APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI"

Transcript

1 APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI

2 Indice 1 L insieme N dei numeri naturali Introduzione Caratteristiche dell insieme N L addizione nei numeri naturali La moltiplicazione nei numeri naturali La sottrazione nei numeri naturali La divisione nei numeri naturali Confronti e considerazioni sulle quattro operazioni La priorità delle operazioni e le parentesi L uso delle lettere, e la proprietà distributiva della moltiplicazione rispetto alla somma Le potenze Divisori, multipli, e numeri primi Criteri di divisibilità Il Massimo comun Divisore e il minimo comune multiplo Il sistema di numerazione posizionale in base dieci Domande Esercizi Problemi L insieme Z dei numeri interi La nascita dei numeri interi Caratteristiche dell insieme Z Le operazioni coi numeri interi L addizione nei numeri interi La sottrazione nei numeri interi La moltiplicazione nei numeri interi La divisione nei numeri interi Le potenze nei numeri interi

3 2.9 La priorità delle operazioni, le parentesi e le espressioni Identificazione fra i numeri interi non negativi e i numeri naturali Domande Esercizi L insieme Q dei numeri razionali L insieme delle frazioni di numeri Naturali Significato descrittivo delle frazioni Frazioni equivalenti Frazioni ridotte ai minimi termini Addizioni e sottrazioni fra frazioni Frazione di numeri interi La moltiplicazione fra frazioni La divisione fra frazioni La potenza di frazioni Espressioni con le frazioni Semplificazioni fra potenze Potenze con esponente negativo La notatazione scientifica Le frazioni e i numeri razionali Le proporzioni Le percentuali Le frazioni e i numeri decimali I numeri reali Errore assoluto, errore relativo e errore percentuale Esercizi Problemi Gli insiemi (cenni) Notazioni Rappresentazione degli insiemi Cardinalità di un insieme, l insieme vuoto e l insieme Universo I sottoinsiemi Operazioni fra insiemi Rappresentazione delle operazioni fra insiemi tramite i diagrammi di Eulero-Venn Alcuni risultati importanti

4 4.8 Il prodotto cartesiano fra insiemi Domande Esercizi

5 Capitolo 1 L insieme N dei numeri naturali 1.1 Introduzione L esigenza di contare e quantificare è presente nella vita quotidiana sin dalle origini dell umanità: il concetto di numero ha sempre accompagnato l uomo durante la sua evoluzione. Le proprietà, le notazioni e i risultati che incontreremo sono frutto del lavoro di studiosi nel corso dei secoli. Quanto ci apprestiamo ad affrontare è una sintesi di una parte di questo lungo e paziente lavoro ed ha lo scopo di porre le basi di una scienza in continua evoluzione: la matematica. 1.2 Caratteristiche dell insieme N L insieme dei numeri naturali è costituito da: N = {0; 1; 2; 3; 4;...} Evidenziamo alcune caratteristiche dell insieme N: 1. L insieme N ammette naturalmente una relazione d ordine, cioé un criterio che ci permette di stabilire, presa una qualunque coppia di elementi di N, quale elemento viene prima. La relazione d ordine in questo caso è: essere minore di... Ad esempio, scelti gli elementi 3 e 27, l elemento 3 viene prima dell elemento 27 in quanto 3 è minore di 27; 2. L insieme N è costituito da infiniti elementi. 3. L insieme N è illimitato, cioé non esiste un elemento di N che non è minore di nessun altro elemento di N. Osservazione. In base alle caratteristiche di N possiamo affermare che esiste il primo elemento dell insieme (cioé lo zero che è minore di tutti gli altri) ma non esiste l ultimo. Osservazione. La migliore rappresentazione grafica dell insieme N è, in base alle sue caratteristiche, una semiretta orientata (cioè che ha un ordine in cui cresce indicato dalla freccia) come quella rappresentata in figura 1.1.

6 Alessandro Bocconi Figura 1.1: La semiretta dei numeri Naturali 1.3 L addizione nei numeri naturali Il concetto di addizione di due numeri naturali è così intuitivo che, darne qui una definizione, risulterebbe soltanto un inutile appesantimento. Quindi non spiegheremo ad esempio cosa vuol dire e perché il suo risultato sia 8, lasciando a queste domande l intuitiva risposta che il lettore può darsi. Ci soffermeremo però sulla terminologia: il risultato di un addizione si dice somma, e i due numeri che compongono l addizione si dicono addendi. Prendendo ad esempio l addizione 3 + 5; 3 e 5 sono addendi, e 8 è la somma. Anche se l addizione è un operazione fra due numeri, si utilizza spesso l espressione somma di più numeri. Con tale espressione si intende il risultato che si ottiene sommando i primi due addendi, al risultato si somma il terzo e così via. Proprietà dell addizione: 1. Proprietà commutativa: scambiando fra di loro i due addendi la somma non cambia (o la somma di 3+5 è uguale alla somma di 5+3) 2. Proprietà associativa: La somma di più numeri non cambia, cambiando l ordine in cui le addizioni vengono eseguite. o: Eseguiamo prima l addizione fra 3 e 7 che ha risultato 10: = = 15 Adesso eseguiamo prima la seconda addizione (fra 7 e 5) che ha come risultato 12: = = 15 Si osserva che il risultato finale non cambia e conferma la proprietà associativa dell addizione. Osservazione. La proprietà associativa può risultare estremamente utile per facilitare il calcolo di una somma. Si consideri ad esempio:

7 Alessandro Bocconi 6 Effettuare, come viene naturale, prima la somma fra 49 e 97 non è molto semplice soprattutto se dobbiamo eseguirla a mente. Molto più semplice è determinare = 100 e poi effettuare la somma con 49: = 149. Osservazione. Se in un addizione uno dei due addendi è zero la somma è l altro addendo. : = 5; = La moltiplicazione nei numeri naturali Chiariamo con un esempio l espressione sommare un numero più volte che ci servirà per la definizione di moltiplicazione: sommare 4 volte il numero 3 significa: } {{ } 4 volte La definizione di moltiplicazione deriva dall addizione: Definizione di moltiplicazione: moltiplicare fra loro due numeri vuol dire sommare il primo numero tante volte quanto è il secondo numero. : 5 3 = } {{ } 3 volte = = } {{ } = 42 6 volte I due numeri che compongono una moltiplicazione si chiamano fattori, mentre il risultato di una moltiplicazione si dice prodotto. Nel primo esempio 5 e 3 sono i fattori mentre 15 è il prodotto. Problema Mettendo delle palline una sopra l altra abbiamo formato delle colonne costituite da queste palline (supponiamo che le palline stiano in equilibrio una sull altra). Ciascuna colonna è formata da 3 palline, e le colonne sono 5 (figura 1.2). Quante palline ci sono in tutto? La risposta è molto semplice: 3 palline nella prima colonna, più 3 palline nella seconda e così via fino ad arrivare alla quinta. Quindi: numero di palline = } {{ } = 15 5 colonne Ma sommare 5 volte il numero 3 è, per definizione, il prodotto 3 5. Quindi il problema è risolto moltiplicando il numero delle palline in ciascuna colonna (primo fattore) col numero delle colonne (secondo fattore).

8 Alessandro Bocconi 7.. Figura 1.2: 3 palline per ciascuna delle 5 colonne Osservazione importante. La definizione di moltiplicazione perde chiarezza nei casi in cui il secondo fattore è 1, oppure 0. L esempio delle palline messe in colonna ci aiuta ad analizzare questi due casi: Secondo fattore uguale a 1. Il prodotto è equivalente al seguente problema: abbiamo un certo numero di palline (primo fattore) messe in un unica colonna (secondo fattore). Quante palline abbiamo in tutto? Ovviamente la risposta è che abbiamo tante palline quante ci sono nell unica colonna. Quindi il prodotto di due fattori di cui il secondo è 1 è uguale al primo fattore. o: 8 1 = 8 Secondo fattore uguale a 0. Considerando come prima le palline e le colonne, in questo caso, dato che il secondo fattore è 0, non abbiamo nessuna colonna. Se non ci sono colonne non ci sono neppure palline (cioè 0 palline), e quindi il prodotto è uguale a 0. o: 8 0 = 0 Come per la somma, definiamo il prodotto di più fattori, come il risultato che si ottiene moltiplicando i primi due fattori fra loro, al risultato si moltiplica il terzo e così via. Proprietà della moltiplicazione: 1. Proprietà commutativa: scambiando fra di loro i due fattori il prodotto non cambia. Verifichiamolo ancora con l aiuto delle palline: in figura 1.2 abbiamo messo 3 palline in ciascuna delle 5 colonne, e abbiamo visto che il numero totale di palline è data dal prodotto 3 5. Supponiamo adesso di ruotare il rettangolo dove sono contenute le palline, in modo da appoggiarlo sul lato più corto (figura 1.3). Adesso abbiamo 5 palline per ciascuna colonna, e le colonne sono 3. Quante sono le palline? La risposta è data dal prodotto 5 3. Ma ovviamente il numero delle palline è rimasto lo stesso nelle due figure, e quindi i due prodotti devono dare lo stesso risultato, quindi: 3 5 = 5 3 Considerando che tale procedimento è indipendente dalla scelta del numero delle palline e delle colonne, abbiamo verificato la proprietà commutativa della moltiplicazione.

9 .. Alessandro Bocconi 8 Figura 1.3: 5 palline per ciascuna delle 3 colonne 2. Proprietà associativa: il prodotto di più fattori non cambia, cambiando l ordine con cui le moltiplicazioni vengono eseguite. Verifichiamolo con un esempio: ad un istruttore viene commissionato un corso che gli verrà retribuito 20 euro all ora, e dovrà lavorare per 5 ore al giorno, per 3 giorni. Quanto guadagnerà l istruttore? Riscriviamo l accordo con l istruttore: 20 euro all ora per 5 ore al giorno per 3 giorni. Il problema si traduce quindi in In realtà a noi non interessa quanto guadagna, ma che allo stesso risultato possiamo arrivarci in (almeno) 2 modi diversi. (a) Calcoliamo quanto guadagna al giorno e poi si moltiplica per il numero dei giorni: visto che guadagna 20 euro all ora e lavora 5 ore in un giorno, al giorno guadagna 20 5 = 100 euro. I giorni di lavoro sono 3 quindi il guadagno totale è = 300. (b) Calcoliamo quante ore di lavoro effettua nei 3 giorni, e poi moltiplichiamo per il compenso orario: visto che lavora 5 ore al giorno per 3 giorni, il numero di ore lavorative è 5 3 = 15 ore. Dal momento che riceve 20 euro all ora, il guadagno totale è = 300. Nel primo caso abbiamo effettuato prima la prima moltiplicazione (20 5) e poi abbiamo moltiplicato il risultato per 3. Nel secondo caso abbiamo effettuato prima la seconda moltiplicazione (5 3) e poi abbiamo moltiplicato il risultato per 20. Dal momento che il risultato è lo stesso nei 2 casi (e non potrebbe essere altrimenti visto che il compenso finale deve essere lo stesso comunque lo si calcoli), abbiamo dimostrato che il risultato non cambia, cambiando l ordine in cui vengono effettuate le moltiplicazioni. Osservazione. Come già visto per l addizione, la proprietà associativa può risultare estremamente utile anche per calcolare un prodotto. Si consideri ad esempio:

10 Alessandro Bocconi 9 Effettuare, come viene naturale, prima il prodotto fra 79 e 5 non è molto semplice soprattutto se dobbiamo eseguirlo a mente. Molto più semplice è determinare 5 2 = 10 e poi effettuare il prodotto con 79: = 790. Tenuto conto dell osservazione importante e della proprietà commutativa della moltiplicazione possiamo affermare che: 1. Se uno dei due fattori di una moltiplicazione è 1, il prodotto è uguale all altro fattore. 2. Se uno dei due fattori di una moltiplicazione è 0, il prodotto è La sottrazione nei numeri naturali Anche la definizione di sottrazione deriva dall addizione: Definizione di sottrazione: eseguire una sottrazione fra due numeri vuol dire determinare quel numero che sommato al secondo dei due, ha come risultato il primo. o: eseguire la sottrazione 10-6 vuol dire determinare quel numero la cui somma con 6 è uguale a 10. È corretto quindi affermare che il motivo per cui 10 6 = 4 è dato dal fatto che = 10. Il primo numero di una sottrazione si chiama minuendo, il secondo sottraendo e il risultato differenza. Nell esempio precedente 10 è il minuendo, 6 il sottraendo e 4 la differenza. 7 2 = 5 infatti = 7; 6 6 = 0 infatti = 6; 9 0 = 9 infatti = 9; 5 8 non si può fare perché non esiste nessun numero naturale che sommato a 8 ha come risultato 5. Dall ultimo esempio si ricava la seguente importante: Osservazione. Si può eseguire una sottrazione nei numeri naturali solo se il minuendo non è minore del sottraendo. Per la sottrazione non valgono né la proprietà commutativa, né quella associativa. Verifichiamolo con degli esempi: 7 5 = 2, se valesse la proprietà commutativa dovrebbe risultare che, invertendo il minuendo col sottraendo, la differenza rimane la stessa, mentre invece 5 7 non ha nessun risultato.

11 Alessandro Bocconi 10 Per vedere che non vale la proprietà associativa consideriamo se eseguiamo prima la prima sottrazione (11 5 = 6) otteniamo: = 6 2 = 4 Se valesse la proprietà associativa il risultato finale non dovrebbe cambiare invertendo l ordine delle sottrazioni, mentre invece eseguendo prima la seconda sottrazione (5 2 = 3) si ottiene = 11 3 = 8 che è un risultato finale diverso dal precedente. 1.6 La divisione nei numeri naturali La definizione di divisione deriva dalla moltiplicazione (che, come ricorderemo, a sua volta derivava dall addizione): Definizione di divisione: Eseguire una divisione fra due numeri vuol dire determinare quel numero che moltiplicato al secondo dei due, ha come risultato il primo. o: eseguire la divisione 10 : 5 vuol dire determinare quel numero che moltiplicato per 5 ha come risultato 10. È corretto quindi affermare che il motivo per cui 10 : 5 = 2 è dato dal fatto che 2 5 = 10. Il primo numero di una divisione si chiama dividendo, il secondo divisore e il risultato quoziente. Nell esempio precedente 10 è il dividendo, 5 il divisore e 2 il quoziente. Osservazione: È importante notare che, come per la sottrazione, non sempre è possibile effettuare la divisione fra due numeri: ad esempio 8 : 3 non ha alcun risultato nei numeri naturali, in quanto non esiste un numero naturale che moltiplicato per 3 ha come risultato : 3 = 5, infatti 3 5 = : 9 = 1, infatti 9 1 = : 1 = 8, infatti 1 8 = : 5 = 0, infatti 5 0 = : 5 non ha risultato perché non esiste un numero che moltiplicato per 5 ha come risultato 16

12 Alessandro Bocconi 11 Osservazioni. Dalla definizione di divisione possiamo concludere che: La divisione di un numero (diverso da 0) per se stesso ha sempre quoziente 1 (secondo esempio). La divisione di un numero per 1 ha sempre come quoziente il numero stesso (terzo esempio). 0 diviso qualunque numero (diverso da 0) ha sempre come quoziente 0 (quarto esempio). La divisione per zero. Consideriamo adesso una divisione in cui il dividendo sia diverso da zero e il divisore uguale a zero, ad esempio 5 : 0. Il quoziente di questa divisione, se esistesse, dovrebbe essere un numero che moltiplicato per 0 ha come risultato 5, mentre sappiamo che qualunque numero naturale moltiplicato per 0 ha come risultato 0 (vedi paragrafo 1.4). Studiamo ora il caso in cui anche il dividendo è 0, cioé la divisione 0 : 0. In questo caso siamo di fronte a una forma indeterminata: infatti potremmo affermare che 0 : 0 = 1 infatti 0 1 = 0, ma potremmo anche dire che 0 : 0 = 2 infatti 0 2 = 0, oppure 0 : 0 = 18 infatti 0 18 = 0, oppure 0 : 0 = 0 infatti 0 0 = 0 e così via per tutti i numeri naturali. In altre parole la divisione 0 : 0 non ha un unico risultato ma ne ha infiniti. Per questo viene chiamata forma indeterminata: perché non è possibile determinare un unica soluzione dato che qualunque numero è soluzione di quella divisione. In ogni caso quindi non è mai possibile eseguire una divisione in cui il divisore sia 0. Per la divisione, come per la sottrazione, non valgono né la proprietà commutativa, né quella associativa. Verifichiamolo con degli esempi: 16 : 2 = 8, se valesse la proprietà commutativa dovrebbe risultare che, invertendo il dividendo col divisore, il quoziente rimane lo stesso, mentre invece 2 : 16 non ha nessun risultato. Per vedere che non vale la proprietà associativa consideriamo 24 : 6 : 2 se eseguiamo prima la prima divisione (24 : 6 = 4) otteniamo 24 : 6 : 2 = 4 : 2 = 2 Se valesse la proprietà associativa il risultato finale non dovrebbe cambiare invertendo l ordine delle divisioni, mentre invece eseguendo prima 6 : 2 = 3 si ottiene: cioé un risultato finale diverso dal precedente. 24 : 6 : 2 = 24 : 3 = 8

13 Alessandro Bocconi Confronti e considerazioni sulle quattro operazioni. È utile effettuare un confronto fra le varie caratteristiche e proprietà che hanno le quattro operazioni. Innanzitutto presa una qualunque coppia di numeri naturali é sempre possibile effettuare la loro addizione e la loro moltiplicazione. Lo stesso non si può dire per la sottrazione e le divisione in quanto esistono coppie di numeri per le quali non esiste né la differenza né il quoziente. Inoltre la moltiplicazione e l addizione godono sia della proprietà commutativa che quella associativa, a differenza della divisione e della sottrazione che non godono di nessuna delle due. Si osservi a tal proposito che per l addizione e la moltiplicazione i due numeri si chiamano allo stesso modo (addendi per l addizione e fattori per la moltiplicazione), mentre per la sottrazione e la divisione il primo numero ha un nome diverso dal secondo (minuendo e sottraendo per la sottrazione e dividendo e divisore per la divisione). Ciò è dovuto al fatto che, godendo della proprietà commutativa, i termini della moltiplicazione e dell addizione possono essere scambiati, mentre quelli della divisione e sottrazione no. Se ad un numero addizioniamo o sottraiamo 0 il numero rimane invariato. Per questo si dice che 0 è l elemento neutro per l addizione e la sottrazione. Se moltiplichiamo o dividiamo un numero per 1 il numero rimane invariato. Per questo si dice che 1 è l elemento neutro per la moltiplicazione e la divisione. 1.8 La priorità delle operazioni e le parentesi. Chiameremo espressione numerica, una serie di numeri legati fra di loro da delle operazioni. Affrontiamo ora il caso di dover risolvere un espressione, partendo da un esempio: È facile osservare che il risultato di tale espressione cambia a seconda dell ordine in cui effettuiamo le singole operazioni; se ad esempio scegliamo di partre da sinistra a destra si ottiene: = = 32 1 = 31 Se invece scegliamo l ordine inverso otteniamo: = = = 14 E avremmo ottenuto ancora un risultato diverso se avessimo scelto un ordine differente rispetto ai due precedenti (ad esempio prima la moltiplicazione poi la sottrazione e infine l addizione). Dal momento che in matematica le espressioni devono avere un unico risultato (altrimenti perderebbero senso), si è reso necessario fissare una priorità delle operazioni, cioé una classifica dell ordine in cui le operazioni devono venire effettuate. E questa è la classifica: Primo posto: moltiplicazione e divisione a pari merito.

14 Alessandro Bocconi 13 Secondo posto: addizione e sottrazione a pari merito. Con la regola che, se due operatori hanno la stessa priorità (cioé lo stesso posto in classifica) si effettua prima quello più a sinistra. Quindi per risolvere un espressione si risolvono prima tutte le moltiplicazioni e le divisioni presenti, una per ogni passaggio, partendo da sinistra a destra. Quando non ci sono più né moltiplicazioni né divisioni si passa alle addizioni e sottrazioni, sempre una per volta, e sempre da sinistra a destra. Risolvere la seguente espressione: = c é un unica moltiplicazione che ha priorità maggiore degli altri operatori e quindi si svolge per prima: = ci sono due operatori di uguale priorità, si effettua quindi per primo quello più a sinistra: 17 1 = 16 Quindi il risultato finale è 16. Risolvere la seguente espressione: 18 8 : 2 4 = Le moltiplicazioni e le divisioni hanno priorità maggiore, si effettua in questo caso prima la divisione perché è più a sinistra: = Adesso la moltiplicazione: = 2 Quindi il risultato finale è 2. Risolvere le seguenti espressioni: : 4 : = = = : 4 : 2 = : 2 = = 12 Per cambiare l ordine delle operazioni, l unico strumento che esiste è l uso delle parentesi. Infatti se un espressione contiene delle parentesi, prima si risolvono le parti di espressione dentro le parentesi fino a che non rimane solo un numero. A quel punto si tolgono le parentesi e si procede come prima. o Risolvere la seguente espressione: 6 + (7 2 3) 4 =

15 Alessandro Bocconi 14 prima si risolve la parte di espressione dentro le parentesi, ricordando che, all interno di una parentesi valgono le priorità descritte in precedenza, quindi: 6 + (7 6) 4 = 6 + (1) 4 dentro le parentesi è rimasto solo un numero e quindi possono essere tolte: Quindi il risultato finale è = = 10 Può essere necessario, all interno di una parentesi aprirne e chiuderne altre. In questo caso, per evitare confusione, si usano parentesi diverse da quelle tonde, e precisamente le parentesi quadre e, se necessario, le parentesi graffe. Per convenzione le parentesi tonde stanno dentro le quadre che a loro volta stanno dentro le graffe. In un espressione con parentesi graffe, quadre e tonde, prima si risolvono tutte le tonde, poi tutte le quadre, e in ultimo tutte le graffe. o Risolvere la seguente espressione: 12 + {20 : [(7 5) 8 6] + 4 3} : 7 = 12 + {20 : [(2) 8 6] + 4 3} : 7 = 12 + {20 : [2 8 6] + 4 3} : 7 = 12 + {20 : [16 6] + 4 3} : 7 = 12 + {20 : [10] + 4 3} : 7 = 12 + {20 : } : 7 = 12 + { } : 7 = 12 + {2 + 12} : 7 = 12 + {14} : 7 = : 7 = = L uso delle lettere, e la proprietà distributiva della moltiplicazione rispetto alla somma. In matematica si usano molto frequentemente le lettere al posto dei numeri. Il motivo risiede nel fatto che con le lettere possiamo effettuare delle affermazioni che hanno carattere generale, cosa non possibile usando invece i numeri. Chiariamo quanto detto con un esempio: presi i numeri 3 e 5 vale che: 3 5 = 5 3 Quanto appena scritto afferma che la moltiplicazione gode della proprietà commutativa? La risposta è no, perché si potrebbe obiettare che ciò che vale per i numeri 3 e 5, non necessariamente deve valere per tutti i numeri.

16 Alessandro Bocconi 15 Se invece scriviamo: siano a e b due numeri naturali qualunque. Vale che: a b = b a In questo modo abbiamo enunciato la proprietà commutativa della moltiplicazione, in quanto a e b sono due qualunque numeri naturali, e quindi l uguaglianza vale per tutti i numeri naturali. Tale esempio dimostra quanto può essere conveniente usare le lettere al posto dei numeri. Possiamo adesso enunciare una proprietà estremamente importante che lega la moltiplicazione con l addizione: La proprietà distributiva della moltiplicazione rispetto all addizione: il prodotto di una somma per un fattore è equivalente alla somma dei prodotti fra ciascun addendo e il fattore stesso. In formule: (a + b + c +...) k = a k + b k + c k... dove i puntini stanno a significare che la somma può essere composta da un qualsiasi numero di addendi. Chiariamo, e verifichiamo, questa proprietà tramite un esempio. o ( ) 4 (si noti che tale espressione deriva dalla formula letterale scritta sopra, scegliendo al posto di a il numero 5, al posto di b il numero 2, al posto di c il numero 8 e al posto di k il numero 4). Per la proprietà distributiva deve valere che il risultato della precedente espressione è uguale a quello della seguente espressione: (cioè, riprendendo sempre la formula letterale, a k + b k + c k). Verifichiamolo: e quindi la proprietà è verificata. ( ) 4 = 15 4 = = = Le potenze. Consideriamo la seguente espressione: } {{ } 5 volte Osserviamo che si tratta di un prodotto in cui i fattori sono tutti 2. È possibile, e preferibile, scrivere tale espressione in forma più compatta che prende il nome di potenza, cioé 2 5. Si dice che 2 5 è una potenza di base 2 ed esponente 5. Il concetto di potenza è fondamentale nella matematica, ed è così definito:

17 Alessandro Bocconi 16 Definizione di potenza nei numeri naturali: sia a un numero naturale e n un numero naturale maggiore di zero. Con l espressione a n (che si legge a elevato ad enne, o più semplicemente a alla enne) si intende una potenza di base a ed esponente n, che equivale a: a n = a a a a... } {{ } n volte : è una potenza di base 3 ed esponente 4, si legge tre alla quarta ed equivale a: 3 4 = } 3 3 {{ 3 3} = 81 4 volte è una potenza di base 7 ed esponente 2, si legge sette alla seconda ed equivale a: 7 2 = }{{} volte = è una potenza di base 1 ed esponente 4, si legge uno alla quarta ed equivale a: 1 4 = } 1 1 {{ 1 1} = 1 4 volte è una potenza di base 0 ed esponente 5, si legge zero alla quinta ed equivale a: 0 5 = } 0 0 {{ 0 0 0} = 0 5 volte è una potenza di base 8 ed esponente 1, si legge otto alla prima ed equivale a: 8 1 = }{{} 8 1 volta = 8 Osservazioni: Dalla definizione di potenza e dagli esempi possiamo facilmente osservare che: Qualsiasi numero naturale elevato alla prima equivale al numero stesso (vedi esempio 5). Quindi qualsiasi numero naturale può essere visto come una potenza avente come base il numero stesso e come esponente uno (ad esempio 7 è equivalente alla potenza 7 1 ). Zero elevato a qualunque numero maggiore di zero è uguale a zero (vedi quarto esempio). Uno elevato a qualunque numero maggiore di zero è uguale a uno (terzo esempio). Si noti inoltre che tramite le potenze possiamo esprimere con numeri relativamente piccoli, anche numeri molto elevati, ad esempio: 6 7 = A tal proposito si legga con attenzione il seguente racconto. La nascita degli scacchi e i chicchi di riso. Narra la leggenda che gli scacchi furono inventati in India da un bramino (un sacerdote) di nome Sissa. Egli era così orgoglioso della sua invenzione che la portò in dono al suo sovrano. Anche il sovrano rimase entusiasta del nuovo gioco e, per ricompensare il bramino, disse che avrebbe potuto chiedergli in dono qualunque cosa: denaro, stoffe preziose, terre, gemme ecc. Il bramino fece una richiesta piuttosto insolita: mio sovrano per determinare la mia ricompensa dovrà essere messo un chicco di riso nella prima casella della scacchiera, 2 nella seconda, 4 nella

18 Alessandro Bocconi 17 terza, 8 nella quarta e così via fino all ultima casella. Quello che ti chiedo è di darmi il contenuto dell ultima casella Il re rise a quell insolita richiesta pensando di essersela cavata con pochi chicchi di riso. Quando però i suoi consiglieri determinarono la quantità di riso che spettava al bramino non ebbe più alcuna voglia di sorridere: per esaudire la richiesta non sarebbero state sufficienti le scorte di riso di tutto il regno. Vediamo perché: innanzitutto sappiamo che le caselle di una scacchiera sono 64. La richiesta del bramino era di un chicco sulla prima casella, 2 sulla seconda, 4 sulla terza e così via. Mettiamo questi dati in tabella: casella numero di chicchi Si osserva che nell colonna a destra sono tutte potenze del 2 (a cominciare da 1 che è 2 0 come vedremo nel prossimo paragrafo) quindi possiamo riscrivere la tabella come: casella numero di chicchi quindi la 64-esima casella corrisponde a 2 63 chicchi di riso cioè chicchi. Per rendersi conto dell enormità di tale numero si pensi che un chicco di riso pesa circa un quarantacinquesimo di grammo, quindi il peso di tutti quei chicchi è superiore a 200 miliardi di tonnellate. Considerando che nel 2006 la produzione annuale di riso del pianeta è stata di 636 milioni di tonnellate ci sarebbero voluti più di 300 anni per produrre una tale quantità di riso!! Capiamo bene quindi che se dovessimo effettuare il prodotto calcolando prima 6 7 poi 6 10, e poi moltiplicando fra loro i numeri ottenuti, avremmo come minimo bisogno di una calcolatrice (e anche piuttosto potente). Per questo ci vengono in aiuto le fondamentali proprietà delle potenze. Le proprietà delle potenze. 1. Il prodotto fra due potenze aventi la stessa base è una potenza che ha per base la stessa base e per esponente la somma degli esponenti. Verifichiamo tale proprietà con un esempio:

19 Alessandro Bocconi = } 3 3 {{ 3 3 3} 5 volte 3 3 }{{} 2 volte = } {{ } = volte Quindi il risultato ha la stessa base dei fattori (cioé 3) e come esponente la somma degli esponenti (cioé = 7). 2. Il quoziente fra due potenze aventi la stessa base, in cui la prima (dividendo) deve avere l esponente maggiore della seconda (divisore), è una potenza che ha per base la stessa base e per esponente la differenza degli esponenti. Verifichiamo con un esempio: 5 7 : 5 4 Dal momento che il quoziente è quel numero che moltiplicato per il divisore ha come risultato il dividendo, dobbiamo trovare un numero che moltiplicato per 5 4 ha come risultato 5 7. Grazie alla prima proprietà possiamo affermare che = 5 7, e quindi 5 3 è il risultato cercato. Quindi il risultato ha la stessa base del dividendo e del divisore (cioé 5) e come esponente la differenza degli esponenti (cioé 7 4 = 3). 3. La potenza di una potenza è una potenza che ha per base la stessa base e per esponente il prodotto degli esponenti. Verifichiamo tale proprietà con un esempio: (3 5 ) 2 = } 3 5 {{ 3} 5 = per la prima proprietà = = volte dove la parentesi iniziale sta a indicare che prima si determina 3 5 e poi si eleva alla seconda. Quindi il risultato ha la stessa base iniziale (cioé 3) e come esponente il prodotto degli esponenti (cioé 5 2 = 10). 4. Il prodotto fra due potenze aventi lo stesso esponente è una potenza che ha per esponente lo stesso esponente e per base il prodotto delle basi. Verifichiamo tale proprietà con un esempio: = } 2 2 {{ 2 2} 3 } 3 {{ 3 3} = per la proprietà commutativa della moltiplicazione 4 volte 4 volte = (2 3) (2 3) (2 3) (2 3) } {{ } 4 volte = } 6 6 {{ 6 6} = volte Quindi il risultato ha la stesso esponente dei fattori (cioé 4) e come base il prodotto delle basi (cioé 2 3 = 6). 5. Il quoziente fra due potenze aventi lo stesso esponente è una potenza che ha per esponente lo stesso esponente e per base il quoziente delle basi. Verifichiamo con un esempio: 8 7 : 2 7 Dal momento che il quoziente è quel numero che moltiplicato per il divisore ha come risultato il dividendo, dobbiamo trovare un numero che moltiplicato per 2 7 ha come risultato 8 7. Grazie alla quarta proprietà possiamo affermare che = 8 7, e quindi 4 7 è il risultato cercato. Quindi il risultato ha lo stesso esponente del dividendo e del divisore (cioé 7) e come base il quoziente delle basi (cioé 8 : 2 = 4). Potenza con esponente zero. Dalla definizione che abbiamo dato di potenza risulta che non ha senso una potenza con esponente zero: infatti, nella stessa definizione, abbiamo specificato che l esponente fosse un numero naturale maggiore di zero. Risulta però estremamente utile dare un significato, e quindi un valore, ad una potenza, di base maggiore di zero, il cui esponente è zero.

20 Alessandro Bocconi 19 Si è deciso di adottare la seguente convenzione: Convenzione. La potenza avente come esponente 0 e come base un qualunque numero naturale maggiore di 0 vale = 1; 3 0 = 1; 1 0 = 1 Osservazione. La scelta di attribuire il valore 1, ad una potenza di esponente 0 è, come già detto, una convenzione. Risulta però estremamente utile osservare che, fra tutti i valori che avremmo potuto attribuire, 1 risulta la scelta migliore per conservare alcune proprietà delle potenze estendendole all esponente 0. Chiariamo quanto detto con due esempi. Ammettiamo l esistenza di una potenza ad esponente 0, ad esempio 3 0, e consideriamo il seguente prodotto: applicando la prima proprietà delle potenze risulta: = = 3 5 quindi 3 5 (ma avrebbe funzionato con qualunque potenza del 3) moltiplicata per 3 0 resta 3 5, quindi 3 0 funziona come elemento neutro della moltiplicazione. Allora, essendo 1 l unico elemento neutro della moltiplicazione, deve risultare che 3 0 = 1. Come secondo esempio consideriamo la divisione 2 5 : 2 5. La divisione fra due numeri uguali (siano essi potenze o meno), ha come risultato 1 (vedi paragrafo 1.6). Quindi deve risultare: 2 5 : 2 5 = 1 Ma se vogliamo estendere la seconda proprietà delle potenze al fatto che dividendo e divisore possano avere lo stesso esponente deve risultare che: 2 5 : 2 5 = = 2 0 Quindi la divisione 2 5 : 2 5 ha come risultato sia 1, sia 2 0. Dal momento che il risultato deve essere unico, l unica possibilità per non entrare in contraddizione è che 2 0 = 1, in accordo con la nostra convenzione. 0 elevato a 0. Attribuire un valore a 0 0, qualunque esso sia, porterebbe a delle contraddizioni con altri risultati della matematica (purtroppo non abbiamo strumenti sufficienti per dimostrare questa affermazione e dobbiamo prenderla per buona). Per questo si è stabilito che: 0 0 non ha significato (cioé non vale nessun numero).

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

4. Operazioni aritmetiche con i numeri binari

4. Operazioni aritmetiche con i numeri binari I Numeri Binari 4. Operazioni aritmetiche con i numeri binari Contare con i numeri binari Prima di vedere quali operazioni possiamo effettuare con i numeri binari, iniziamo ad imparare a contare in binario:

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE La base del sistema decimale è 10 I simboli del sistema decimale sono: 0 1 2 3 4 5 6 7 8 9 Il sistema di numerazione decimale è un sistema posizionale. L aggettivo

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

II.f. Altre attività sull euro

II.f. Altre attività sull euro Altre attività sull euro II.f È consigliabile costruire modelli in carta o cartoncino di monete e banconote, e farli usare ai bambini in varie attività di classe fin dal primo o al più dal secondo anno.

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che:

Esercizio 1 Dato il gioco ({1, 2, 3}, v) con v funzione caratteristica tale che: Teoria dei Giochi, Trento, 2004/05 c Fioravante Patrone 1 Teoria dei Giochi Corso di laurea specialistica: Decisioni economiche, impresa e responsabilità sociale, A.A. 2004/05 Soluzioni degli esercizi

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

Convertitori numerici in Excel

Convertitori numerici in Excel ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA Convertitori numerici in Excel Prof. G. Ciaschetti Come attività di laboratorio, vogliamo realizzare dei convertitori numerici con Microsoft Excel

Dettagli

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO SISTEMI DI NUMERAZIONE DECIMALE E BINARIO Il sistema di numerazione decimale (o base dieci) possiede dieci possibili valori (0, 1, 2, 3, 4, 5, 6, 7, 8 o 9) utili a rappresentare i numeri. Le cifre possiedono

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210 Il sistema BINARIO e quello ESADECIMALE. Il sistema di numerazione binario è particolarmente legato ai calcolatori in quanto essi possono riconoscere solo segnali aventi due valori: uno alto e uno basso;

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Matematica e giochi di gruppo

Matematica e giochi di gruppo Matematica e giochi di gruppo Possiamo riempire di contenuti matematici situazioni di piccola sfida personale, situazioni di giochi di società. Di seguito proponiamo attività che affrontano i seguenti

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE

COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE COMPETENZA NUMERICA I SISTEMI DI NUMERAZIONE Macroindicatori di conoscenze/abilità Comprensione: -del significato dei numeri -dei modi per rappresentarli -della notazione posizionale dei traguardi per

Dettagli

LA MOLTIPLICAZIONE IN CLASSE SECONDA

LA MOLTIPLICAZIONE IN CLASSE SECONDA LA MOLTIPLICAZIONE IN CLASSE SECONDA Rossana Nencini, 2013 Le fasi del lavoro: 1. Proponiamo ai bambini una situazione reale di moltiplicazione: portiamo a scuola una scatola di biscotti (. ) e diamo la

Dettagli

Interesse, sconto, ratei e risconti

Interesse, sconto, ratei e risconti TXT HTM PDF pdf P1 P2 P3 P4 293 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 293 129.1.1 Esercizio per il calcolo dell

Dettagli

Analisi e diagramma di Pareto

Analisi e diagramma di Pareto Analisi e diagramma di Pareto L'analisi di Pareto è una metodologia statistica utilizzata per individuare i problemi più rilevanti nella situazione in esame e quindi le priorità di intervento. L'obiettivo

Dettagli

Matematica in laboratorio

Matematica in laboratorio Unità 1 Attività guidate Attività 1 Foglio elettronico Divisibilità tra numeri naturali Costruisci un foglio di lavoro per determinare se a è divisibile per b, essendo a e b due numeri naturali, con a

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario?

BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario? BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario? Cosa c è dietro a questo nome? BIT è un acronimo e deriva da BInary digit, cioè cifra binaria Che

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

1 Sistema additivo e sistema posizionale

1 Sistema additivo e sistema posizionale Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti OBIETTIVO Il vincitore è colui che, dopo due round di gioco, delle sue 11 ordinazioni, ne ha consegnate il maggior numero. CONTENUTO DELLA SCATOLA

Dettagli

set 19 9.19 numeri la cui somma delle cifre dà un multiplo di tre sono divisibili per tre.

set 19 9.19 numeri la cui somma delle cifre dà un multiplo di tre sono divisibili per tre. MULTIPLO: IL NUMERO CHE CONTIENE UN ALTRO NUMERO UN CERTO NUMERO DI VOLTE ESATTAMENTE. LI ( I MULTIPLI) OTTENGO MOLTIPLICANDO UN NUMERO PER QUALSIASI ALTRO NUMERO: IL PRODOTTO é IL MULTIPLO. IL MULTIPLO

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE

APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE APPUNTI SU PROBLEMI CON CALCOLO PERCENTUALE 1. Proporzionalità diretta e proporzionalità inversa Analizziamo le seguenti formule Peso Lordo = Peso Netto + Tara Ricavo = Utile + Costo Rata = Importo + Interesse

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Sistemi di Numerazione Binaria NB.1

Sistemi di Numerazione Binaria NB.1 Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Osservazioni sulla continuità per le funzioni reali di variabile reale

Osservazioni sulla continuità per le funzioni reali di variabile reale Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli