratta del prodotto cartesiano dei due insiemi V e W, cioè dell insieme dell coppie ordinate (v, w) con v V e w W. 7 Nel senso che è lineare rispetto a tutt e due le variabili; nello stesso senso si parla anche di forma multilineare.

6 7.1 Generalizzazioni 47 ii) g(v, v) = 0 v = 0 si chiama prodotto scalare e si preferisce indicare g(v, w) con v, w. Uno spazio vettoriale in cui sia stato definito un prodotto scalare si chiama euclideo. Come utile esercizio, il lettore verifichi che il prodotto scalare standard definito nel paragrafo precedente è una forma bilineare simmetrica che gode delle proprietà i) e ii) Come esempio si verifichi che in R 2 è un prodotto scalare x, y = [x 1, x 2 ] [ ] [ y1 Ovviamente due vettori ortogonali rispetto ad un prodotto scalare possono non esserlo rispetto ad un altro. Quando parleremo di vettori ortogonali senza precisare rispetto a quale prodotto scalare ci riferiremo al prodotto scalare standard. Per i prodotti scalari vale il Teorema 7.3 Sia V uno spazio vettoriale euclideo, allora si ha: u, v = 1 ( u + v, u + v u, u v, v ) 2 la dimostrazione, che il lettore è invitato a scrivere in maniera esplicita, è un semplice calcolo basato sulla bilinearità e sullla simmetria del prodotto scalare. Sia V uno spazio vettoriale euclideo e sia U un suo sottospazio. Indichiamo con U l insieme di tutti i vettori di V che sono ortogonali a vettori di U (rispetto ad un fissato prodotto scalare) e lo chiamiamo complemento ortogonle di U (rispetto a quel certo prodotto scalare) y 2 ] Queste dispense possono essere liberamente fotocopiate ed utilizzate purchè i) siano distribuite gratuitamente ii) sia riportata questa nota

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi

TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi LA RETTA COME INSIEME CONTINUO La retta è una delle più antiche espressioni di continuità, definita da Euclide mediante i postulati 1, che affermano

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare. Esercizi svolti 4 Problemi guida 117 IL PRODOTTO SCALARE Problema 41 a) Dimostra che (v + w) (v w) = v 2 w 2 b) Dimostra che v w = 1 4 [ v + w 2 v w 2 ] Soluzione a) Per la bilinearità e la simmetria del

Dettagli

MOVIMENTI RIGIDI POLARI NELLO SPAZIO EUCLIDEO

MOVIMENTI RIGIDI POLARI NELLO SPAZIO EUCLIDEO Domus dell Ortaglia, Museo della Città, Brescia. MOVIMENTI RIGIDI POLARI NELLO SPAZIO EUCLIDEO la semplice immaginazione non implica per sua natura alcuna certezza, quale è connessa invece ad ogni idea

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in n. Piani e rette nello spazio. 17 Gennaio 2016 Indice 1 Prodotto scalare nello spazio

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

LEZIONE 6. Typeset by AMS-TEX

LEZIONE 6. Typeset by AMS-TEX LEZINE 6 6.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano S 2 e nello spazio S 3 ordinari (cioè in cui

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

I VETTORI DELLO SPAZIO

I VETTORI DELLO SPAZIO I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Lezione 3: Ancora sui vettori

Lezione 3: Ancora sui vettori Lezione : Ancora sui vettori Norma Abbiamo detto che uno degli elementi che contraddistinguono un vettore è la sua lunghezza. Allora incominciamo a vedere i vantaggi della rappresentazione dei vettori

Dettagli

Operazioni sui vettori

Operazioni sui vettori Operazioni sui vettori Vettore Un vettore v è un insieme ordinato di elementi. Per esempio, il seguente è un vettore di 3 elementi: Gli elementi di un vettore si indicano solitamente con i seguenti simboli:

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli...... Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte

Dettagli

6. Spazi euclidei ed hermitiani

6. Spazi euclidei ed hermitiani 6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti

Dettagli

I vettori: brevissime note

I vettori: brevissime note I vettori: brevissime note F. Demontis Corsi PAS 2014 Trovate in queste pagine le poche nozioni sul calcolo vettoriale che vi ho presentato durante le lezioni. Tutto il materiale è stato scritto molto

Dettagli

Ferruccio Orecchia. esercizi di GEOMETRIA 1

Ferruccio Orecchia. esercizi di GEOMETRIA 1 A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GEOMETRIA ANALITICA Il piano cartesiano rof. Calogero Contrino iano cartesiano Su un piano, si considerino due rette incidenti, sulle quali siano fissati due sistemi di ascisse. Si trasli una delle

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

Studio generale di una conica

Studio generale di una conica Studio generale di una conica Manlio De Domenico 19 Giugno 2003 Definizione 1 Si definisce conica C un equazione algebrica F (x 1, x 2, x 3 ) = 0 del secondo ordine omogenea. Detta A la matrice simmetrica

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale .1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z LEZINE 7 7.1. Prodotto scalare. Fissiamo un sistema di riferimento ı j k in S 3. Dati i ettori geometrici = ı + y j + k e w = w ı + j + k definiamo prodotto scalare di e w il numero, w = ( y ) w = + y

Dettagli