Geometria Differenziale: soluzioni test

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria Differenziale: soluzioni test"

Transcript

1 Geometria Differenziale: soluzioni test Esercizio. Sia α : I R 3 una curva biregolare dello spazio, parametrizzata dall ascissa curvilinea. a) Definire curvatura, torsione e riferimento di Frenet di α. b) Enunciare e dimostrare le formule di Frenet. c) Dimostrare che α è piana se e solo se la sua torsione si annulla identicamente. d) Stabilire se la curva α(t) = + t t 3 + t + t 3 è piana oppure no, ed eventualmente determinare l equazione cartesiana di un piano che la contiene. Soluzione. a) Se T (s) = α (s) allora definiamo curvatura di α la funzione k(s) = T (s) = α (s). Definiamo versore normale il vettore unitario N(s) = α (s) α (s) che esiste poiche per ipotesi α è biregolare, dunque α (s). In questo modo si ha per definizione T (s) = k(s)n(s). Definiamo il versore binormale B(s) in questo modo: B(s) = T (s) N(s). La terna (T (s), N(s), B(s)) è ortonormale, e positivamente orientata; essa è detta riferimento di Frenet di α. D ora in poi ometteremo di indicare la dipendenza da s, per brevità. Derivando rispetto a s l identità B, T = otteniamo: B, T + B, T = Poiche B, T = k B, N = si avra che B è ortogonale a T ; esso è anche ortogonale a B (poiché ha norma costante) dunque B è parallelo a N e possiamo scrivere B = τn per una certa funzione τ = τ(s) detta torsione della curva α.

2 (b) Abbiamo visto che T = kn, B = τn, ora calcoliamo N. Poiche B = T N abbiamo anche N = B T che, derivata, fornisce l identità: N = B T + B T = τn T + kb N = kt τb. Dunque abbiamo le formule di Frenet: T = kn N = kt τb B = τn c) Supponiamo, senza ledere la generalità, che α : [, l] R 3. Ricordiamo che il piano osculatore in α(s) è il piano passante per α(s) e ortogonale a B(s). Se α è una curva piana, contenuta nel piano π, allora il piano osculatore di α coincide con π per ogni s; dunque è costante e il suo versore normale B(s) dovra essere costante. Dunque B = che implica τ(s) = per ogni s. Viceversa, supponiamo che τ(s) = per ogni s. Dunque B(s) = B(). = B. Vogliamo dimostrare che, per ogni s, α(s) appartiene al piano passante per α() ortogonale a B, dunque (poichè tale piano è sempre lo stesso) α è piana. Basta verificare che la funzione ψ(s). = α(s) α(), B è identicamente nulla. Ora ψ() = e ψ (s) = T (s), B() = T (s), B(s) = per ogni s, dunque ψ(s) = ψ() =. c) Risulta: da cui e quindi α (t) = t 3t, α (t) = 6t, α (t) = + 6t t α (t) α (t) = 6t t + 6t α (t) α (t), α (t) = 6. e la torsione non è identicamente nulla (in realta non e mai nulla). Dunque α è sghemba. Esercizio. Si consideri l insieme Σ delle soluzioni dell equazione x + y z =. a) Parametrizzare Σ in modo regolare. b) Determinare la prima forma fondamentale della parametrizzazione e calcolare l area della regione {(x, y, z) Σ : x + y }.

3 c) Determinare seconda forma fondamentale, matrice di Weingarten e curvature principali nel punto p = (,, ) Σ. d) Si consideri la sezione piana α ottenuta intersecando Σ con il piano x y =. Calcolare la curvatura geodetica di α nel suo punto Q = (,, ). Soluzione. a) Σ è il grafico della funzione h(x, y) = x + y dunque si può sempre parametrizzare in modo regolare. Abbiamo: f(u, v) = u v, (u, v) R R u + v b) Risulta: da cui g = u =, u Se = {(u, v) : u + v } si ha: Area = det g dudv = Usiamo coordinate polari e la ben nota formula: u = v ( ) + 4u 4uv 4uv + 4v, det g = + 4(u + v ). { u = r cos θ v = r sin θ φ(u, v) dudv = + 4(u + v ) dudv. φ(r, θ)r drdθ. In coordinate polari si ha = {(r, θ) : r } e u + v = r. Dunque: π + 4(u + v ) dudv = + 4r r drdθ = π + 4r r dr. Poiche + 4r r = d dr ( ( + 4r ) 3/ ), si ottiene facilmente Area = π 6 ( 5 ) 5. 3

4 c) Il versore normale è dato da: N = u v det g e si ha: e la seconda forma fondamentale è: Dunque: f u = = f v, w = g l = l = ( ). det g f u v =, ( ) + 4v 4uv (det g) 3/ 4uv + 4u. Il punto p = (,, ) si ottiene per u =, v =. In tale punto w = ( ) e le curvature principali sono: k = 5 5, k = 5. d) La curvatura geodetica nel punto Q è nulla. In effetti, Σ è una superficie di rotazione, il piano x = y contiene l asse di rotazione (asse z), dunque la curva α è un meridiano di Σ e, come tale, è una geodetica. In conclusione, la curvatura geodetica di α è nulla in ogni suo punto, e non solo in Q. Una verifica diretta è possibile, anche se piu complicata. Parametrizziamo α: α(t) = t t. t Nelle formule, la curva deve essere parametrizzata dall ascissa curvilinea. Vogliamo ottenere formule della curvatura geodetica e della curvatura normale in una qualunque parametrizzazione. Riparametrizziamo dall ascissa curvilinea s, ottenendo la curva parametrizzata ᾱ(s) tale che: ᾱ(s(t)) = α(t). 4

5 Detta v(t) = α (t), si ha: α (t) = v(t)ᾱ (s(t)) α (t) = dv dt ᾱ (s(t)) + v(t) ᾱ (s(t)) Se k g (t) indica la curvatura geodetica nel suo punto α(t) = ᾱ(s(t)), si ha (osservando che ᾱ (s) è ortogonale a N Σ ): e analogamente k g (t) = det(ᾱ (s(t)), ᾱ (s(t)), N Σ ) = v(t) 3 det(α (t), α (t), N Σ ) k n (t) = ᾱ (s(t)), N Σ = v(t) α (t), N Σ Riassumendo, la curvatura geodetica e la curvatura normale di una curva α(t) contenuta nella superficie Σ, non necessariamente parametrizzata dall ascissa curvilinea, sono date, rispettivamente, da k g (t) = v(t) 3 det(α (t), α (t), N Σ ) Nel nostro caso: mentre e si verifica facilmente che k n (t) = v(t) α (t), N Σ α(t) = t t, α (t) =, α (t) = t 4t 4 N Σ = t det g det(α (t), α (t), N Σ ) = È anche facile verificare l identità k = k g + k n. Esercizio 3. Si consideri la superficie parametrizzata f(u, v) = v cos u v, (u, v) [, π] R. + v sin u 5

6 a) Determinare la regione in cui f è regolare. b) Calcolare il versore normale e le curvature principali nei punti dove u =. c) È vero che Σ è una superficie rigata? Se è cosi, di che tipo è? d) Determinare l equazione cartesiana di Σ. e) Dimostrare che la curvatura gaussiana di una qualunque superficie rigata non è mai positiva. Soluzioni. a) Abbiamo u = v sin u, v cos u v = cos u, sin u da cui otteniamo: u v = 4v cos u v, v sin u u = 4v (4 cos u + sin u + ) v dunque Σ è regolare se e solo se v, vale a dire = [, π] R \ {}. b) Versore normale: 4v cos u N = v, det g v sin u dove det g = v 4 cos u + sin u +. Nei punti dove u = si ha Ora, se u = : u =, v N = v v. 5 v v = ( 4v, g = 5 ), g = ( ) 5 v 4v. D altra parte si vede che l = v 5, l = l =, quindi w = g l = ( ) ( ) 5 5 v 4v = 5 v ( ) 5 6

