FUNZIONI QUADRATICHE
|
|
|
- Marcello Bernardi
- 9 anni fa
- Visualizzazioni
Transcript
1 f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando abbiamo parlato delle frequenze genotipiche in funzione della frequenza di un assegnato allele, limitando però il dominio all intervallo [0, 1] (si trattava di frequenze relative!)
2
3 Consideriamo f: R R f(x) = x 2, si osserva: f(x) 0 con f(x)=0 se e solo se x=0, quindi x=0 è un punto di minimo per f con valore minimo 0; f(-x) = f(x) per ogni x (funzione pari), la retta x=0 è asse di simmetria per il grafico di f Se x 1 < x 2 <0 allora 0 < x 2 2 < x 1 2 quindi f è decrescente per valori di x< 0; Se 0 < x 1 < x 2 allora 0 < x 1 2 < x 2 2 quindi f è crescente per valori di x>0
4 Poiché f(x) = x 2 risulta decrescente per x<0 e crescente per x > 0 si dice che la parabola (grafico di f) ha la concavità rivolta verso l alto. Per ogni M>0 per quanto grande lo possiamo fissare, la disuguaglianza f(x) >M ha come soluzioni le semirette (-, - M) ( M, + ), dunque lim x + f(x) =+ = lim x f(x) =+
5 Determina le proprietà di f(x) = x 2 f(x) = a x 2 per a > 0 f(x) = a x 2 per a < 0 Confronta i grafici di f(x) = a x 2 con quelli di f(x) = a x 2 per a >1 per 0<a<1 E per a < 0?
6 Consideriamo g(x) = a x 2 + d, quale sarà il suo grafico? Si può ottenerlo da quello di f(x) = ax 2? Basta traslare il grafico di f(x) = ax 2 di d unità nella direzione verticale (verso l alto se d>0, verso il basso se d<0), il vertice della parabola grafico di g(x) è il punto (0,d).
7 Consideriamo g(x) = a(x-h) 2,quale sarà il suo grafico? Si può ottenerlo da quello di f(x) = ax 2? Basta traslare il grafico di f(x) = ax 2 di h unità nella direzione orizzontale (verso destra se h>0, verso sinistra se h<0), il vertice della parabola grafico di g(x) è il punto (h,0).
8 Consideriamo f(x) = a(x-h) 2 + d La parabola grafico di f(x) ha vertice nel punto (h,d) x = h sarà punto di minimo per f se a>0, punto di massimo se a<0 Il grafico di f(x) è simmetrico rispetto alla retta x=h Il grafico di f(x) ha la concavità rivolta verso l alto se a>0, rivolta verso il basso se a<0. lim x ± f(x) =+ se a>0, lim x ± f(x) = se a<0
9 f(x) = a(x-h) 2 + d =ax 2 +bx+c Basta porre b = 2ah, c = ah 2 + d Viceversa ogni funzione quadratica f(x) =ax 2 +bx+c Può essere scritta come f(x) = a(x-h) 2 + d Basta porre h= b/2a, d = c ah 2 =(4ac-b 2 )/4a
10 Riassumendo, per la funzione quadratica f(x) =ax 2 +bx+c Valgono le seguenti proprietà: 1) f(x) ha un solo punto di minimo se a >0 (punto di massimo se a<0) in x= b/2a, il valore minimo (o massimo) è f( b/2a) = c b 2 /4a. Vertice della parabola ( b/2a, c b 2 /4a) 2) Il grafico (parabola) di f ha come asse di mimmetria la retta x = b/2a 3) Il grafico ha la concavità rivolta verso l alto se a>0, verso il basso se a<0 4) lim x ± f(x) =+ se a>0, lim x ± f(x) = se a<0
11
12
13
14 :un problema di crescita Per un contenuto di saccarosio (s) di 15 gr/l, si è ottenuto una lunghezza (l) di 62 mm, mentre con 25 gr/l si è ottenuto una lunghezza di 74 mm. Facendo un altra prova con 5 gr/l di saccarosio si è ottenuta una lunghezza di 33 mm. La funzione l(s), con la conoscenza di questo nuovo dato, potrebbe essere lineare? Puoi determinare l(s), supponendo che la relazione sia quadratica?
15 :un problema di crescita Si hanno i seguenti punti non allineati: (5, 33), (15, 62), (25, 74) Supponendo una funzione quadratica, si tratta di determinare le costanti a,b,c, in modo tale che sia soddisfatto il seguente sistema di equazioni: 33 = 25a + 5b + c 62= 225a + 15b + c 74 = 625a + 25b + c Sottraiamo la prima equazione dalla seconda e la seconda dalla terza, si ottiene:
16 :un problema di crescita = (225-25)a + 10b = ( )a + 10b e quindi 29=200a +10b 12=400a + 10b Sottraiamo dalla seconda equazione la prima -17 = 200a, da cui ricaviamo a = -17/200, quindi la parabola-grafico di l(s) ha la concavità rivolta verso il basso
17 :un problema di crescita Da una delle due relazioni, ricaviamo b = 4.6, dunque a = -17/200 = , b = 4.6 resta da determinare c da una delle equazioni iniziali 33 = 25(-0.085) + 5(4.6) +c da cui c= Abbiamo ottenuto la funzione l(s) = s s Che ha per grafico una parabola con vertice di ascissa x v = 4.6/ , ed ordinata y v Una legge quadratica appare poco credibile per la crescita della radice di mais con questi dati!
18 Scrivendo una funzione quadratica nella forma f(x) = a(x-h) 2 + d diviene chiara la formula risolutiva delle equazioni di secondo grado, infatti posto f(x) = a(x-h) 2 + d = 0, si ha (x-h) 2 = d/a Affinchè ci siano soluzion reali, deve essere d/a>0 Ricordiamo che d =(4ac-b 2 )/4a, dunque 4ac-b 2 <0, da cui b 2 4ac>0 In tal caso le soluzioni sono x 1,2 = h ± (b 2 4ac)/2a, ricordiamo h = b/2a ecco ottenuta la formula!
PIANO CARTESIANO:EQUAZIONI
PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
, per cui le due curve f( x)
DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione
origine asse delle ascisse unità di misura e orientamento sull asse delle ascisse
PIANO CARTESIANO Sia f: A R R, il grafico di f è un sottoinsieme del prodotto cartesiano RxR = R 2 Costruiamo una corrispondenza biunivoca tra i punti del piano euclideo e le coppie di numeri reali: 1-
PIANO CARTESIANO: un problema di programmazione lineare
PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.
Funzioni elementari: funzioni potenza
Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,
Funzioni. Scrivi l espressione esplicita di una funzione quadratica passante per i punti (-1,0), (1,0) e con lim per x uguale a +
Funzioni. Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente essendo
Il sistema di riferimento cartesiano
1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,
ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di
PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni
Soluzioni dei problemi della maturità scientifica A.S. 2011/2012
Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sunra J.N. Mosconi giugno Problema. Per determinare il periodo di g occorre determinare il più piccolo T > per cui valga, per ogni
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
Appunti per la classe terza. Geometria Analitica
Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................
Funzioni lineari. Esercizi: Trova l espressione esplicita di una funzione lineare f:r R tale che la sua inversa sia f -1 (y)= 3y-4
Funzioni lineari Trova l espressione esplicita di una funzione lineare f:r R tale che f(0)=2 ed f(1)=0 Sol:f(x)=mx+q, q=2, m=-2 La funzione è strettamente decrescente? Sol:Sì, è strettamente decrescente
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
FUNZIONI ELEMENTARI Funzione retta
1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra
Grafici di funzioni: valore assoluto, parabole 1 / 21
Grafici di funzioni: valore assoluto, parabole 1 / 21 Grafico di una funzione 2 / 21 Per prima cosa stabiliamo un collegamento diretto tra la geometria analitica e lo studio di funzioni. Definizione: Siano
LA PARABOLA. Prof. Walter Pugliese
LA PARABOLA Prof. Walter Pugliese Che cos è la parabola Scegliamo sul piano un punto! e una retta ". Possiamo tracciare sul piano i punti equidistanti da! e da ". DEFINIZIONE Si chiama parabola la curva
Intersezione tra retta e parabola e tangenti
L equazione di una parabola è in generale: y = ax 2 + bx +c mentre quella di una retta y = mx + q Per trovare i punti di intersezione tra una retta e una parabola si parte dalla considerazione che i punti
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni
[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?
Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2
www.matefilia.it ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2 Nel piano, riferito ad un sistema monometrico di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: x + k y, dove
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;
La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione
a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.
1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre
La parabola terza parte Sintesi
La parabola terza parte Sintesi [ ] Qual è l equazione generale della parabola con l asse di simmetria orizzontale ( cioè parallelo all asse x )? Con quale trasformazione si ricava questa equazione da
Verifica del 8 febbraio 2018
Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x
Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio
Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data
Studio di funzione. Studio di funzione: i passi iniziali
Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Problema ( ) = 0,!
Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente
Esercizi di Calcolo e Biostatistica con soluzioni
1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare
Matematica I, Funzione inversa. Funzioni elementari (II).
Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale
Secondo parziale di Matematica per l Economia (esempio)
Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta
Studio di funzione. numeri.altervista.org
Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------
4^C - Esercitazione recupero n 8
4^C - Esercitazione recupero n 8 1 La circonferenza g passa per B 0, 4 ed è tangente in O 0,0 alla retta di coefficiente angolare m= 4 La parabola l passa per A 4,0 ed è tangente in O a g a Determina le
SIMULAZIONE - 29 APRILE QUESITI
www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
Derivata di una funzione
Derivata di una funzione Prof. E. Modica http://www.galois.it [email protected] Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se
Maturità scientifica 1983 sessione ordinaria
Maturità scientifica 198 sessione ordinaria Soluzione a cura di Francesco Daddi 1 Si studi la funzione y = a x 1 e se ne disegni il grafico Si determinino le intersezioni della curva da essa rappresentata
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
Matematica Lezione 6
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
Risoluzione dei problemi
Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli
Studiamo adesso il comportamento di f(x) alla frontiera del dominio. Si. x 0 lim f(x) = lim. x 2 +
Esercizi del 2//09. Data la funzione f(x) = ln(x 2 2x) (a) trovare il dominio, gli eventuali asintoti e gli intervalli in cui la funzione cresce o decresce. Disegnare il grafico della funzione. (b) Scrivere
LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco
LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse
Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa
Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione
