Prodotto interno (prodotto scalare definito positivo)
|
|
|
- Benedetto Gianni
- 9 anni fa
- Visualizzazioni
Transcript
1 Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 1/17 Prodotto interno (prodotto scalare definito positivo) Definizione (Prodotto interno, spazio vettoriale euclideo) Un prodotto interno, o prodotto scalare definito positivo, su uno spazio vettoriale reale V è un applicazione V V R, (a, b) a b (oppure < a, b >) bilineare, simmetrica e definita positiva. Uno spazio vettoriale V, insieme alla scelta di uno specificato prodotto interno, si dice spazio vettoriale euclideo. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 2/17
2 Significato dei termini Bilinearità (ossia, linearità in entrambi gli argomenti): Per ogni a, b, c V, per ogni λ R, Simmetria: Per ogni a, b V, a (b + c) = a b + a c a (λb) = λ(a b) (a + b) c = a c + b c (λa) b = λ(a b) a b = b a Positività (o definita positività): Per ogni a non nullo in V, a a > 0 Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 3/17 Esempi di prodotti interni 1 Il prodotto interno standard in R n. Se X = (x 1,..., x n ), Y = (y 1,..., y n ), 2 V = C 0 (I), I = [ π, π]. Se f, g sono in V, poniamo X Y = x 1 y x n y n < f, g >= π π f (t)g(t) dt Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 4/17
3 Definizione (Ortogonalità e lunghezze in uno spazio euclideo) Due vettori a, b si dicono ortogonali, o perpendicolari, se a b = 0 La norma, o lunghezza, a (oppure a ) di un vettore a di V è il numero reale: a = a a (1) Un vettore a V si dice unitario se a = 1. Esercizio Dimostrare che per ogni vettore a e per ogni scalare t R, ta = t ta. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 5/17 Sistemi ortonormali Definizione (Sistema ortonormali) Un insieme ordinato di vettori u 1,..., u k in uno spazio vettoriale euclideo V si dice ortonormale o un sistema ortonormale se u i = 1, i = 1,..., k, e u i u j per i j. In altri termini, u i u j = { 1 se i = j 0 se i j In particolare, se un sistema ortonormale è una base di V, si chiama base ortonormale. Per esempio, la base canonica e 1,..., e n di R n è ortonormale, rispetto al prodotto scalare standard in R n. Le coordinate rispetto a una base ortonormale si chiamano anche coordinate cartesiane. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 6/17
4 Esercizio Esercizio 1 Ogni sistema ortonormale u 1,..., u k è linearmente indipendente. 2 Se B = (u 1,..., u n ) è una base ortonormale di uno spazio vettoriale euclideo V, ogni vettore v in V si scrive v = (v u 1 )u (v u n )u n Cioè, la componente i-esima è il prodotto scalare v u i. 3 Dati v, w V, di coordinate (v 1,..., v n ), (w 1,..., w n ) rispetto a una base ortonormale B, v w = v 1 w v n w n Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 7/17 Complemento ortogonale Definizione Sia U un sottoinsieme di uno spazio vettoriale euclideo V. Il complemento ortogonale U di U è U = {x V u U x u = 0} Non si richiede che U sia un sottospazio vettoriale. Ad esempio, se U è costituito da un singolo vettore v, il complemento ortogonale U, che si denota anche v, è il sottospazio vettoriale costituito dai vettori di V ortogonali a v. Esercizio Dimostrare che U è un sottospazio vettoriale di V. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 8/17
5 V = U U, per ogni sottospazio vettoriale U V Teorema Siano V uno spazio vettoriale euclideo, U un suo qualunque sottospazio vettoriale e U il suo complemento ortogonale. Allora V = U U Come al solito, questo significa che ogni v V si scrive in un modo, e in uno solo, come v = u + w, con u U e w U. Dividiamo la dimostrazione in due parti: prima dimostriamo che c è al più una scrittura; poi ne troviamo una in modo esplicito. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 9/17 V = U U. Dimostrazione. (Unicità della scrittura) a) Ogni v si può scrivere al più in un modo come somma v = u + w, con u U e w U. Infatti, supponiamo v = u + w = u + w, con u, u U, w, w U. Allora u u = w w, con u u U e w w U. Il vettore u u è ortogonale a w w, ossia è ortogonale a se stesso. Poiché il prodotto scalare è definito positivo, l unico vettore ortogonale a se stesso è il vettore nullo; quindi u u = 0, cioè u = u. Di conseguenza, anche w = w. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 10/17
6 V = U U. Dimostrazione. (Esistenza della scrittura) b) Sia u 1,..., u k una base ortonormale di U. (Una tale base esiste sempre, per Gram-Schmidt). Cerchiamo di scrivere v = u + w, con u U e w U. Il vettore u U si scrive u = c 1 u c k u k. Quello che dobbiamo fare è determinare i coefficienti c 1,..., c k in modo tale che w = v u sia in U. Ora w U equivale a w u i = 0, i = 1,..., k, ossia equivale a 0 = w u i = (v u) u i = v u i u u i = v u i c i Quindi l unica scelta giusta per i coefficienti è c i = v u i, i = 1,..., k. Allora v si può scrivere come v = u + w, dove u = (v u 1 )u (v u k )u k U w = v u U Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 11/17 Caso particolare: dim U = 1 U (dim U = 1) u U v v v v = v + v, v U, v U (Scrittura unica) Se U = Span(u) e u = 1, v = (v u) u (Se u = 1) Se invece z è un vettore arbitrario (non nullo) in U, v = v z z z z Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 12/17
7 Esercizio Esercizio (Proiezione ortogonale di un vettore lungo una retta) Nello spazio euclideo R 3, sia W la retta generata da w = (1, 0, 1). Scrivere v = (0, 0, 1) come con v W e v W. v = v + v Soluzione Abbiamo: v w = 1, w w = 2. Quindi: v = v w w w w = 1 2 (1, 0, 1) = (1 2, 0, 1 2 ) v = v v = (0, 0, 1) ( 1 2, 0, 1 2 ) = ( 1 2, 0, 1 2 ) Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 13/17 Proiezioni su sottospazi Supponiamo che V sia somma diretta di due suoi sottospazi vettoriali U 1, U 2 : V = U 1 U 2 Dunque ogni v V si scrive, in modo unico, come v = u 1 + u 2, u 1 U, u 2 U Le applicazioni V P U 1 V, PU1 (v) = u 1 V P U 2 V, PU2 (v) = u 2 si chiamano proiezioni su U 1 e su U 2, rispettivamente. Ovviamente, Im P U1 = U 1, Im P U2 = U 2, Ker P U1 = U 2, Ker P U2 = U 1 Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 14/17
8 Teorema di Pitagora Teorema (Teorema di Pitagora) Se v, w V (spazio vettoriale euclideo) sono ortogonali, v + w 2 = v 2 + w 2 Dimostrazione v + w 2 = (v + w) (v + w) = v v + 2 v w + v v = v 2 + w 2 Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 15/17 Disuguaglianza di Cauchy-Schwarz Teorema (Disuguaglianza di Cauchy-Schwarz) Per tutti i v, w V, v w v w (2) Dimostrazione Se w = 0, la (2) è ovvia. Altrimenti, scriviamo v = v + v con v multiplo di w e v ortogonale a w. Per Pitagora, v 2 = v 2 + v 2 v 2 ( v w ) = w w w 2 v w = 2 w 2 w w v w 2 = w 2 Moltiplicando per w 2 si ha la tesi. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 16/17
9 Angolo tra due vettori Dalla disuguaglianza di Schwarz segue che, se a e b sono entrambi non nulli, 1 a b a b 1 Poiché il coseno definisce una funzione biunivoca [0, π] cos [ 1, 1] esiste un unico ϑ in [0, π] tale che cos ϑ = a b a b (3) Si dice che ϑ è l angolo tra i vettori a e b. Federico Lastaria. Analisi e Geometria 2. 14) Prodotto interno. Lunghezze, ortogonalità. 17/17
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Prodotto scalare e norma
Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.
Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
REGISTRO DELLE LEZIONI
UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Elementi di Algebra Lineare Spazi Vettoriali
Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente
1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F
Appunti sul corso di Complementi di Matematica (modulo Analisi)
Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto
Somma diretta di sottospazi vettoriali
Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso
Geometria Analitica nello Spazio
Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,
Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni
Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare
Vettori e geometria analitica in R 3 1 / 25
Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
Forme bilineari simmetriche
Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3
VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.
VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:
(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.
1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale
Prodotto scalare, ortogonalitá e basi ortonormali
CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5
Ferruccio Orecchia. esercizi di GEOMETRIA 1
A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it [email protected] via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero
LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.
Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si
Esercizi di Geometria - 2
Esercizi di Geometria - 2 Samuele Mongodi - [email protected] La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel
Esercizi per Geometria II Geometria euclidea e proiettiva
Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003
Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA
Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere
Appunti di algebra lineare. Federico G. Lastaria. Mauro Saita. Politecnico di Milano. gennaio 2008
1 Appunti di algebra lineare Federico G. Lastaria Mauro Saita Politecnico di Milano gennaio 2008 Email degli autori: [email protected] [email protected] 2 Indice 1 Spazi vettoriali e Applicazioni
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale
Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o
Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Prodotto scalare. Matrici simmetriche e forme quadratiche. Diagonalizzazione
Esame di Geometria - 9 CFU (Appello del 20 Giugno A)
Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
Esercizi svolti. Geometria analitica: rette e piani
Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;
Geometria della programmazione lineare
Geometria della programmazione lineare poliedri punti estremi, vertici, soluzioni di base esistenza di punti estremi rif. Fi 3.1; BT 2.1, 2.2, 2.5 Iperpiani, semispazi Definizione Sia a un vettore non
QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica
Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti
Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali
Lezioni di Algebra Lineare I. Le nozioni di base sugli spazi vettoriali Versione settembre 8 Contenuto. Combinazioni lineari di vettori. Sottospazi vettoriali 3. Sottospazio vettoriale generato da un insieme
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.
Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.
Parte 11. Geometria dello spazio II
Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Parte 10. Geometria dello spazio I
Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Algebra lineare Geometria 1 11 luglio 2008
Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =
Capitolo 1 Vettori applicati e geometria dello spazio
Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore
Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3
Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
1. Sistemi lineari. Definizione. Un sistema lineare di m equazioni in n incognite è un sistema di equazioni della forma
Dispense di Algebra Lineare per Ingegneria Sistemi lineari Definizione Un sistema lineare di m equazioni in n incognite è un sistema di equazioni della forma a x +a x + +a n x n = b a x +a x + +a n x n
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Contenuti Nel Piano
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
1.1 Coordinate sulla retta e nel piano; rette nel piano
1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione
15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI
15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono
Esercizi di ripasso: geometria e algebra lineare.
Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare
Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)
Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
Richiami sugli insiemi numerici
Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri
La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.
La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione
GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A
Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),
APPUNTI DI ALGEBRA LINEARE E GEOMETRIA
1 APPUNTI DI ALGEBRA LINEARE E GEOMETRIA Federico G. Lastaria Mauro Saita 2 Indice 1 Spazi vettoriali e Applicazioni Lineari 5 1.1 Gli spazi vettoriali reali.............................. 5 1.1.1 Lo spazio
1 Sistemi di riferimento
Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 [email protected] www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia
Esercizi Riepilogativi Svolti. = 1 = Or(v, w)
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini
MATRICI E SISTEMI LINEARI
- - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni
Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base
Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :
Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.
Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è
0.1 Numeri complessi C
0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni
Parte 4. Spazi vettoriali
Parte 4. Spazi vettoriali A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Spazi vettoriali, 2 Prime proprietà, 3 3 Dipendenza e indipendenza lineare, 4 4 Generatori, 6 5 Basi, 8 6 Sottospazi,
Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :
Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Q = q r + q i i + q j j + q k k ove le quantità q sono numeri reali e i, j e k sono tre unità immaginarie. Quando
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione
I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3
I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale
Parte 12a. Trasformazioni del piano. Forme quadratiche
Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,