7 quindi le curvature principali sono 5 k =, k = v. c) Possiamo scrivere f(u, v) = α + vξ(u), dove α =, ξ(u) = cos u. Dunque la superficie è una rigata, ed è un cono sin u poiche tutte le generatrici passano per il punto α (vertice). d) La parametrizzazione è x = v cos u y = v z = + v sin u da cui otteniamo dunque che semplificata dà e) Una rigata si parametrizza cosi : ( z ) x + = v, v = y, ( z ) ( y ), x + = 4x y + z + 4y z + 3 =. f(u, v) = α(u) + vξ(u), da cui otteniamo immediatamente (nei punti regolari): f v =, quindi l =, poiche l = f v, N. Ne segue che det l = l. Quindi la curvatura gaussiana è data da K = det l det g = l det g poiche det g è sempre positivo. 7

8 Breve formulario. Curvatura e torsione della curva α = α(t) con t parametro arbitrario: k(t) = α (t) α (t) α (t) 3, τ(t) = α (t) α (t), α (t) α (t) α (t). Per una superficie parametrizzata da f = f(u, u ) i coefficienti g ij, l ij della prima e seconda forma fondamentale sono dati, rispettivamente, da: g ij = u i, u j, l ij = f u i u j, N, dove N è il versore normale di f in (u, v). La matrice dell operatore di Weingarten è quindi w = g l. 8

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Prova scritta di Geometria Differenziale 18.03.2016 Ingegneria Meccanica, a.a. 2015-2016 Cognome...................................... Nome......................................

Dettagli

Esercizi 2: Curve dello spazio Soluzioni

Esercizi 2: Curve dello spazio Soluzioni Esercizi 2: Curve dello spazio Soluzioni. Esercizio Si consideri la curva (elica circolare): a α(t) = a sin t, t R, bt dove a >. a) Calcolare curvatura e torsione di α nel generico punto t. b) Determinare

Dettagli

Esercizi 5 soluzioni

Esercizi 5 soluzioni Esercizi 5 soluzioni Alessandro Savo, Geometria Differenziale 27-8 Esercizi su geodetiche e curve su superfici. Esercizio Determinare l area della regione del paraboloide z = x 2 + y 2 compresa tra i piani

Dettagli

Curve nel piano ane euclideo e nello spazio ane euclideo

Curve nel piano ane euclideo e nello spazio ane euclideo Curve nel piano ane euclideo e nello spazio ane euclideo 13 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Curve nel piano e nello spazio. 1/29 Curve parametrizzate regolari e biregolari. Denizione

Dettagli

Geometria Differenziale: Parte 2

Geometria Differenziale: Parte 2 Geometria Differenziale: Parte 2 A. Savo Indice delle sezioni 1. Curve dello spazio 2. Curvatura e torsione, formule di Frenet 3. Teoremi di rigidità 4. Esercizi 1 Curve dello spazio La definizione di

Dettagli

Geometria Differenziale: Parte 2

Geometria Differenziale: Parte 2 Geometria Differenziale: Parte 2 A. Savo Indice delle sezioni 1. Curve dello spazio 2. Curvatura e torsione, formule di Frenet 3. Teoremi di rigidità 4. Esercizi 1 Curve dello spazio La definizione di

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Geometria Differenziale 2017/18 Esercizi I

Geometria Differenziale 2017/18 Esercizi I Geometria Differenziale 17/18 Esercizi I 1 Esercizi sulle curve piane 1.1 Esercizio Si consideri la curva parametrizzata sin t, t [, π]. cos(t) a) Stabilire per quali valori di t la parametrizzazione è

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Gennaio 17. January 24, 2017

Gennaio 17. January 24, 2017 Gennaio 7 January 24, 207 Prova scritta di Geometria Differenziale 7.0.207 Ingegneria Meccanica, a.a. 206-207 Cognome...................................... Nome...................................... L

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

Esercizi su curvatura e torsione.

Esercizi su curvatura e torsione. Esercizi su curvatura e torsione. e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 016. 1 Indice 1 Curvatura e torsione 1.1 Curve parametrizzate alla lunghezza d arco................... 1.

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Le curve differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona Una curva differenziabile regolare e un applicazione

Le curve differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona Una curva differenziabile regolare e un applicazione Le curve differenziabili (Appunti per il corso di geometria III) Vincenzo Ancona 1. Curve differenziabili. Definizione 1.1. Una curva differenziabile regolare e un applicazione α(t) = (α 1 (t), α 2 (t),

Dettagli

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Foglio 4 - Superfici Esercizio 1. Si considerino la curva α : R R 3 definita ponendo α(t) = (cos(t), sin(t), t) e la superficie elementare P : R (0, + ) R 3 di equazioni parametriche

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Prova scritta di Geometria differenziale - 27/9/2012

Prova scritta di Geometria differenziale - 27/9/2012 Prova scritta di Geometria differenziale - 27/9/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Appello del primo luglio 016 Esercizio 1 Si consideri la curva dipendente dal parametro h R: α h : R R 3, α h (s) = ( 1 cos s, sin s + hs, sin s hs). 4 4 1. Si determini il valore

Dettagli

Curve e superfici parametrizzate. R. Notari

Curve e superfici parametrizzate. R. Notari Curve e superfici parametrizzate R. Notari 17 Aprile 2006 1 1. Cambi di parametro. Proposizione 1 Sia L : t (a, b) P (t) = (x(t), y(t), z(t)) R 3 una curva regolare, e sia ϕ : s (c, d) ϕ(s) (a, b) una

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio 18 Gennaio 2016 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio 18 Gennaio 016 Indice 1 Introduzione euristica alla curvatura di una curva piana Lunghezza d arco 3.1 Parametrizzazione

Dettagli

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Curve nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Introduzione alla geometria 16 Gennaio 2017 Indice 1 Introduzione euristica alla curvatura di una curva

Dettagli

CU. Proprietà differenziali delle curve

CU. Proprietà differenziali delle curve 484 A. Strumia, Meccanica razionale CU. Proprietà differenziali delle curve Richiamiamo in questa appendice alcune delle proprietà differenziali delle curve, che più frequentemente vengono utilizzate in

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2015 2016 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio di Fermat f(x 1,..., x n ) = x d 1 + + x d n è irriducibile in C[x

Dettagli

Parte 1: Curve piane

Parte 1: Curve piane Parte 1: Curve piane A. Savo 1 Curve Generalmente, per curva si intende: Un insieme di livello di una funzione di due variabili (ad esempio, se la funzione è f(x, y) = x 2 + y 2, allora f 1 (1) = {(x,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

GEOMETRIA DIFFERENZIALE - GENNAIO 2012

GEOMETRIA DIFFERENZIALE - GENNAIO 2012 GEOMETRIA DIFFERENZIALE - GENNAIO 0 N.B.: Gli esercizi e bis sono ALTERNATIVI l uno all altro Esercizio. (9 punti) Sia P :(0, /)! R la curva piana definita dalle equazioni parametriche P(t) = 4 ( cos(t)

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2017 2018 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Sia K un campo. Si dimostri che un polinomio f(x) K[x] di grado d, dove 2 d 3, è riducibile se

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2014 2015 Esercizi Equivalenza omo- Omotopia di applicazioni contiue. topica. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Si dimostri che lo spazio topologico è connesso. X

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Geometria 3 A.A Esercizi

Geometria 3 A.A Esercizi Geometria 3 A.A. 2012 2013 Esercizi Omotopia di applicazioni contiue. Si dimostri che lo spazio X = {x R 2 : x 1} è connesso. Siano x, y punti di uno spazio topologico X. Si dimostri che le applicazioni

Dettagli

Geometria Differenziale: Parte 3

Geometria Differenziale: Parte 3 Geometria Differenziale: Parte 3 A. Savo Indice delle sezioni 1. Superfici parametrizzate 2. Esempi 3. Superfici di livello 4. Superfici di rotazione 5. Superfici rigate 6. Quadriche 7. Riduzione a forma

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Esercizi di ripasso. 17 Dicembre Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10

Esercizi di ripasso. 17 Dicembre Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10 Esercizi di ripasso 17 Dicembre 2018 Federico Lastaria. Analisi e Geometria 1. Esercizi di ripasso (1) 1/10 1 Trovare l integrale generale dell equazione: y + 1 y = 0, x ( 1, + ) (1) x + 1 2 Verificare,

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom Es. Es. Es. Es. 4 Totale Analisi e Geometria Terzo appello 05 settembre 06 Compito A Docente: Numero nell elenco degli iscritti: Cognome: Nome: Matricola: Prima parte. Nel campo complesso C, l

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = 0 (b Rotazione di π/4 seguita da riflessione

Dettagli

Il Theorema Egregium di Gauss

Il Theorema Egregium di Gauss Università degli studi di Torino Corso di Studi in Matematica Geometria 3 Il Theorema Egregium di Gauss In queste note diamo una dimostrazione del Theorema Egregium di Gauss, che afferma che la curvatura

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Geometria Differenziale : Parte 5

Geometria Differenziale : Parte 5 Geometria Differenziale : Parte 5 Alessandro Savo 2016-17 Indice delle sezioni 1. Superfici minimali 2. Geodetiche 3. Derivazione covariante 4. Equazioni delle geodetiche 5. Teorema di Clairaut 1 Superfici

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali

Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE Funzioni a valori vettoriali Capitolo 18 ELEMENTI DI GEOMETRIA DIFFERENZIALE 18.1 Funzioni a valori vettoriali Siano a e b due numeri reali con a < b. Sono allora individuati i seguenti sottoinsiemi dell asse reale: (a, b) = { x R

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

Esercizi tratti da temi d esame

Esercizi tratti da temi d esame Gianluca Occhetta Esercizi tratti da temi d esame Geometria IV e V unità didattica 00 11 0 1 0 1111111111 Università di Trento Dipartimento di Matematica Via Sommarive 14 38050 - ovo (TN) 1 Topologia

Dettagli

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione LEZIONE 37 37.1. Altri esempi di superfici. In questo paragrafo daremo altri esempi di superfici. Esempio 37.1.1. Sia D R 2 un aperto. Allora il grafico Γ ϕ di una funzione ϕ: D R 3 di classe C 1 è una

Dettagli

Geometria Differenziale: Parte 3

Geometria Differenziale: Parte 3 Geometria Differenziale: Parte 3 A. Savo, Appunti di Geometria Differenziale 27-8 Indice delle sezioni. Superfici parametrizzate 2. Esempi 3. Superfici di livello 4. Superfici di rotazione 5. Superfici

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Domande Vero/Falso (seconda parte) 1. (a) Se f è una funzione derivabile, allora (b) Se un vettore x R n ha norma nulla, allora x = 0.

Dettagli

Geometria Differenziale: Parte 1

Geometria Differenziale: Parte 1 Geometria Differenziale: Parte 1 A. Savo Indice delle sezioni 1. Curve piane 2. Curve di livello 3. Lunghezza, ascissa curvilinea 4. Teoria locale delle curve piane 5. Coordinate polari 6. Trasformazioni

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola:

Teoria Es. 1 Es. 2 Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio Cognome: Nome: Matricola: Teoria Es. 1 Es. Totale Analisi e Geometria 1 Seconda Prova. Compito F. 14 Gennaio 019. Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere

Dettagli

d (x; y) = 0 se e solo se d 1 (x; y) = d 2 (x; y) = 0, dato che entrambe le distanze hanno valori positivi. Ma questo è possibile solo se x = y.

d (x; y) = 0 se e solo se d 1 (x; y) = d 2 (x; y) = 0, dato che entrambe le distanze hanno valori positivi. Ma questo è possibile solo se x = y. Distanze. a) d (x; y) = se e solo se d (x; y) = d (x; y) =, dato che entrambe le distanze hanno valori positivi. Ma questo è possibile solo se x = y. d (y; x) = d (y; x) + d (y; x) = d (x; y) + d (x; y)

Dettagli

Prova scritta di Geometria - B

Prova scritta di Geometria - B Prova scritta di Geometria - B Tempo: 2h+20m. Fisica) + 20 m. Matematica).) 0 punti) Si consideri la funzione d : R 2 R 2 R 0 se x = y dx; y) = d E x; y) + 4 se x y dove d E è la distanza euclidea su R

Dettagli

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera

ESERCIZI SULLE SUPERFICI. 1) Calcolare le curvature principali, la curvatura media e la curvatura Gaussiana della sfera ESERCIZI SULLE SUPERFICI Calcolare le curvature principali, la curvatura media e la curvatura Gauiana della fera α u; v = r in u co v ; r in u in v ; r co u Dato il paraboloide ellittico α u; v = u; v;

Dettagli

Prova scritta di Geometria - A

Prova scritta di Geometria - A Prova scritta di Geometria - A Tempo: h+0m. Fisica) + 0 m. Matematica).) 0 punti) Si consideri la funzione d : R R R 0 se x = y dx; y) = d E x; y) + se x y dove d E è la distanza euclidea su R. a.) Scrivere

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

1 Esercizi di ripasso 4

1 Esercizi di ripasso 4 Esercizi di ripasso 4. Determinare k in modo che il piano kx + 2y 6z + = 0 sia parallelo al piano x + y z + = 0. Soluzione. La condizione di parallelismo richiede che ( ) k 2 6 rg = Ne segue che k = e

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Esempi di superfici.

Esempi di superfici. Esempi di superfici.. Grafici di funzioni. Sia Ω IR un dominio in IR e sia f: Ω IR una funzione C. Il suo grafico è una supeficie parametrizzata in IR 3 della forma u v f(u, v) La superficie S è regolare

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

La trasformazione di camera

La trasformazione di camera La trasformazione di camera 1 Introduzione Per rappresentare un oggetto tridimensionale nello spazio (scena) in un piano bidimensionale (spazio delle immagini, quale il monitor o un foglio) è necessario

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria. Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 6 punti. Es. 1 Es. 2 Es. 3 Es. Totale Teoria Analisi e Geometria 1 Seconda prova in itinere 0 Febbraio 2013 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso?

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi. A1. Siano u, v, w vettori. Quali tra le seguenti operazioni hanno senso? A. Languasco - Esercizi Matematica B - 4. Geometria 1 A: Vettori geometrici Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Siano u, v, w vettori. Quali tra le seguenti operazioni

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x4 +y 2. xy y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--6 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z)

Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z) Chapter 1 Distanze nello spazio Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z) vettori applicati in O, la lunghezza di un vettore OP rispetto a tale

Dettagli

Le superficie differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona

Le superficie differenziabili. (Appunti per il corso di geometria III) Vincenzo Ancona Le superficie differenziabili (Appunti per il corso di geometria III) Vincenzo Ancona 1. Notazioni Data una funzione di piu variabili f(x, y,...) denoteremo spesso le derivate parziali con i simboli f

Dettagli

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola:

T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale. Cognome: Nome: Matricola: T.(a) T.(b) Es.1 Es.2 Es.3 Es.4 Totale Analisi e Geometria 1 Primo Appello 4 Febbraio 2019 Docente: Numero di iscrizione: Cognome: Nome: Matricola: Istruzioni: Tutte le risposte devono essere motivate.

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI Corso di Geometria, a.a. 009-010 Ing. Informatica e Automatica Esercizi VI 5 novembre 009 Leggere i Capitoli 1-18, 0-4 del libro di testo. Tralasciare il Capitolo 19 (Sottospazi affini). 1 Geometria del

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli