LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero"

Transcript

1 LEZINE Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z. Ricordando la Formula (7.3.1) otteniamo v = v, v. Esempio Si considerino i vettori ı = 1 ı +0 j +0 k, j = 0 ı +1 j +0 k, k = 0 ı +0 j +1 k. Allora ı, ı = j, j = k, k = 1, ı, j = j, ı = ı, k = k, ı = j, k = k, j = 0. Si considerino poi i due vettori v = ı + j + k e w = 3 ı j k. Allora v, w = ( 1) + 1 ( 1) = 1. La definizione algebrica di prodotto scalare implica la seguente Proposizione Valgono le seguenti proprietà: (PS1) per ogni v, w V n () si ha v, w = w, v (il prodotto scalare è commutativo); (PS) per ogni u, v, w V n () si ha u, v + w = u, v + u, w (il prodotto scalare è distributivo rispetto alla somma); (PS3) per ogni α R e v, w V n () si ha α v, w = α v, w ; (PS4) per ogni v V n ()\{ 0 } si ha v, v > 0 (il prodotto scalare è definito positivo). Si noti che le componenti di un vettore rispetto ad un sistema di riferimento possono essere descritte facilmente in termini di prodotti scalari. Infatti se v = v x ı + v y j + v z k allora si possono considerare i coefficienti di Fourier di v rispetto al sistema di riferimento ı j k v x = v, ı, v y = v, j, v z = v, k : si ha perciò la decomposizione v = v, ı ı + v, j j + v, k k. La seguente interpretazione geometrica mostra che il prodotto scalare è indipendente dal sistema di riferimento scelto ma dipende solo dai vettori coinvolti. A tale scopo introduciamo la definizione di angolo fra vettori (si veda la Figura 8.1.4). 1 Typeset by AMS-TEX

2 8.1. PRDTT SCALARE Definizione Siano v, w V n () vettori non nulli. i) Se v w sia T il triangolo avente vertici in e negli estremi liberi di v e w: definiamo angolo fra v e w la misura in radianti, v w, dell angolo interno in del triangolo T. ii) Se v w sono concordi definiamo v w = 0. iii) Se v w sono discordi definiamo v w = π w v ^ w v Figura Poiché la somma delle misure degli angoli interni di un triangolo è π, segue che v w [0, π] e v w = 0, π se e solo se v w. Proposizione Dati v, w V 3 () o almeno uno dei due vettori è nullo, e si ha v, w = 0, o sono entrambi non nulli e si ha v, w = v w cos( v w). Dimostrazione. Siano v = v x ı +v y j +v z k e w = wx ı + j + k. Se i vettori sono paralleli (in particolare se uno dei due è nullo) è facile verificare la tesi a partire dalla definizione. Supponiamo allora che i vettori v, w V 3 () non siano paralleli come in Figura y A v-w v v ^ w w B x Figura Per il Teorema di Carnot, ricordando il significato geometrico di differenza di vettori

3 LEZINE 8 3 applicati, si ha che v w = v + w v w cos( v w), quindi ( ) v w cos( v w) = 1 ( v + w v w ). Siano v = v x ı + v y j + v z k e w = wx ı + j + k. Ricordando la Formula (7.3.1) v = x v + yv + zv, w = x w + yw + zw, v w = (x v x w ) + (y v y w ) + (z v z w ). Sostituendo le espressioni sopra nella Formula ( ) otteniamo v w cos( v w) = v, w che si estende anche al caso di vettori paralleli o nulli. Alla luce di questa proposizione discende immediatamente che ı, ı = j, j = k, k = 1, ı, j = j, ı = ı, k = k, ı = j, k = k, j = 0 come già verificato nell Esempio Facciamo ora alcune osservazioni. Una prima osservazione importantissima è che il prodotto v, w è nullo se e solo se o almeno uno dei due vettori è nullo oppure se cos( v w) = 0, cioè se v w = π/, cioè v, w = 0: per questo motivo introduciamo la seguente Definizione I vettori v, w V 3 () si dicono perpendicolari o ortogonali, e scriveremo v w, se e solo se v, w = 0. Inoltre, se v e w non sono nulli, cos( v w) = v, w v w, quindi il segno di v, w è esattamente il segno di cos( v w): in particolare v, w > 0 se e solo se v w [0, π/[, cioè se e solo se v e w formano un angolo acuto, mentre v, w < 0 se e solo se v w ]π/, π], cioè se e solo se v e w formano un angolo ottuso. Esempio Si considerino i vettori v e w dell Esempio Poiché v, w = 1 i due vettori formano un angolo acuto: precisamente essendo v = 3, w = 11 si ha cos( v w) = 1/ 33. Invece i vettori v = 3 ı + j k e w = ı j + k sono perpendicolari: infatti v, w = ( 1) + ( 1) = 0. Poiché la funzione coseno è limitata in modulo da 1 abbiamo anche la disuguaglianza di Cauchy Schwartz v, w v w in cui vale l uguaglianza se e solo se i vettori v e w sono paralleli. Si considerino ora due vettori v, w V 3 (). Allora, applicando le proprietà (PS1) e (PS) della Proposizione 8.1. v + w = v + w, v + w = v, v + w + w, v + w = = v, v + v, w + w, v + w, w = v + v, w + w v + v, w + w v + v w + w = ( v + w ).

4 PRDTT SCALARE Poiché v + w e v + w sono quantità non negative, la catena di diseguaglianze di cui sopra dimostra la disuguaglianza triangolare v + w v + w dove l uguaglianza vale se e solo se o v e w sono paralleli e concordi o almeno uno di loro è nullo. sservazione Il prodotto scalare è legato alla nozione di proiezione ortogonale. Infatti, come è facile vedere in Figura , v H v ^ w w P Figura v, w non è altro che il prodotto della lunghezza di v per la lunghezza della proiezione di w lungo la direzione di v (o viceversa). In particolare se si desidera determinare il vettore w = H proiezione di w lungo la direzione di v (si veda la Figura ) è sufficiente applicare la formula w = w cos( v w) vers( v) = w v cos( v w) v v v = v, w v v v = v, w v v, w v = v, v v. Si noti che il triangolo HP è rettangolo in H, dunque, ricordando il significato geometrico di differenza di vettori, il vettore w = w w è perpendicolare a w : in particolare questo ci dà un metodo per decomporre un vettore lungo due direzioni perpendicolari di cui fissata, poiché w = w + w. Per esempio si considerino i vettori v = ı + j k e w = ı j + 3 k e determiniamo la proiezione w di w lungo la direzione di v: si ha Si noti che w = w + w ove w = ı j + 3 k, ı + j k ı + j k, ı + j k ( ı + j k ) = 4 3 ( ı + j k ). w = w w = 1 3 (7 ı j + 5 k ) w.

5 LEZINE Prodotto vettoriale. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto vettoriale di v e w il vettore di V 3 () v w = (v y v z ) ı (v x v z ) j + (v x v y ) k. La formula di cui sopra è un po difficile da ricordare. Un artificio utile può essere quello di utilizzare la nozione di determinante scrivendo v w = v y v z ı v x v z j + v x v y k. Si noti che i coefficienti possono essere ottenuti considerando i determinanti delle matrici ottenute da ( vx v y ) v z cancellando via via le colonne. Spesso, ricordando la definizione di determinante di una matrice 3 3, si utilizza anche la notazione ı j k v w = v x v y v z. Esempio Riprendiamo in considerazione i vettori dell Esempio Poiché ı = 1 ı + 0 j + 0 k, j = 0 ı + 1 j + 0 k, k = 0 ı + 0 j + 1 k si ha ı ı = ı j k = 0, ı j = ı j k = k, ı k = ı j k = j. Si verifichi in modo analogo che j j = k k = 0, j k = ı, k j = ı, j ı = k, k ı = j. Si considerino poi i due vettori v = ı + j + k e w = 3 ı j k. Allora v w = ı j k = 0 ı 4 j 4 k. Si verifichi per esercizio che w v = 4 j + 4 k = v w. Una conseguenza quasi immediata della definizione algebrica di prodotto vettoriale è la seguente

6 6 8.. PRDTT VETTRIALE Proposizione 8... Valgono le seguenti proprietà: (PV1) per ogni v, w V n () si ha v w = w v (il prodotto vettoriale è anticommutativo); (PV) per ogni u, v, w V n () si ha ( u + v) w = u w + v w (il prodotto vettoriale è distributivo rispetto alla somma a destra); (PV3) per ogni u, v, w V n () si ha u ( v + w) = u v + u w (il prodotto vettoriale è distributivo rispetto alla somma a sinistra); (PV4) per ogni α R e v, w V n () si ha α( v w) = (α v) w = v (α w). Si noti che il prodotto non è associativo: infatti, ad esempio, ( ı ı ) j = 0 j = ı k = ı ( ı j ). Le proprietà del prodotto vettoriale sopra elencate e la tabella di moltiplicazione dei vettori ı, j, k determinata nell Esempio 8..1, ci permette calcolare il prodotto vettoriale di due vettori anche senza ricordarne la definizione Esempio Siano dai i vettori v = ı + j 3 k e w = ı + j + k. Allora v w = ( ı + j 3 k ) ( ı + j + k ) = ı ı + ı j + ı k + + j ı + j j + j k 3 k ı 3 k j 3 k k. Poiché ı ı = j j = k k = 0 e ı j = k = j ı, ı k = j = k ı, j k = ı = k j, segue che v w = k j k + ı 3 j + 3 ı = 4 ı 5 j + k. Anche in questo caso abbiamo definito la nozione utilizzando le componenti dei vettori in termini di coordinate. In realtà il prodotto scalare è indipendente dal sistema di riferimento scelto ma dipende solo dai vettori coinvolti. Proposizione Dati v, w V 3 () o v w, e si ha v w = 0, o v w e v w è definito come segue: i) la sua direzione è perpendicolare al piano contenente i due vettori v e w; ii) il suo verso è tale che la terna ordinata ( v, w, v w) sia orientata secondo la regola della mano destra; iii) v w = v w sin( v w). Dimostrazione. Siano v = v x ı + v y j + v z k e w = wx ı + j + k Se i vettori sono paralleli allora in base alla definizione è facile verificare la tesi. Supponiamo allora che i vettori siano entrambe non nulli ed iniziamo a dimostrare iii) nell ipotesi che i vettori non siano nulli. Si ha che v w = v yw z v y v z + v zw y + v zw x v zw xv xw z+ + v xw z + v xw y v x v y + v yw x.

7 LEZINE 8 7 Tenendo conto della definizione geometrica del prodotto scalare, si ha v w sin ( v w) = v w v w cos ( v w) = v w v, w = = v yw z v y v z + v zw y + v zw x v zw xv xw z+ + v xw z + v xw y v x v y + v yw x. Poiché i quadrati delle quantità non negative v w e v w sin( v w) coincidono segue iii). Dimostriamo ii), cioè che v w v, w. A tale scopo è sufficiente verificare che v, v w = w, v w = 0. Risulta, ad esempio, v, v w = v, v y v z v = v y v z x ı v x v y v x v z v z j + v x + v z v x v y k = = 0. Per esercizio verificare in modo analogo che w, v w = 0. La dimostrazione di ii) viene omessa in quanto coinvolge la nozione di matrice di passaggio fra due basi che esula dai limiti del corso. La proposizione precedente è bene illustrata dalla seguente figura. v y vxw w v Figura 8..5 Come per il prodotto scalare, anche nel caso del prodotto vettoriale, alla luce della precedente proposizione, discende immediatamente che ı j = k = j ı, j k = ı = k j, k ı = j = ı k e ı ı = j = j j = k k = 0 come già verificato nell Esempio Facciamo alcune osservazioni. Come nel caso del prodotto scalare anche l annullarsi del prodotto vettoriale v w dà informazioni sulla posizione relativa dei due vettori v e w: infatti v w = 0 se e solo se v w = 0 se e solo se o almeno uno dei due vettori è nullo oppure se sin( v w) = 0, cioè se v w = 0, π, cioè se e solo se v w (però utilizzare questo metodo per verificare il parallelismo di vettori è senza dubbio più oneroso che applicare la Proposizione 7.3.9).

8 8 8.. PRDTT VETTRIALE Più interessante è la seguente sservazione Il prodotto vettoriale, o meglio il suo modulo, è legato alla nozione di area. Infatti si considerino tre punti non allineati A, B, C S 3 e si consideri il triangolo avente tali punti come vertici. y B A c α b C B-A C-A x Figura Allora è noto dalla trigonometria elementare che la sua area è Area(ABC) = 1 (bc sin α) ove b e c sono le lunghezze dei lati opposti ai vertici B e C rispettivamente ed α è l angolo interno con vertice A. D altra parte sappiamo che il triangolo ABC è congruente al triangolo avente lati B A e C A sicché b = B A, c = C A e α = (B A), (C A): concludiamo allora che Area(ABC) = 1 (8..6.) bc sin α = 1 B A C A sin (B A), (C A) = = 1 (B A) (C A). Per esempio se ci restringiamo a triangoli nel piano di vertici A = (x A, y A ), B = (x B, y B ), C = (x C, y C ) otteniamo (B A) (C A) = x B x A y B y A x C x A y C y A k = dunque si ottiene la formula, nota ad alcuni, (8..6.3) Area(ABC) = 1 x B x A x C x A = ((x B x A )(y C y A ) (x C x A )(y B y A )) k, y B y A y C y A = 1 x A y A 1 x B y B 1 x C y C 1.

9 LEZINE 8 9 La Formula (8..6.3) è valida solo nel caso di triangoli nel piano: per triangoli nello spazio non è corretta e si deve applicare la Formula (8..6.) per ottenere il valore corretto dell area, come mostriamo nel seguente esempio numerico Si considerino i punti A = (1, 1, 1), B = (, 1, 3), C = ( 1, 0, 1). Allora B A = ı j + k, C A = ı j : tali vettori non sono proporzionali, quindi i tre punti non sono allineati, dunque definiscono un triangolo. Poiché (B A) (C A) = 1 0 ı 1 0 j k = ı 4 j 5 k si ha Area(ABC) = 1 ı 4 j 5 k = = 5.

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z

LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z LEZINE 7 7.1. Prodotto scalare. Fissiamo un sistema di riferimento ı j k in S 3. Dati i ettori geometrici = ı + y j + k e w = w ı + j + k definiamo prodotto scalare di e w il numero, w = ( y ) w = + y

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

LEZIONE 6. Typeset by AMS-TEX

LEZIONE 6. Typeset by AMS-TEX LEZINE 6 6.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano S 2 e nello spazio S 3 ordinari (cioè in cui

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2

( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2 1 Il punto in R 3 La geometria analitica nello spazio: punti, vettori, rette e piani sintesi e integrazione prof D Benetti Un punto P nello spazio è associato a una terna ordinata di numeri reali numero

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Prodotto interno (prodotto scalare definito positivo)

Prodotto interno (prodotto scalare definito positivo) Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Geometria analitica del piano pag 32 Adolfo Scimone

Geometria analitica del piano pag 32 Adolfo Scimone Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

Esercizi sul Calcolo Vettoriale 10/10/2014

Esercizi sul Calcolo Vettoriale 10/10/2014 Esercizi sul Calcolo Vettoriale 10/10/2014 Problema 1. Fissata una terna cartesiana eortogonale e dati due vettori a=11 î 7 ĵ +9 k, b=14 î+5 ĵ k determinare modulo, direzione e verso sia della somma a+

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α

Prova del 6 Marzo, Traccia della soluzione. Problema n. 1. BDA = α 2. sin α α = 1 e che analogamente si dimostra l altro limite notevole tan α IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Dipartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Parte 10. Geometria dello spazio I

Parte 10. Geometria dello spazio I Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. .2. Risoluzione di triangoli qualsiasi In questo paragrafo estenderemo le funzioni goniometriche anche ad angoli retti ed ottusi, per potere risolvere triangoli qualsiasi. er fare ciò ovviamente vogliamo

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

1.4 PRODOTTI NOTEVOLI

1.4 PRODOTTI NOTEVOLI Matematica C Algebra. Le basi del calcolo letterale.4 Prodotti notevoli.4 PRODOTTI NOTEVOLI Il prodotto fra due polinomi si calcola moltiplicando ciascun termine del primo polinomio per ciascun termine

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Vettori del piano. Questo materiale non deve essere considerato come sostituto

Vettori del piano. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi Politecnico di Torino. Vettori del piano Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi P P Q Q Il simbolo

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Q = q r + q i i + q j j + q k k ove le quantità q sono numeri reali e i, j e k sono tre unità immaginarie. Quando

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

I triangoli. In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali.

I triangoli. In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali. I triangoli In questa dispensa presenteremo brevemente la definizione di triangolo e le proprietà principali. Dopo aver introdotto la definizione e le classificazioni rispetto ai lati e rispetto agli angoli,

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

y 5z = 7 y +8z = 10 +3z = 3

y 5z = 7 y +8z = 10 +3z = 3 Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare.

Soluzione. a) Per la bilinearità e la simmetria del prodotto scalare, b) Si sfruttano la bilinearità e la simmetria del prodotto scalare. Esercizi svolti 4 Problemi guida 117 IL PRODOTTO SCALARE Problema 41 a) Dimostra che (v + w) (v w) = v 2 w 2 b) Dimostra che v w = 1 4 [ v + w 2 v w 2 ] Soluzione a) Per la bilinearità e la simmetria del

Dettagli

Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale

Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale Grandezze Fisiche, Sistema Internazionale e Calcolo Vettoriale Soluzioni ai Quiz 1 Il Sistema Internazionale di Unità di Misura Le grandezze fisiche di base sono sei, ognuna delle quali ha una unità di

Dettagli

1- Geometria dello spazio. Vettori

1- Geometria dello spazio. Vettori 1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

1. SPAZIO VETTORIALE E SPAZIO EUCLIDEO

1. SPAZIO VETTORIALE E SPAZIO EUCLIDEO 1 SPAZIO VETTORIALE E SPAZIO EUCLIDEO 1 Lo spazio vettoriale R n Una n-nupla ordinata di numeri reali x = (x 1,x 2,,x n )sidice vettore a n dimensioni e il numero x i componente i-esima di x L insieme

Dettagli

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto.

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. QUARTA LEZIONE: i triangoli Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. Punto 2: primo criterio di uguaglianza dei triangoli Il

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Data una funzione G C 1 (D), dove D è un aperto di R 2, sappiamo bene dove andare a cercare gli eventuali punti di massimo e minimo relativi. Una condizione necessaria affinché

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale .1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi

TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi LA RETTA COME INSIEME CONTINUO La retta è una delle più antiche espressioni di continuità, definita da Euclide mediante i postulati 1, che affermano

Dettagli

Premessa allo studio dell equazione di una retta del piano

Premessa allo studio dell equazione di una retta del piano Premessa allo studio dell equazione di una retta del piano Angolo di pendenza di una retta Sia fissato un riferimento monometrico ortogonale nel piano e con esso un verso di rotazione. Allora angolo di

Dettagli

4.1 I triedri Def triedro vertice spigoli facce triedro

4.1 I triedri Def triedro vertice spigoli facce triedro 1 FIGURE NELLO SPAZIO Rette, piani, semispazi, di cui abbiamo visto le prime proprietà, delimitano le figure solide che si sviluppano nello spazio. Introduciamo gradualmente le figure solide e le loro

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli