Esercizi sugli A-moduli liberi, sui gruppi abeliani finitamente generati e sulle forme canoniche degli endomorfismi degli spazi vettoriali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sugli A-moduli liberi, sui gruppi abeliani finitamente generati e sulle forme canoniche degli endomorfismi degli spazi vettoriali"

Transcript

1 Esercizi sugli A-moduli liberi, sui gruppi abeliani finitamente generati e sulle forme canoniche degli endomorfismi degli spazi vettoriali.) Siano A un anello commutativo con unità e L un A-modulo libero di rango s. Indicata con {e,..., e s } una base di L, siano {v i } elementi di L tali che (v,..., v s ) = (e,..., e s )X, dove X è una matrice di ordine s con elementi in A. Si dimostri che sono equivalenti i seguenti fatti: a) X è invertibile. b) {v,..., v s } è una base di L. c) {v,..., v s } è un sistema di generatori di L..2) Determinare una base per ciascuno dei seguenti sottomoduli: K = (5, 2), (3, 0), (2, 4) Z 2, H = (2, 4, 6), (3, 6, 9), (5, 0, 5) Z 3, N = (2, 3,, 6), (4, 7, 3, 4), (0,,, 2), (9,, 0, 2) Z 4. In tutti i casi si dica se quozientando Z n con il corrispondente sottomodulo si ottiene uno Z-modulo libero..3) Vero o falso? a) (6, 24) può essere un elemento di una base di Z 2. b) (9, 8, k) fa parte di una base di Z 3 se e solo se k non è divisibile per 9..4) Sia A un anello commutativo con unità. Si provi che se ogni A-modulo M è libero, allora A è un campo..5) Sia A un PID e f : A n A m un omomorfismo di A-moduli. a) Si provi che se rv ker f con r A, r 0, e v A n, allora v ker f. b) Si provi la relazione rango (ker f) + rango (Im f) = n..6) Si consideri il gruppo abeliano G definito dalla presentazione G = x, y, z x + 5y + 4z = 3x + 8y z = x + 2y + 9z = 0. a) Considerato uno Z-modulo libero su tre elementi F = e, e 2, e 3 e detto ϕ l omomorfismo F G tale che ϕ(e ) = x, ϕ(e 2 ) = y, ϕ(e 3 ) = z, si determini il rango di ker ϕ. b) Si provi che il gruppo G è ciclico e se ne determini un generatore g in funzione di x, y e z. c) Trovare gli interi h e k tali che x = hg e z = kg.

2 .7) Si considerino i seguenti gruppi abeliani: G = a, b a + 5b = 0,.8) G 2 = a, b a + 5b = 2a 4b = 0, G 3 = a, b a + 5b = 2a 4b = 4a + 9b = 0, G 4 = a, b 6a + 0b = 8a + 4b = 0, G 5 = a, b 6a + 0b = 9a + 5b = 0, G 6 = a, b 6a + 0b = 9a + 6b = 0, G 7 = a, b 2a + 6b = 8a + 24b = 0, G 8 = a, b 6a + b = a + 2b = 0, G 9 = a, b 6a + b = 2a + 4b = 0. Stabilire quali tra i gruppi G i sono infiniti, finiti, ciclici, non ciclici, privi di torsione, decomponibili, indecomponibili. In quali casi G i è il gruppo banale? Quali G i sono isomorfi? È dato il gruppo abeliano G = a, b, c 2a 3c = 7b + 5c = 0. Provare che G è ciclico infinito e determinarne un generatore g in funzione di a, b e c. Esprimere a, b e c come multipli interi di g..9) È dato il gruppo abeliano G = a, b 70a + 20b = 45a + 0b = 0. a) Determinare gli invarianti di torsione di G e la decomposizione di G come somma diretta di due sottogruppi ciclici H e K. b) Trovare i generatori di H e K in funzione di a e b. c) Determinare gli invarianti primari e le componenti primarie di G. d) Calcolare il periodo di a e il periodo di 3a 5b. e) È vero o falso che G a 2b 3a 5b? f) È vero o falso che 7a + 5b = 2a 5b? e che 7a 25b = 2a 35b?.0) Provare che il gruppo abeliano G = a, b, c 2a + 2b = a 6b + 5c = 4a + b + 5c = 0.) è ciclico finito. Determinarne l ordine e un generatore in funzione di a, b e c. Trovare i periodi di a, b e c e le componenti primarie di G. È dato il gruppo abeliano G = a, b, c, d a + 3b 2c + d = a 7b + 8c 5d = 2a + b + c d = 0. Si verifichi che G è infinito. G è isomorfo a Z? Si esprima G come somma diretta di sottogruppi ciclici e si determini un generatore di ciascun addendo..2) Trovare gli invarianti di torsione e gli invarianti primari del gruppo abeliano G = Z 0 Z2 Z8 Z30. Determinare le componenti primarie di G e la decomposizione di G come somma diretta di sottogruppi indecomponibili.

3 .3) Trovare l ordine del sottogruppo ciclico più grande contenuto nel gruppo G = Z 30 Z20 Z0..4) Determinare tutti i gruppi abeliani di ordine 300 a due a due non isomorfi. Stessa domanda per i gruppi di ordine In entrambi i casi si calcolino gli invarianti di torsione dei gruppi trovati..5) I gruppi Z 2 Z72 e Z 8 Z48 sono isomorfi? Stessa domanda con Z 72 Z84 e Z 36 Z68..6) È dato il gruppo G = Z 2 Z3 Z4 Z9. Trovare le coppie di interi positivi (a, b) tali che G Z a Zb. ([ ]) [ x x y 2.) Nello spazio vettoriale IR 2 è dato l endomorfismo α = y 2x IR 2 modulo sull anello IR[x] [ ] mediante il prodotto [ ] p (x) v = p (α)(v). 2 a) Calcolare: (x 3 ), (x 4 + 2x). ]. Ciò rende [ ] 0 b) Verificare che il modulo IR 2 può essere generato da. c) Verificare[ che ] l annullatore [ ] di IR 2 è x 2 x + 2 e determinare un polinomio p (x) 0 tale che = p (x) ) Stabilire qual è l annullatore di IR 3, considerato come IR[x]-modulo mediante α, nei seguenti casi: α x y = z x, α x y = 3z 3z, z y z 3z α x y = 0 y, α x y = x y + z 0. z 2z z x y + z 2.3) Si consideri l endomorfismo di IR 3 così definito: α x z y = 2x + 2y + z z x + 2z a) Determinare la forma canonica razionale e la forma canonica di Jordan di α. b) Trovare le basi di IR 3 relative alle forme canoniche suddette. c) La forma canonica primaria di α differisce da quella razionale? In caso affermativo se ne scriva la matrice e si determini la base relativa.

4 2.4) Si consideri l endomorfismo di IR 4 così definito: x y 0 0 α = z 0 0 w 2 Determinare le forme canoniche razionale, primaria e di Jordan di α, e le basi relative. 2.5) Si conosce la forma normale di Smith della matrice xi A, dove A Mat 3,3 (Q). In ciascuno dei seguenti casi si dica quali sono le forme canoniche di A (razionale, primaria e, se esiste, di Jordan). M = x 0, 0 0 x 2 3x + 2 M 3 = , 0 0 x 3 4x 2 + 5x 2 M 2 = M 4 = x y z w x (x 2) 2, x 3 25x ) È dato l endomorfismo dello spazio vettoriale Q3 definito da ϕ x y = x y z 0 z Determinare le forme canoniche di ϕ (razionale, primaria e, se esiste, di Jordan) con le corrispondenti basi. 2.7) Si consideri l endomorfismo α di (Z 2 ) 4 individuato dalla matrice A = Determinare le forme canoniche razionale e primaria di α e le basi relative. Esiste per α la forma canonica di Jordan? 2.8) Sia α l endomorfismo di K 3 definito da α x 88y y = 40x + 57z z 4y + 8z Trovare i fattori invarianti, le forme canoniche di α e le relative basi nei seguenti casi: K = Z 2, K = Z 5, K = Z 7, K = Z. 2.9) Stabilire se le seguenti matrici rappresentano lo stesso endomorfismo di IR 3 rispetto a basi diverse: ,

5 2.0) Stabilire quali tra le seguenti matrici sono simili su Q: 0 0, 0 0, , ) Stabilire se le seguenti matrici sono a due a due simili su IR: , 3 3 3, ) Stabilire se le seguenti matrici rappresentano lo stesso endomorfismo di K 3 nei casi K = Q e K = Z 5 : , RIFERIMENTI BIBLIOGRAFICI B. HARTLEY T.O. HAWKES Rings, modules and linear algebra, ed. Chapman and Hall 970. P.M. COHN Algebra, vol., ed. John Wiley 989. I.N. HERSTEIN Algebra, Editori Riuniti In questo testo viene detta razionale la forma canonica che nel corso è stata chiamata primaria. P.A. GRILLET Abstract Algebra, ed. Springer V.V. VOJEVODIN Algèbre linéaire, ed. MIR 976. In questo testo si trova una presentazione della forma canonica di Jordan secondo gli strumenti propri dell Algebra lineare.

6 ARGOMENTI E TEOREMI PRINCIPALI. PRODOTTI E SOMME DIRETTE. Prodotto diretto esterno di gruppi; prodotto diretto interno di sottogruppi di un gruppo. Componenti primarie di un gruppo abeliano finito. TEOR. Ogni gruppo abeliano finito è prodotto diretto di sottogruppi ciclici. 2. TEOREMI DI DECOMPOSIZIONE DI UN MODULO SU UN PID. Moduli su un anello. Generatori di un A-modulo, moduli ciclici; elementi linearmente indipendenti, basi di un modulo, moduli liberi. Analogie e differenze con gli spazi vettoriali. TEOR. Ogni A-modulo è immagine omomorfa di un A-modulo libero. TEOR. Tutte le basi di un modulo libero finitamente generato su un anello commutativo con sono finite e hanno lo stesso numero di elementi. TEOR. Ogni sottomodulo S di un modulo libero F su un PID è libero e si ha rk S rk F. Forma normale di Smith: ogni matrice H su un PID è equivalente a una matrice diag (d, d 2,..., d r ), con d d 2... d r. TEOR. Ogni A-modulo M finitamente generato su un PID è somma diretta di sottomoduli ciclici: M A d A d 2... A d r A... A, dove i d i (invarianti di torsione di M) sono 0, non invertibili in A e d d 2... d r. Elementi e moduli di torsione; annullatore di un modulo. Moduli decomponibili, indecomponibili, primari. TEOR. Ogni A-modulo M finitamente generato su un PID è somma diretta di sottomoduli ciclici primari e di sottomoduli liberi di rango. Più precisamente, se T è il sottomodulo di torsione di M e Ann (T ) = d e d = up α pα pα k k è una decomposizione di d mediante primi non associati, allora si ha M A p α A p α A p α k k A p α 2k k... A... A. 3. APPLICAZIONI ALLA TEORIA DEI GRUPPI. Teoremi di decomposizione dei gruppi abeliani finiti o finitamente generati. Struttura dei gruppi abeliani assegnati mediante generatori e relazioni. 4. APPLICAZIONI ALL ALGEBRA LINEARE. Lo spazio vettoriale V sul campo K pensato come K[x]-modulo mediante un endomorfismo ϕ. Forme canoniche di un endomorfismo di V : forma canonica razionale, primaria e di Jordan.

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008 10 Gennaio 2008 1. Nell anello Mat 3 (Q): (a) si determini la forma normale di A = (b) si trovi B tale che rango(b 2 ) < rango(b). 1 1 5 0 1 0 2 2 4 ; 3. Considerando M := Z 24 Z 15 Z 30 come Z-modulo,

Dettagli

6. Calcolare i minori principali di a al variare di a in C.

6. Calcolare i minori principali di a al variare di a in C. 1. Sia V = R 4. (a) Dimostrare che f(v) = 2v, definisce un endomorfismo di V. (b) Ha senso parlare della matrice associata ad f? In tal caso determinarla. 2. Sia A una matrice 3 3 a coefficienti in Z 7,

Dettagli

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V.

Proposizione 2 Il polinomio minimo di t corrisponde all annullatore minimale di M V. Fogli NON riletti. Grazie per ogni segnalazione di errori. L esempio qui sviluppato vuole mostrare in concreto il significato dei risultati trattati a lezione e qui velocemente riassunti. Si assume che

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Algebra 2 programma del corso a.a Alessandro Logar

Algebra 2 programma del corso a.a Alessandro Logar Algebra 2 programma del corso a.a. 2018 19 Alessandro Logar Richiami e primi approfondimenti. Definizione di gruppo, sottogruppo, classi laterali (destre e sinistre), primi esempi di gruppi. Il teorema

Dettagli

Insiemi di generatori e basi

Insiemi di generatori e basi Insiemi di generatori e basi Proposizione (Corollario al Teorema di Steinitz) Siano V (K) uno spazio vettoriale, B una sua base di cardinalità n e A un sottoinsieme di V di n vettori. Allora: se A è libero,

Dettagli

DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A

DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A DIARIO DELLE LEZIONI DI ALGEBRA I Canale Dl-Pa A.A. 2011-12 Lunedì 5 Marzo Introduzione alla teoria degli insiemi: nozioni e notazioni fondamentali. Criterio di uguaglianza tra insiemi. Unione, intersezione

Dettagli

Esercizi di Algebra - Seconda parte

Esercizi di Algebra - Seconda parte Esercizi di Algebra - Seconda parte Esercizio 1. In Q Q si consideri le operazioni + e definite da (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = (ac 8bd, ad + bc + 2bd). Si stabilisca se la struttura

Dettagli

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A: Spazi vettoriali e sottospazi Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Provare che l

Dettagli

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni 1. Sia A un anello A 0. Provare che: A n A m m = n. Soluzione. Sia m A un ideale massimale. Sia m m = ma m e m n = ma n. Se ϕ : A m A n e

Dettagli

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ;

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ; Esercizi 1 Spazi vettoriali Esercizio. Si dica quali dei seguenti sottoinsiemi di R 3 sono sottospazi vettoriali su R: { (x y z R 3 x y z Z } ; { (x y z R 3 x y z Q } ; { (x y z R 3 (x y z (2 2 2 } ; {

Dettagli

ALGEBRA 3 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI

ALGEBRA 3 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI ALGEBRA 3 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. MARTEDÌ 1 MARZO 2016 Chiacchiere organizzative. Prerequisiti. Panoramica del corso. 2. GIOVEDÌ 3 MARZO 2016 Concetto di rappresentazione

Dettagli

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a Svolgimento di Algebra I - 22 Marzo 212 1. Nell insieme delle frazioni F := { a b a, b Z, b } si consideri la relazione definita ponendo: a b a ab = ba. b i Si dimostri che è una relazione di equivalenza

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Complessi di Catene e Gruppi di Omologia. 28 febbraio 2007

Complessi di Catene e Gruppi di Omologia. 28 febbraio 2007 Complessi di Catene e Gruppi di Omologia 28 febbraio 2007 Complessi di Catene Definizione Un complesso di catene è una successione C di gruppi abeliani con i loro omomorfismi n+1 C n+1 n Cn Cn 1 infinita

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A =

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A = ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme V = { X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

Algebra Proff. A. D Andrea e P. Papi Primo scritto

Algebra Proff. A. D Andrea e P. Papi Primo scritto Algebra Proff. A. D Andrea e P. Papi Primo scritto 6 febbraio 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6 6 3 6 4 6 5 6 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

Algebra Proff. A. D Andrea e P. Papi Quarto scritto

Algebra Proff. A. D Andrea e P. Papi Quarto scritto Algebra Proff. A. D Andrea e P. Papi Quarto scritto LUGLIO 8 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 6.5 6.5 3 6.5 4 6.5 5 6.5 otale 3 Occorre motivare le risposte. Una soluzione

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

1 Spazi vettoriali. Sottospazi.

1 Spazi vettoriali. Sottospazi. CORSO DI ALGEBRA LINEARE. A.A. 004-005. Esercitazione del 10 Gennaio 005. (Prof. Mauro Saita, e-mail: maurosaita@tiscalinet.it) 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Siano v 1 = (, 5, 1, 3), v

Dettagli

Istituzioni di Algebra A. A. 2016/2017 Programma svolto da Alberto Canonaco

Istituzioni di Algebra A. A. 2016/2017 Programma svolto da Alberto Canonaco Istituzioni di Algebra A. A. 2016/2017 Programma svolto da Alberto Canonaco Richiami di teoria degli anelli (con unità, non necessariamente commutativi). Esempi di anelli non commutativi: quaternioni H

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda.

ESERCIZI VARI su SPAZI VETTORIALI. Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. ESERCIZI VARI su SPAZI VETTORIALI Si giustifichi la risposta ad ogni esercizio ( o parte di esercizio ) posto in forma di domanda. Esercizio. Dimostrare che i vettori in R sono linearmente indipendenti

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 12 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, quali delle seguenti equazione diofantee ammettono soluzioni e risolvere

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

1 Teoremi di Sylow. Esempio 2 Un S p sottogruppo del gruppo generale lineare GL(n,p) (il cui n ordine è p n(n 1)

1 Teoremi di Sylow. Esempio 2 Un S p sottogruppo del gruppo generale lineare GL(n,p) (il cui n ordine è p n(n 1) 1 Teoremi di Sylow Definizione 1 Sia G un gruppo finito di ordine p α m con p numero primo e (p,m) = 1. Un qualsiasi sottogruppo P di G di ordine p α si dice S p sottogruppo. Esempio 2 Un S p sottogruppo

Dettagli

Moduli Semisemplici e Teorema di Wedderburn-Artin

Moduli Semisemplici e Teorema di Wedderburn-Artin Moduli Semisemplici e Teorema di Wedderburn-Artin Giulia Corbucci Università di Bologna 15 Luglio 2011 Moduli Sia R un anello unitario. Definizione Un R-modulo sinistro è una coppia (M, µ) dove: µ : R

Dettagli

Indice analitico. A Abelianizzato, 9 Abeliano(i) B Banale azione, 9 ideale, 22 sottogruppo, 1 Bezout identità di, 28 Burnside formula di, 11

Indice analitico. A Abelianizzato, 9 Abeliano(i) B Banale azione, 9 ideale, 22 sottogruppo, 1 Bezout identità di, 28 Burnside formula di, 11 Indice analitico A Abelianizzato, 9 Abeliano(i) gruppo, 1 teorema di struttura dei gruppi finiti, 18 Algebrico(a) chiusura, 38 elemento, 37 Alterno gruppo, 17 Anello(i) commutativo, 22 noetheriano, 31

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d.

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d. Esercizi --- 5-- Esercizio. Sia f =: L A : R 4 R 4, ove A = 3 e sia B =:.. Dimostrare che B è una base di R 4.. Determinare la matrice di L A nella base B. 3. Determinare dimensione a basi per l annullatore

Dettagli

Presentazione di gruppi

Presentazione di gruppi Presentazione di gruppi Sia G un gruppo e X un suo sottoinsieme non vuoto, indichiamo con Gp(X) = {x ɛ 1 1 x ɛ 2 2... x ɛ n n x i X, ɛ i = ±1} dove gli elementi di questo insieme sono da intendersi come

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

0.1 Complemento diretto

0.1 Complemento diretto 1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2014-2015 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare (associativa, distributiva

Dettagli

CdL Triennale/Magistrale in Matematica - a.a. 2014/2015. programma analitico del corso di ALGEBRA COMMUTATIVA ( 6 CFU / 8 CFU ) prof.

CdL Triennale/Magistrale in Matematica - a.a. 2014/2015. programma analitico del corso di ALGEBRA COMMUTATIVA ( 6 CFU / 8 CFU ) prof. CdL Triennale/Magistrale in Matematica - a.a. 2014/2015 programma analitico del corso di ALGEBRA COMMUTATIVA ( 6 CFU / 8 CFU ) prof. Fabio Gavarini 1 - ANELLI, IDEALI, MORFISMI 1.1: anelli immersione di

Dettagli

1. Sia x un elemento nilpotente di A. Provare che 1 + x è un unità di A. Dedurre che la somma di un elemento nilpotente e di un unità è un unità.

1. Sia x un elemento nilpotente di A. Provare che 1 + x è un unità di A. Dedurre che la somma di un elemento nilpotente e di un unità è un unità. 1. Sia x un elemento nilpotente di A. Provare che 1 + x è un unità di A. Dedurre che la somma di un elemento nilpotente e di un unità è un unità. 2. Sia p(x) = n i=0 a ix i A[x]. (a) p è invertibile se

Dettagli

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico:

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 1 Richiami/premesse Università degli studi di Trieste Corso di Studi in Matematica Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 2013-2014 Richiami su gruppi, anelli, campi; omomorfismi,

Dettagli

LT FISICA (Fioresi) 23 Gennaio, 2019

LT FISICA (Fioresi) 23 Gennaio, 2019 LT FISICA (Fioresi) 23 Gennaio, 2019 NOME: COGNOME: NUMERO DI MATRICOLA: Non sono permesse calcolatrici, telefonini, libri o appunti. Ci sono 5 esercizi per un totale di 300 punti. Tutto il lavoro deve

Dettagli

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali? Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2017/2018 Docente: Alberto Canonaco Richiami su insiemi e funzioni: composizione di funzioni e associatività della composizione; immagine attraverso una funzione di un sottoinsieme

Dettagli

SOLUZIONI DELL APPELLO B DEL CORSO GE110 8 LUGLIO 2019

SOLUZIONI DELL APPELLO B DEL CORSO GE110 8 LUGLIO 2019 SOLUZIONI DELL APPELLO B DEL CORSO GE 8 LUGLIO 9 ESERCIZIO (8 punti) Si consideri lo spazio vettoriale C 4 con base canonica {e, e, e 3, e 4 } Si consideri l operatore lineare Φ End(C 4 ) univocamente

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Università degli Studi di Bergamo

Università degli Studi di Bergamo Università degli Studi di Bergamo Esercizi di Matematica II Francesco Bottacin A.A. 2002/03 Capitolo 1 Spazi Vettoriali 1. Richiami di teoria 1.1. Spazi vettoriali Sia C un campo fissato (usualmente C

Dettagli

ALGEBRA C. MALVENUTO

ALGEBRA C. MALVENUTO ALGEBRA CANALE A-L ESAME SECONDA PARTE SECONDO ESONERO 27 GENNAIO 22 C. MALVENUTO Istruzioni. Completare subito la parte inferiore di questa pagina con il proprio nome, cognome e firma. Scrivere solamente

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2015-2016 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare di insiemi contenute nel Teorema

Dettagli

Esercizi di Algebra commutativa e omologica

Esercizi di Algebra commutativa e omologica Esercizi di Algebra commutativa e omologica Esercizio 1. Sia A un anello non nullo. Dimostrare che A è un campo se e solo se ogni omomorfismo di A in un anello non nullo B è iniettivo. Esercizio 2. Sia

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Fra le applicazioni definite tra spazi vettoriali sono particolarmente significative quelle che conservano le operazioni, dette applicazioni lineari. Definizione Siano V, W due k-s.v.

Dettagli

ESERCIZI DI ALGEBRA GRUPPI E ANELLI (3) N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi.

ESERCIZI DI ALGEBRA GRUPPI E ANELLI (3) N.B.: il simbolo contrassegna gli esercizi (relativamente) più complessi. ESERCIZI DI ALGEBRA GRUPPI E ANELLI 3 NB: il simbolo contrassegna gli esercizi relativamente più complessi 1 Dato un anello A e il corrispondente per n N + fissato anello di matrici quadrate Mat n A, consideriamo

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ESERCIZI

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ESERCIZI UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali ESERCIZI di APPROFONDIMENTI DI ALGEBRA M Chiara Tamburini Anno Accademico 23/24 Indice I Moduli su un anello II

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Geometria I. Soluzioni della prova scritta del 19 settembre 2016

Geometria I. Soluzioni della prova scritta del 19 settembre 2016 Geometria I Soluzioni della prova scritta del 9 settembre 6 Esercizio Consideriamo una forma bilineare simmetrica g : V V R su uno spazio vettoriale reale V di dimensione finita, una sua base B e la matrice

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Cristina Turrini UNIMI - 2018/2019 Cristina Turrini (UNIMI - 2018/2019) Elementi di Algebra Lineare 1 / 32 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi

Dettagli

ALGEBRA PER INFORMATICI ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI

ALGEBRA PER INFORMATICI ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI ALGEBRA PER INFORMATICI 2018-19 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. MARTEDÌ 25 SETTEMBRE 2018 Informazioni sul corso. Linguaggio: insiemi, elementi, appartenenza, sottoinsiemi, inclusione.

Dettagli

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE

NON SFOGLIARE IL TESTO PRIMA CHE VENGA DATO UFFICIAMENTE INIZIO ALLA PROVA DAL DOCENTE AL110 - Algebra 1 - A.A. 2015/2016 Valutazione in itinere - II Prova (Gennaio 2016) Matricola (O ALTRO IDENTIFICATIVO) Cognome:...................................... Nome:......................................

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI

Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI Facoltà di Scienze MFN- Corso di laurea in Matematica ALGEBRA 2 - G.M. Piacentini Cattaneo- I. Damiani - ESERCIZI DI RIPASSO SUI GRUPPI SOLUZIONI (1) Siano G e G gruppi, e G = 47, G = 40. Può esistere

Dettagli

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Il testo di riferimento è: Appunti di Algebra Lineare, Gregorio, Parmeggiani, Salce 06/12/04 Matrici. Esempi. Tipi particolari

Dettagli

Università degli Studi di Firenze Facoltà di Scienze Matematiche, Fisiche e Naturali C.d.L. in Matematica

Università degli Studi di Firenze Facoltà di Scienze Matematiche, Fisiche e Naturali C.d.L. in Matematica Università degli Studi di Firenze Facoltà di Scienze Matematiche, Fisiche e Naturali C.d.L. in Matematica Anno Accademico 2011-2012 Relazione finale per la Laurea Triennale DIAGONALIZZAZIONE SU UN PID

Dettagli

Esame di ammissione al Dottorato di Ricerca in Matematica

Esame di ammissione al Dottorato di Ricerca in Matematica Esame di ammissione al Dottorato di Ricerca in Matematica Università di Lecce, 28 ottobre 2010, prova A Norme di svolgimento Il candidato svolga una, ed una sola, tra le dissertazioni proposte, illustrando

Dettagli

ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. GIOVEDÌ 10 MARZO 2011

ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. GIOVEDÌ 10 MARZO 2011 ALGEBRA 1 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI Informazioni sul corso. Panoramica sul programma 1. GIOVEDÌ 10 MARZO 2011 2. LUNEDÌ 14 MARZO 2011 Teoria ingenua degli insiemi. Insiemi ed elementi.

Dettagli

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI ). Siano A, B, C insiemi. Provare che (A B) C = A (B C) A (B C) =(A B) (A C) C(A B) =C(A) C(B). 2). Definiamo la differenza simmetrica

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Capitolo 4: Teoria degli anelli:

Capitolo 4: Teoria degli anelli: Capitolo 4: Teoria degli anelli: Definizione (Anello): È un insieme munito di due operazioni che indicheremo con in modo che: 1- è un gruppo abeliano rispetto a 2- è un monoide associativo rispetto al

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2017/2018 Antonio Lanteri e Cristina Turrini (UNIMI - 2017/2018) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Fondamenti di Algebra Lineare e Geometria - Ingegneria Aerospaziale Esame - Primo Appello - 22 giugno Nome Cognome Matricola

Fondamenti di Algebra Lineare e Geometria - Ingegneria Aerospaziale Esame - Primo Appello - 22 giugno Nome Cognome Matricola Fondamenti di Algebra Lineare e Geometria - Ingegneria Aerospaziale Esame - Primo Appello - 22 giugno 2015 A Nome Cognome Matricola Problema 1 2 3 4 5 6 Totale Voto Problema 1 Si consideri il sistema lineare

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

Vale: I (J 1 + J 2 ) = IJ 1 + IJ 2. (Si prova verificando la doppia inclusione). Def. Due ideali I, J di A si dicono coprimi se I + J = (1).

Vale: I (J 1 + J 2 ) = IJ 1 + IJ 2. (Si prova verificando la doppia inclusione). Def. Due ideali I, J di A si dicono coprimi se I + J = (1). Operazioni con gli ideali Sia A un anello (commutativo, unitario). Se I e J sono due ideali di A, si definisce I + J come il pi`piccolo ideale che contiene sia I, sia J. Si verifica che vale: I + J = {a

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5) Geometria e algebra lineare { 16/1/2019 A 1) Siano r e r 0 le rette dello spazio di equazioni: r : x 2z =

Dettagli

Fondamenti di Matematica del discreto

Fondamenti di Matematica del discreto Fondamenti di Matematica del discreto M1 - Insiemi numerici 25 gennaio 2013 - Laurea on line Esercizio 1. Dire, motivando la risposta, se è possibile scrivere 3 come combinazione lineare di 507 e 2010,

Dettagli

Esame di GEOMETRIA (Appello del 30 gennaio 2018)

Esame di GEOMETRIA (Appello del 30 gennaio 2018) Esame di GEOMETRIA (Appello del 3 gennaio 28) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Siano dati i sottospazi di R 4 : W = L, 4, 5 2 2. Scrivere equazioni cartesiane per W. {, U : x +

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D.

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D. MATEMATICA II (Durante) Aversa, Marzo 2001. COGNOME........................ NOME............... MATRICOLA............ 1. Dati i tre vettori u, v e w di R 3, si dica se essi sono linearmente dipendenti

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

(h + 1)y + hz = 1. 1 [5 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: 2x 5 mod 3 3x 2 mod 5.

(h + 1)y + hz = 1. 1 [5 punti] Determinare le eventuali soluzioni del seguente sistema di congruenze: 2x 5 mod 3 3x 2 mod 5. Dipartimento di Matematica e Informatica Anno Accademico 07-08 Corso di Laurea in Informatica (L-) Prova scritta di Matematica Discreta ( CFU) 8 Luglio 08 [5 punti] Determinare le eventuali soluzioni del

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

I Esonero di geometria e algebra

I Esonero di geometria e algebra Laurea Ing. 26 novembre 2007 Traccia I COG 1 Nell insieme R \ {1} si consideri la seguente operazione a b = 2 Si considerino i seguenti due sottospazi di Q 4 : (a) Si calcolino la dimensione e una base

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

0 1 k. k k k +4. b) Posto k = 0, si calcoli l inversa di A e l inversa di T.

0 1 k. k k k +4. b) Posto k = 0, si calcoli l inversa di A e l inversa di T. Esercizi per il Parziale 2, Prof. Fioresi, 2016 1. Cambi di base, determinante e inversa 1. Si trovino le coordinate del vettore v = (1, 1,2) espresso nella base canonica, rispetto alla base B = {(1, 4,3),(5,3,

Dettagli

Problemi di Complementi di Algebra e Fondamenti di Geometria

Problemi di Complementi di Algebra e Fondamenti di Geometria Problemi di Complementi di Algebra e Fondamenti di Geometria Corso di Laurea in Ingegneria Elettrica a.a. 8/9 1 Forma Canonica di Jordan In questa Sezione la sigla FCJ(A) indica la forma canonica di Jordan

Dettagli

Corso di Laurea in Informatica Corso di ALGEBRA E GEOMETRIA Docente: Prof.ssa Nicoletta Cantarini Terzo Appello Bologna, 8 luglio 2013 TEMA n.

Corso di Laurea in Informatica Corso di ALGEBRA E GEOMETRIA Docente: Prof.ssa Nicoletta Cantarini Terzo Appello Bologna, 8 luglio 2013 TEMA n. Corso di Laurea in Informatica Corso di ALGEBRA E GEOMETRIA Docente: Prof.ssa Nicoletta Cantarini Terzo Appello Bologna, 8 luglio 213 TEMA n.1 Esercizio 1. (8 punti) a) Stabilire per quali valori del parametro

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio 4 Esempio. Sia V = P 5 (R) lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V (i) Dimostrare

Dettagli

Esercizi di Algebra. 22 maggio 2006

Esercizi di Algebra. 22 maggio 2006 Esercizi di Algebra maggio 006 1. Studiare il gruppo moltiplicativo U(Z 4 ) degli elementi invertibili dell anello Z 4 : determinare gli ordini di tutti gli elementi ed il reticolo dei sottogruppi. Stabilire

Dettagli