Studio di funzione. numeri.altervista.org
|
|
|
- Arnaldo Poli
- 6 anni fa
- Visualizzazioni
Transcript
1 Studio di funzione
2 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x fratta: se è del tipo f(x)= dove N(x) e D(x) sono 2 polinomi nella variabile x Nessuna D(x) 0 intera: se è del tipo n-dispari à nessuna y = f(x) n-pari à P(x) 0 FUNZIONE IRRAZIONALE fratta: se è del tipo (1) y = n-dispari à g(x) 0 n-pari à g x > 0
3 n-dispari à g(x) 0 (2) y = n-pari à f(x) 0 g(x) (3) y = n-dispari g(x) 0 n- pari 0 g(x) 0 esponenziale: FUNZIONI TRASCENDENTI se è del tipo y = f(x) dove f(x) e g(x) sono funzioni nella variabile x logaritmica: se è del tipo f(x) = log [f(x)] trigonometrica: se è del tipo sen (f(x)), cos (f(x)), tg (f(x)),.. f x > 0 + condizioni di esistenza di g(x) f x > Esistenza di f(x) + eventuali condizioni di esistenza della funzione trigonometrica considerata
4 2. Osservazione di eventuali simmetrie se f x = f( x) la funzione è pari ed il suo grafico è simmetrico rispetto all asse y se f x = f( x) la funzione è dispari ed il suo grafico è simmetrico rispetto all origine 3. Ricerca delle intersezioni con gli assi asse x - vanno sempre cercate, non è detto che esistano asse y. vanno cercate SE E SOLO SE 0 C. E. y = f(x) y = 0 y = f(x) x = 0 4. Studio del segno Studiare il segno della funzione significa determinare in quali intervalli il suo grafico è situato al di sopra o al di sotto dell'asse delle x. É possibile così determinare la parte di piano nel quale disegnare la funzione. Data la funzione y = f x basterà studiare la disequazione f x > 0 per ottenere gli intervalli di positività (e di negatività) cercati. 5. Studio dei limiti agli estremi del campo Il comportamento della funzione agli estremi del dominio è da studiare con il calcolo dei limiti
5 N.B. La funzione presenta: asintoto orizzontale lim f x = l ± l R (finito) asintoto verticale lim f x = ± ± (c estremo finito) 6. Calcolo della derivata FORMULARIO: alcune derivate fondamentali Regole di derivazione D [ ( ) g( )] '( ) + g '( ) y = f (x) y ' = f '(x) FUNZIONE COSTANTE y = c y ' = 0 D [k ( ) ] k '( ) con k FUNZIONE POTENZA y = x y' = 1 y = x 2 y' = 2x y = x n con n R y'=nx n 1 D[ ( ) g( )] '( ) g( ) ( ) g '( ) D f(x) f (x) g(x) = g(x) g(x) f (x) g (x)
6 8. Determinazione di massimi e minimi Passiamo ora a determinare le coordinate dei punti estremanti mediante lo studio del segno della derivata prima Una volta nota la deivata prima della nostra funzione che indichiamo con f'(x) dovremo studiare f x > 0 e costruire un grafico finale ricordando che Ove f x > 0 la funzione sarà monotona crescente Ove f x < 0 la funzione sarà monotona decrescente Ove f x = 0 la funzione ammette tangente orizzontale è un punto di MASSIMO per f se è un punto di minimo per f se f'(x) > 0 f'(x) < 0 f'(x) < 0 f'(x) > 0 f crescente f decrescente f decrescente f crescente MAX min CALCOLO DELLE ORDINATE DEGLI EVENTUALI PUNTI DI MASSIMO E MINIMO LOCALE Basta sostituire una alla volta le ascisse dei punti di massimo e di minimo nell equazione della curva e ricavare l ordinata. È utile riportare sul grafico i risultati ottenuti.
7 METODO DI FERMAT f'(x) = 0 f''(x) > 0 PUNTO DI MINIMO f''(x) > 0 PUNTO DI MASSIMO f''(x) = 0 f'''(x)>0 PUNTO DI FLESSO A TANGENTE ORIZZONTALE f'''(x)<0
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica
Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare
ESERCIZI SULLO STUDIO DI FUNZIONI
ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se
MASSIMI, MINIMI E FLESSI
MASSIMI, MINIMI E FLESSI N.B. Se f(x) è continua in [a;b], esistono sicuramente M e m (Teor. di Weierstrass) I punti di massimo e di minimo relativi si chiamano anche punti estremanti relativi di f(x).
Appunti di Matematica
Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica
Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)
Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è
Richiami sullo studio di funzione
Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)
Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se
Esempi di funzione...
Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di
Esame di Matematica Generale 7 Febbraio Soluzione Traccia E
Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
14. Studio grafico completo di funzioni
14. Studio grafico completo di funzioni Davide Catania [email protected] Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria
Daniela Tondini
Daniela Tondini [email protected] Facoltà di Medicina veterinaria C.L. in Tutela e Benessere Animale Università degli Studi di Teramo 1 n = m 1 P1 5 Q 9 n > m P4 Q 3 4 4 3 4 3 n < m P 5 1 1 3 Q3 4 Esempio
FUNZIONI ALGEBRICHE PARTICOLARI
FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI
Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi
CLASSIFICAZIONE DELLE FUNZIONI - TEORIA
CLASSIFICAZIONE DELLE FUNZIONI - TEORIA Razionali Intere Fratte 9 9 6 Intere Algebriche indice pari Fratte Irrazionali Intere Funzioni indice dispari Fratte log( 1 logaritmiche ) Goniometriche sen cos
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI
Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa
Analisi Matematica 1 - a.a. 2017/ Quarto appello
Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
Esercizi di Matematica. Studio di Funzioni
Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA
LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore
Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.
Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:
Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,
ESERCITAZIONE 6: STUDIO DI FUNZIONI
ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA
CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero
PROGRAMMAZIONE DIDATTICA ANNUALE
PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2015 / 2016 Dipartimento (1) : MATEMATICA Coordinatore (1) : TRIMBOLI SILVIA Classe: 5H Indirizzo: Servizi Socio-Sanitari Serale Ore di insegnamento settimanale:
3. Segni della funzione (positività e negatività)
. Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della
Chi non risolve esercizi non impara la matematica.
6 studio di funzione. esercizi Chi non risolve esercizi non impara la matematica. Traccia, se possibile, il grafico di una funzione che soddisfi le seguenti proprietà: a. è definita in R \ {, } b. ha come
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
Argomento 7. Studio di funzione
Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7
SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni
Argomento 7 - Studi di funzioni Soluzioni Esercizi
Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo
LICEO STATALE CARLO TENCA? MILANO
LICEO STATALE CARLO TENCA? MILANO P. I. 80126370156 Cod. Mecc. MIPM11000D Bastioni di Porta Volta,16 20121 Milano Tel. 02.6551606 Fax 02.6554306 C. F. 80126370156 - Cod. Mecc. MIPM11000D Email: [email protected]
STUDIO DEL GRAFICO DI UNA FUNZIONE
STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.
G5. Studio di funzione - Esercizi
G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le
Esame di MATEMATICA CORSO BASE del
Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e
Introduzione. Test d ingresso
Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
FUNZIONI REALI DI UNA VARIABILE REALE
FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
Continuità e derivabilità. Calcola la derivata delle seguenti funzioni
ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le
Programma di MATEMATICA
Classe 3B Indirizzo ELETTRONICA ED ELETTROTECNICA 1. MODULO 1: GEOMETRIA ANALITICA La parabola: la parabola come luogo geometrico del piano. Rappresentazione della parabola nel piano cartesiano e ricerca
Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento
Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza
Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)
LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se
10 - Applicazioni del calcolo differenziale
Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016
