0.1 Coordinate in uno spazio vettoriale
|
|
|
- Natalia Albanese
- 9 anni fa
- Visualizzazioni
Transcript
1 .1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base di V, supporremo che essa sia ordinata. Se B = (v 1,..., v n ) è una base ordinata di V, allora ogni vettore di V si scrive in un sol modo come combinazione lineare dei vettori di B. Se v V e risulta: v = x 1 v x n v n, (1) diremo che la n-pla (x 1,..., x n ) è la n-pla delle coordinate di v, valutate rispetto alla base B. Sarà spesso conveniente pensare a questa n-pla come vettore colonna e spesso quindi parleremo della colonna delle coordinate (x 1,..., x n ) T. Esempio.1.1. Se V è lo spazio delle matrici quadrate 2 2 sui reali, e B = (E 11, E 12, E 21, E 22 ) è la base ordinata naturale di V, allora la colonna delle coordinate del vettore A = è la colonna 2 ( ) Se fissiamo una diversa base di V, 4 ad esempio B costituita dalle seguenti matrici, nell ordine: ) ) 1 ) 1 ) (verificare che esse costituiscono veramente una base!) allora la colonna delle coordinate dello stesso vettore A rispetto a questa nuova base è ed infatti 4 ( ) ( ) ( ) ( ) ( ) = Mostriamo ora che questo modo di associare ad ogni vettore le sue coordinate rispetto ad una base fissata è un isomorfismo. Proposizione.1.2. Siano V uno spazio vettoriale di dimensione finita n sul campo K e B = (v 1,..., v n ) una base ordinata di V. L applicazione χ B : V K n che associa ad ogni vettore di V la colonna delle sue coordinate rispetto a B, è un isomorfismo tra V e K n. Dimostrazione. Proviamo intanto che χ B è lineare. Siano v = x 1 v x n v n, w = y 1 v y n v n, (2) due vettori di V espressi come combinazione lineare dei vettori della base fissata. Allora le loro coordinate nella base assegnata sono: χ B (v) = (x 1,..., x n ) T, χ B (w) = (y 1,..., y n ) T, (3)
2 2 Essendo v + w = (x 1 + y 1 )v (x n + y n )v n. (4) si ha, per definizione di coordinate, χ B (v + w) = ((x 1 + y 1 ),..., (x n + y n )) = χ B (v) + χ B (w). (5) L applicazione χ B trasforma dunque somme in somme. Proviamo ora che χ B soddisfa anche la seconda condizione di lienarità. Se k K, allora è kv = k(x 1 v x n v n ) = (kx 1 )v (kx n )v n ; (6) da cui risulta: χ B (kv) = (kx 1,..., kx n ) = kχ B (v). (7) Abbiamo così verificato che χ B è lineare. Proviamo ora che χ B è suriettiva. Se (z 1,..., z n ) K n, sia u = z 1 v z n v n. (8) Poiché risulta χ B (u) = (z 1,..., z n ), allora (z 1,..., z n ) Imχ B e χ B è quindi suriettiva. Infine, essendo la dimensione di V uguale alla dimensione di K n l applicazione è anche iniettiva, per il Teorema delle dimensioni. Segue allora che l applicazione lineare χ B è un isomorfismo di V in K n, come richiesto. Per la proposizione precedente ogni spazio vettoriale n-dimensionale costruito sul campo K è isomorfo allo spazio K n. Per questo motivo K n è, a volte, detto il modello universale per gli spazi vettoriali n-dimensionali su K. Osservazione.1.3. Osserviamo che la proposizione precedente implica che se V è uno spazio vettoriale di dimensione finita n costruito sul campo K e B = (v 1,..., v n ) una base ordinata di V, allora, valutando le coordinate dei vettori rispetto alla base B, si ha che: la n-pla delle coordinate della somma di due vettori v e w di V è la somma delle n-ple delle coordinate di v e di w, la n-pla delle coordinate del prodotto dello scalare k per il vettore v è data dal prodotto di k per la n-pla delle coordinate di v..2 Matrici associate ad applicazioni lineari Siano V e W due spazi vettoriali costruiti sul medesimo campo K di dimensioni finite n ed m, rispettivamente. Siano poi fissate una base B = {v 1,..., v n } di V ed una base D = {w 1,..., w m } di W. Sappiamo che ad una matrice A è possibile associare una applicazione lineare L A : K m K n. Ora proveremo che ogni applicazione lineare da V in W può essere associata ad una matrice. Premettiamo la seguente definizione:
3 .2. MATRICI ASSOCIATE AD APPLICAZIONI LINEARI 3 Definizione.2.1. Data una applicazione lineare L: V W, consideriamo la matrice ad m righe ed n colonne ad elementi in K, la cui j-ma colonna (j = 1,..., n) è data dalla colonna delle coordinate dell immagine L(v j ) del j-mo vettore v j di B, valutata rispetto alla base D. Tale matrice viene chiamata matrice associata all applicazione L, rispetto alle basi B e D ed indicata con M DB (L). (Attenzione all ordine di scrittura delle basi.) Vediamo subito un esempio. Esempio.2.2. Sia L : P 2 P 1 l applicazione lineare definita da L(p(x)) = p (x) (la derivata prima). Ad esempio, L(x 2 + 2x + 1) = 2x + 2. Determinare la matrice associata a L rispetto alle basi ordinate B = (1, x, x 2 ) e D = (1, x). Procediamo per passi. Per ogni vettore della prima base B: prendo il vettore, lo trasformo con L, esprimo il risultato in termine della base D e ne prendo la colonna delle coordinate rispetto a D: ( ) 1 = 1 + x ( ) 1 x 1 = x ( ) x 2 2x = x 2 La matrice desiderata M DB (L) = ( 1 ) 2 Esempio.2.3. Sia V = M(2 2) lo spazio delle matrici quadrate di ordine 2 sui reali e sia L l endomorfismo di V definito da L(A) = A T (trasposizione). Trattandosi di un endomorfismo si può scegliere B = D = (E 11, E 12, E 21, E 22 ). La matrice dell endomorfismo si ottiene come segue 1 E 11 E 11 = 1 E 11 + E 12 + E 21 + E 22 E 12 E 21 = E 11 + E E 21 + E 22 1 E 21 E 12 = E E 12 + E 21 + E 22 1 E 22 E 22 = E 11 + E 12 + E E 22 1
4 4 Nel caso in cui abbiamo scelto la stessa base, come in questo caso, scriviamo 1 M BB (L) = M B (L) = Riassumendo, assegnati due spazi vettoriali con basi ordinate fissate, siamo in grado di associare una matrice ad ogni applicazione lineare e viceversa. Le definizioni sono state date in modo tale che se si prende una applicazione lineare L, ad essa si associa la matrice M = M DB (L), e di tale matrice si considera l applicazione ad essa associata L M, si ritorna all applicazione L da cui siamo partiti. Più precisamente, possiamo illustrare la situazione con il seguente diagramma χ B V R n L L M W R m χ D che va interpretato come segue: se voglio calcolare l immagine di un vettore v V in W seguendo la freccia L posso anche calcolare le coordinate di v in R n, moltiplicare per la matrice M = M DB ottenendo un vettore in R m e infine reinterpretando il risultato come coordinate di L(v). Detto in altre parole, abbiamo la seguente Proposizione.2.4. Siano V e W due spazi vettoriali sul medesimo campo K, di dimensioni finite n ed m, con basi fissate B e D, rispettivamente. Assegnata un applicazione lineare L: V W, sussiste la seguente relazione: χ D (L(v)) = M DB χ B (v). (9) Evidentemente, anche partendo da una matrice A, considerando l applicazione L A ad essa associata e costruendo la matrice associata a quest ultima, si ritorna alla matrice di partenza, ovvero: Proposizione.2.5. Posto L = L A, si ha M DB (L) = A. Esempi ) Siano ancora V = R 3 e W = R 2 ; assegnate le basi B = {(1, 1, ), (1,, 1), (, 1, 1)} e B = {(1, ), (1, 1)} in R 3 ed R 2, rispettivamente, alla applicazione lineare L : R 3 R 2 così definita: L(x, y, z) = (x + 2y + z, 2x + 3z), è associata la matrice seguente: ( ) Infatti L((1, 1, )) = (3, 2), L((1,, 1)) = (2, 5), L((, 1, 1)) = (3, 3), e poiché le colonne delle coordinate di (3, 2), (2, 5) e (3, 3), valutate rispetto alla base B, sono rispettivamente uguali a (1, 2), ( 3, 5) e (, 3), la matrice cercata è quella sopra scritta.
5 .2. MATRICI ASSOCIATE AD APPLICAZIONI LINEARI 5 2) Vogliamo riottenere la matrice della rotazione di V 2 di un angolo θ vista all inizio del capitolo. Fissiamo la base canonica ( i, j ) e procediamo secondo la definizione.2.1. Vediamo i cos θ i + sin θ j ( cos θ sin θ ( ) sin θ j sin θ i + cos θ j cos θ La matrice desiderata ha questi due vettori come colonne, come visto in precedenza. Proviamo ora che la matrice della composizione di due applicazioni lineari è il prodotto delle matrici delle singole applicazioni: Proposizione.2.7. Siano V, W e U tre spazi vettoriali sul medesimo campo K, di dimensioni finite n, m e p, con basi assegnate B, B e B, rispettivamente. Assegnate le applicazioni lineari L: V W ed T : W U, considerata l applicazione lineare composta T L : V U, tra le matrici associate ad L, T, T L, sussiste la seguente relazione: M B B(T L) = M B B (T )M B B(L), (1) cioè la matrice associata a T L è il prodotto della matrice associata a T per la matrice associata ad L. ) Dimostrazione. Per semplicità di notazione, scriveremo M(L), M(T ), M(T L) al posto di M B B(L), M B B (T ), M B B(T L) in tutto il corso della dimostrazione. Assegnato v V, poniamo: w = L(v); u = T L(v). (11) Denotiamo ora con χ(v), χ(w) e χ(u) le colonne delle coordinate di v, w ed u, valutate rispetto a B, B e B (rispettivamente). Dalla 9 segue allora che: D altra parte χ(u) = M(T L)χ(v). (12) Pertanto, esiste un altro modo per calcolare χ(u): u = T (L(v)) = T (w). (13) Inoltre è: χ(u) = M(T )χ(w). (14) χ(w) = M(L)χ(v). (15) Sostituendo nella 14 il valore di χ(w) fornito dalla 15 segue:
6 6 χ(u) = M(T )M(L)χ(v). (16) Confrontando le 16 e 12 si trae: M(T L)χ(v) = M(T )M(L)χ(v), (17) quale che sia il vettore v V. Ne segue che M(T L) = M(T )M(L), come richiesto.
Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni
Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 15 Capitolo
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Forme bilineari simmetriche
Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3
LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),
LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE
SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio
Operazioni tra matrici e n-uple
CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,
Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.
Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
Complemento ortogonale e proiezioni
Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
Somma diretta di sottospazi vettoriali
Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo
LeLing12: Ancora sui determinanti.
LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling
1 Cambiamenti di riferimento nel piano
1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
SPAZI VETTORIALI CON PRODOTTO SCALARE A =
SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da
LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero
LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.
Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige. Fulvio Bisi, Francesco Bonsante, Sonia Brivio
Lezioni di Algebra Lineare con applicazioni alla Geometria Analitica Errata Corrige Fulvio Bisi, Francesco Bonsante, Sonia Brivio DA GENNAIO 2015 1 Da gennaio 2015 Riportiamo di seguito gli errata corrige
I teoremi della funzione inversa e della funzione implicita
I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1
1 Indipendenza lineare e scrittura unica
Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza
Parte 5. Sottospazi. A. Savo Appunti del Corso di Geometria
Parte 5. Sottospazi A. Savo Appunti del Corso di Geometria 03-4 Indice delle sezioni Sottospazi di R n, Equazioni di un sottospazio di R n, 3 3 Sottospazio intersezione, 6 4 Sottospazio somma, 8 5 Formula
1. Funzioni implicite
1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,
Geometria e Topologia I (U1-4) 2006-mag-10 61
Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca
Vettori e geometria analitica in R 3 1 / 25
Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.
LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b
Prodotto scalare e norma
Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o
Spazi vettoriali euclidei.
Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n
SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI
CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
Spazi Vettoriali ed Applicazioni Lineari
Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla
Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria [email protected] Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2
i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;
1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma
a + 2b + c 3d = 0, a + c d = 0 c d
SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,
SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:
SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)
Parte 7. Autovettori e autovalori
Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori
Prodotti scalari e matrici
Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V
0.1 Condizione sufficiente di diagonalizzabilità
0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali
Omomorfismi e matrici
Capitolo 12 Omomorfismi e matrici 121 Introduzione Nel corso di Geometria è stato visto come associare una matrice ad un omomorfismo tra spazi vettoriali Rimandiamo al testo del corso per esempi e esercizi
Esercizi Applicazioni Lineari
Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le
Alcune nozioni di calcolo differenziale
Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria
Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo
ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......
Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
Richiami di algebra lineare
2 Richiami di algebra lineare 2.1 Prodotto scalare, prodotto vettoriale e prodotto misto Sia V lo spazio vettoriale tridimensionale ordinario, che dotiamo di una base ortonormale (e 1, e 2, e 3 ), e i
Sia k un campo e sia un elemento non appartenente a k chamato, al solito, infinito. Consideriamo k := k { }. Poniamo per definizione:
Capitolo 6 Posti Sia k un campo e sia un elemento non appartenente a k chamato, al solito, infinito. Consideriamo k := k { }. Poniamo per definizione: a ± := := ± a, a k; a := := a, a k \ {0} ; := ; 1
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
Appunti di Geometria - 3
Appunti di Geometria - 3 Samuele Mongodi - smongodi@snsit Cambi di base nel duale Richiami Sia V uno spazio vettoriale di dimensione n sul campo K e sia V il suo duale Supponiamo di avere fissate due basi
ANALISI 1 - Teoremi e dimostrazioni vari
ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite
Parte 4. Spazi vettoriali
Parte 4. Spazi vettoriali A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Spazi vettoriali, 2 Prime proprietà, 3 3 Dipendenza e indipendenza lineare, 4 4 Generatori, 6 5 Basi, 8 6 Sottospazi,
LEZIONE 12. v = α 1 v α n v n =
LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono
1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?
Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
Elementi di Algebra Lineare Spazi Vettoriali
Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali
Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.
Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento
Parte 12a. Trasformazioni del piano. Forme quadratiche
Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,
LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f
LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo
Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.
1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3
X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R
X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,
Esame di Geometria - 9 CFU (Appello del 14 gennaio A)
Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire
Metodi per la risoluzione di sistemi lineari
Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante
0.1 Arco di curva regolare
.1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali
Parte 10. Geometria dello spazio I
Parte 10. Geometria dello spazio I A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Lo spazio vettoriale V 3 O, 1 2 Dipendenza e indipendenza lineare in V 3 O, 2 3 Sistema di riferimento
Istituzioni di Matematiche Modulo B (SG)
Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.
Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari
Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema
Nozioni di algebra multilineare
Capitolo 2 Nozioni di algebra multilineare Siano V e W spazi vettoriali di dimensione finita su un campo K (K = R, C). Sia L(V, W ) lo spazio vettoriale, di dimensione infinita, avente come base gli elementi
Spazi affini e combinazioni affini.
Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.
Intersezione e somma di sottospazi vettoriali
Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
