Reticoli di Bravais e sistemi cristallini
|
|
|
- Giustina Di Lorenzo
- 9 anni fa
- Visualizzazioni
Transcript
1 Reticoli di Bravais e sistemi cristallini Come in 2D, anche in 3D si individuano un motivo, che si ripete in modo periodico nello spazio e un reticolo (disposizione di punti, ciscuno che possiede lo stesso intorno per simmetria). Nello spazio 3D esistono elementi di simmetria traslazionale che non sono possibili in 2D: in 2D: linea di scorrimento in 3D: piano di scorrimento (glide plane) in 3D: asse di rotazione elicogiro (asse screw) Quindi, la descrizione delle diverse disposizioni possibili sarà più complessa (e non facilmente deducibile come in 2D) Il procedimento logico utilizzato in 2D è comunque lo stesso. Ci saranno poliedri di base che definiranno delle unità di ripetizione ed il reticolo 3D; Ci sarà un numero finito di combinazioni di elementi di simmetria 3D (gruppi spaziali). Il lavoro sistematico (geometrico) è stato iniziato da Frankenheim (1835) che ha proposto 15 reticoli 3D differenti. Bravais ha dimostrato (1848) che due di essi erano identici, analoghi 3D dei reticoli planari a base rombica o a base rettangolare centrata. I reticoli 3D possibili, indipendenti, sono solo 14!
2 Reticoli di Bravais Ogni reticolo è caratterizzato da vettori di base a, b e c. Normalmente si indicano le loro lunghezze a, b e c e gli angoli interassiali α, β e γ. N.B. α è l angolo opposto ad a, β opposto a b, γ opposto a c. Tipicamente si usa un sistema di riferimento destrorso, in modo che V = a. (bxc) sia positivo.
3 Reticolo Cubico a = b = c; α = β = γ = 90 Reticolo Tetragonale a = b c; α = β = γ = 90 Reticolo Ortorombico a b c; α = β = γ = 90 Reticolo Romboedrico a = b = c; α = β = γ 90 Reticolo Esagonale a = b c; α = β = 90 γ = 120 Reticolo Monoclino a b c; α = γ = 90 β 90 Reticolo Triclino a b c; α β γ = 90 significa non necessariamente uguale a Le celle P sono Primitive un punto reticolare per cella unitaria: 8 x 1/8 = 1 Le celle I sono a corpo centrato (Innerzentrierte) due punti reticolari per cella unitaria: 8 x 1/8 + 1 x 1 = 2 Le celle F sono a facce centrate (Face-centered) quattro punti reticolari per cella unitaria: 8 x 1/8 + 6 x ½ = 4 Le celle C sono a base centrata (opposta a c) Due punti reticolari per cella unitaria: 8 x 1/8 + 2 x ½ = 2 Analogamente per basi centrate A e B (due punti reticolari). I 14 reticoli di Bravais si possono ottenere per impilamento dei diversi (5) reticoli planari: Il cubico ed il tetragonale da reticoli planari quadrati P uno sull altro (P) o sfalsati (di ½, ½, ½ per I; di ½, ½, 0 per F) Gli ortorombici P ed I da reticoli planari rettangolari P Gli ortorombici C ed F da reticoli planari rettangolari C I monoclini e triclini da reticoli planari obliqui (risp. eclissati o parzialmente sfalsati)
4 Il romboedrico e l esagonale da reticoli planari esagonali (con vettore di traslazione 1/3, 2/3, z o eclissati, risp.) Sequenza AAA: reticolo esagonale P Sequenza ABC: reticolo romboedrico R Casi romboedrici speciali: α = 90 α = 60 α = reticolo cubico P reticolo cubico F reticolo cubico I
5 Perché non esiste un reticolo di simmetria ortorombica A? Perché è equivalente ad un reticolo ortorombico C. (basta rinominare gli assi ) Perché non esiste un reticolo di simmetria monoclina A? Perché è equivalente ad un reticolo monoclino C. (basta scambiare a con c)
6 Perché non esiste un reticolo di simmetria monoclina B? Perché è equivalente ad un reticolo monoclino P di ½ volume. (basta combinare gli assi a e c) Perché non esiste un reticolo di simmetria monoclina I? Perché è equivalente ad un reticolo monoclino C. (basta combinare gli assi a e c) Perché non esiste un reticolo di simmetria monoclina F? Perché è equivalente ad un reticolo monoclino C di ½ volume Perché non esiste un reticolo di simmetria tetragonale F? Perché è equivalente ad un reticolo tetragonale I di ½ volume
7 La simmetria dei 14 reticoli di Bravais Le celle unitarie di Bravais sono le molecole integranti definite da Haüy. Quindi, l aspetto e la forma macroscopica osservabile dei cristalli dipenderà dalla forma e simmetria dei reticoli di Bravais. La simmetria di ogni reticolo è una simmetria puntuale, determinata dall insieme di piani ed assi di simmetria: tale collezione si chiama gruppo di simmetria puntuale. La (co)presenza e natura di diversi elementi è determinata da regole di mutua compatibilità: P.es. due assi binari ortogonali ne generano un terzo ortogonale ad ambedue. Esistono regole di autoconsistenza (gruppo matematico) Il gruppo di simmetria puntuale prescinde dalla centratura del reticolo, ovvero i reticoli cubici P, F ed I appartengono alla stesso sistema cristallino. Il concetto (storico) di sistema cristallino è essenzialmente di carattere morfologico e solo secondariamente strutturale. I 7 sistemi cristallini sono caratterizzati dai diversi raggruppamenti determinati dalla simmetria puntuale dei 14 reticoli di Bravais: Cubico, Tetragonale, Ortorombico, Monoclino, Triclino. Dal reticolo Esagonale si possono generare due sistemi: Trigonale ed Esagonale. Dal reticolo Romboedrico si genera unicamente un sistema Trigonale; tale reticolo può alternativamente essere descritto da un reticolo Esagonale con centratura R (sistema Trigonale!).
8 Tutti i reticoli posseggono centri di inversione. La struttura cristallina potrebbe non averne. Quindi simmetria del reticolo, sistema cristallino e gruppo di simmetria puntuale possono non coincidere (ma avere relazioni di gruppo-sottogruppo) Sistema Reticolo Minima simmetria richiesta cristallino di Bravais Cubico P, I, F 4 assi ternari a Tetragonale P, I 1 asse quaternario (4 o 4) Ortorombico P, C, I, F 3 assi binari a 90 Trigonale HexP, R 1 asse ternario (3) Esagonale P 1 asse senario (6 o 6) Monoclino P, C 1 asse binario (2) o piano (m = -2) Triclino P Nessuna
Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano
A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Reticolo Cristallino: insieme di punti detti nodi separati da intervalli a, b, e c (reticolo di ripetizione)
DEFINIZIONE DI MINERALE
DEFINIZIONE DI MINERALE - Corpo solido naturale - Stato Solido Cristallino - Amorfo - Atomi dispos> in modo ordinato e periodico - Anisotropia Isotropia - Legge Costanza angoli diedri (Romè de l Isle,
Materiale didattico: dispense fornite durante il corso
Struttura e Proprietà dei Materiali 6 crediti lezioni frontali+ 3 crediti di laboratorio Richiami di cristallochimica Reticolo reciproco Diffrazione di raggi X e di Neutroni Produzione Raggi X (Tubi, Sincrotroni)
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2016/2017_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica
La Cristallografia. 1: la traslazione
La Cristallografia 1: la traslazione Spiega: Perché i cristalli hanno le facce Come le chiamiamo Come si dividono le celle elementari (e i cristalli macroscopici) La traslazione Reticolo unidimensionale
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2017/2018_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica
Fisica dello Stato Solido
Fisica dello Stato Solido Lezione n.1 Strutture Cristalline Mara Bruzzi Corso di Laurea Specialistica Ingegneria Elettronica a.a.07-08 Scaricabile al sito: http://www.de.unifi.it/fisica/bruzzi/bruzzi_dida_fss.html
Struttura e geometria cristallina
Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura
MINERALOGIA Corso di Laurea in Scienze Naturali II Anno I Sem. - 9 CFU A.A
MINERALOGIA Corso di Laurea in Scienze Naturali II Anno I Sem. - 9 CFU A.A. 2008-2009 Prof. Antonio GIANFAGNA Dipartimento di Scienze della Terra Stanza 309, Edificio Mineralogia Tel. 06-49914921 e-mail:
POLIEDRI IN CRISTALLOGRAFIA
POLIEDRI IN CRISTALLOGRAFIA L'universo è composto di materia, ovviamente. E la materia è composta di particelle: elettroni, neutroni e protoni. Dunque l'intero universo è composto di particelle. Ora, di
Simmetria morfologica e gruppi puntuali
Simmetria morfologica e gruppi puntuali Il sistema cristallino di un campione può essere determinato dall osservazione morfologica o da una serie di misure di proprietà fisiche. P.es. cristalli che mostrano
Indici di Miller nei sistemi Trigonali ed Esagonali
Indici di Miller nei sistemi Trigonali ed Esagonali -a 1 ( 100) (0 10) a 3 c (001) ( 100) -a 2 (0 10) c ( 110) a 2 -a 2 ( 110) -a 1 ( 110) (1 10) (100) (010) a 1 (100) (001) -c (010) -a 3 a 2 a 1 Una croce
LA PROIEZIONE STEREOGRAFICA
Corso di laurea triennale in Scienze Naturali a.a. 2015-2016 LA PROIEZIONE STEREOGRAFICA «Una proiezione cristallina è un metodo di rappresentazione dei cristalli tridimensionali su di un piano bidimensionale.
Descrittori quantitativi della geometria cristallina: assi, piani ed indici.
Descrittori quantitativi della geometria cristallina: assi, piani ed indici. Assi di cella (con angoli interassiali) Reticolo di Bravais Simmetria puntuale (classi) Simmetria spaziale Come individuare
Caratteristiche dei solidi
Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Caratteristiche dei solidi Incompressibilità Proprietà comune con i liquidi (l altro stato condensato della materia) Rigidità
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Lab # 2 Cristallografia morfologica: le forme dei cristalli (pdf Lab#2) ALCUNE NOZIONI DI GEOMETRIA ELEMENTARE Un "cristallo" è riconducibile ad
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Lab # 2 Cristallografia morfologica: le forme dei cristalli (pdf Lab#2) ALCUNE NOZIONI DI GEOMETRIA ELEMENTARE Un "cristallo" è riconducibile ad
LA PROIEZIONE STEREOGRAFICA (PARTE I)
Corso di laurea triennale in Scienze Naturali a.a. 2012-2013 LA PROIEZIONE STEREOGRAFICA (PARTE I) «Una proiezione cristallina è un metodo di rappresentazione dei cristalli tridimensionali su di un piano
Combinazione operatori di simmetria senza componenti traslazionali
Combinazione operatori di simmetria senza componenti traslazionali E possibile combinare diversi operatori di simmetria per ottenere modelli tridimensionali. La combinazione non deve portare alla formazione
Classificazione dei materiali solidi in base ai legami interatomici! Metalli Ceramici Polimeri
Classificazione dei materiali solidi in base ai legami interatomici! Metalli Ceramici Polimeri (a) Legami atomici primari o forti legame ionico legame covalente legame metallico (b) Legami atomici e molecolari
STRUTTURA DEI SOLIDI
STRUTTURA DEI SOLIDI I solidi possono essere classificati in funzione della regolarità con cui gli atomi o gli ioni si dispongono nello spazio. Un materiale è detto cristallino se caratterizzato da configuarazioni
I SOLIDI CRISTALLINI ED IL RETICOLO CRISTALLINO
I SOLIDI CRISTALLINI ED IL RETICOLO CRISTALLINO A differenza dei solidi amorfi, caratterizzati da disordine spaziale delle particelle (atomi o molecole) e isotropia delle proprietà fisiche, il solido cristallino
FISICA DELLO STATO SOLIDO
1 UNIVERSITA DEL SALENTO FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI LAUREA MAGISTRALE IN FISICA Anno Accademico 2014-2015 FISICA DELLO STATO SOLIDO NOTE DEL CORSO TENUTO DAL PROF. CECILIA PENNETTA
Testi consigliati: Walter Borchardt-Ott, Crystallochemistry, Springer Christopher Hammond, Introduzione alla Cristallografia, Zanichelli
Cristallografia Corso complementare per la laurea triennale in Chimica Numero di crediti: 3 Docente: Anna Corrias; Tel: 070 6754351; e-mail: [email protected] Programma: Definizione di stato cristallino,
Reticoli bidimensionali e simmetria
Reticoli bidimensionali e simmetria La descrizione dei tutte le strutture cristalline può avvenire seguendo due processi logici: Elencando, caso per caso, ogni struttura, tentando poi di trovare delle
APP PPUNTI DI CRISTALLOGRAFIA. Prof. Stefano MERLINO. Ordine e disordine, di M.C.. Esher
APP PPUNTI DI CRISTALLOGRAFIA Ordine e disordine, di M.C.. Esher Prof. Stefano MERLINO 1 2 APPUNTI DI CRISTALLOGRAFIA... 1 PARTE 2: CRISTALLOGRAFIA GEOMETRICA... 5 1. INTRODUZIONE... 5 2. AGLI ALBORI DELLA
Gruppi puntuali. Primo elemento
Gruppi puntuali Considerando le combinazioni che portano solo alla formazioni di gruppi puntuali con un numero finito di elementi di simmetria si ottengono solo 32 gruppi puntuali. I cristalli afferiranno
Diffrazione di raggi X
Diffrazione di raggi X Campione radiazione rivelatore tecnica monocromatica pellicole Oscillante Weissenberg Buerger Gandolfi Cristallo singolo Contatore (convenzionale, IP, CCD) Diffrattometro a 4-cerchi
SIMMETRIE E TOPOLOGIE
SIMMETRIE E TOPOLOGIE Ilaria Carminati (*), Luigi Mussio (*) (*) D.I.I.A.R.- Sez. Rilevamento, Politecnico di Milano e-mail: [email protected] [email protected] Sommario Questa nota vuole presentare
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti
Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi
Sistemi cristallini 1
Sistemi cristallini Esercizio Calcolare la densità atomica definita come il rapporto tra il numero di atomi e il volume unitario per ) il litio sapendo che la distanza tra i centri dei primi vicini è R
Descrizione di un reticolo cristallino
Descrizione di un reticolo cristallino Descrizione di un reticolo cristallino Definizione di reticolo cristallino ( o reticolo di Bravais in onore di Auguste Bravais): insieme dei vettori R=n1 a 1+ n a
Strutture cristalline e difetti
Strutture cristalline e difetti STRUTTURE CRISTALLINE METALLICHE Struttura cubica a corpo centrato Esempi: Cr, Mo, a-fe STRUTTURE CRISTALLINE METALLICHE Struttura cubica a facce centrate Esempi: Cu, Al,
STRUTTURA E GEOMETRIA CRISTALLINA
STRUTTURA E GEOMETRIA CRISTALLINA La struttura fisica dei materiali solidi dipende dalla disposizione degli atomi, ioni o molecole che compongono il solido e dalle forze che li legano fra loro. Quando
Informazioni strutturali
Informazioni strutturali Metodi spettroscopici (spettroscopia rotazionale, struttura rotazionale bande IR, NMR) Misure elettriche (momento di dipolo elettrico) Metodi diffrattometrici (raggi-x e neutroni;
1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno 5. Legami a confronto
Unità n 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno
Capitolo 12 Le forze intermolecolari e gli stati condensati della materia
Capitolo 12 Le forze intermolecolari e gli stati condensati della materia 1. Le forze intermolecolari 2. Molecole polari e apolari 3. Le forze dipolo-dipolo e le forze di London 4. Il legame a idrogeno
Scienza dei Materiali 1 Esercitazioni
Scienza dei Materiali 1 Esercitazioni 2. Cristallografia dei materiali ver. 1.1 Reticoli cristallini Reticolo è una griglia tridimensionale di punti possiamo individuare un insieme minimo di punti (cella)
LA PROIEZIONE STEREOGRAFICA (PARTE II)
Corso di laurea triennale in Scienze Naturali a.a. 2012-2013 LA PROIEZIONE STEREOGRAFICA (PARTE II) «Una proiezione cristallina è un metodo di rappresentazione dei cristalli tridimensionali su di un piano
Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata
Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Il polimorfismo (pdf # 05) (2) - Mineralogia 2016/2017_polimorfismo Il polimorfismo Polimorfismo = più forme Con questo termine si intende la possibilità
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Il polimorfismo (pdf # 05) (2) - Mineralogia 2017/2018_polimorfismo Il polimorfismo Polimorfismo = più forme Con questo termine si intende la possibilità
Diffrazione di Raggi X
Diffrazione di Raggi X 1. Laue, Friedrich, Knipping (Monaco, 1912): diffrazione da reticolo tridimensionale 2. Ewald (Tesi di dottorato, Monaco, 1913): costruzione del reticolo reciproco 3. Bragg and Bragg
11 aprile Annalisa Tirella.
Scienze dei Materiali A.A. 2010/2011 11 aprile 2011 Annalisa Tirella [email protected] Metalli I metalli sono elementi chimici che possono essere utilizzati sia puri che in forma di leghe
Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata
Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata A.A. 05/06 Indice Esercizio Esercizio Esercizio 6 Esercizio 9 Esercizio 5 Esercizio 6 Esercizio 7 Esercizio 8 6 Esercizio
Materiali metallici comuni sono policristallini!
Materiali metallici Materiali metallici comuni sono policristallini! Sistemi cristallini e Reticoli di Bravais Legame metallico (a) Materiali metallici puri (a) cubica a facce centrate (CFC) Cu, Ni, Ag,
Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu
Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 15 Le forze intermolecolari e gli stati condensati della materia 3 Sommario 1. Le forze intermolecolari 2. Molecole polari e
GLI STATI DI AGGREGAZIONE DELLA MATERIA DIAGRAMMI DI STATO DI COMPONENTI PURI
GLI STATI DI AGGREGAZIONE DELLA MATERIA DIAGRAMMI DI STATO DI COMPONENTI PURI Forti interazioni intermolecolari SOLIDI Assenza di libero movimento delle molecole Volume e forma propria Rigidi e incomprimibili
Sistemi cristallini - Soluzioni degli esercizi
Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 06/07 Sistemi cristallini Esercizio.........................................
Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia
Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia La Scienza dei Materiali Start Introduzione Modalità Esame Legami e strutture Struttura e proprietà Metalli Leganti Ceramici
Guida al Corso di. Mineralogia e costituenti delle rocce con laboratorio
Guida al Corso di Mineralogia e costituenti delle rocce con laboratorio (Lezioni dettate dal Prof. Antonino Lo Giudice) 1 Anno Accademico 2009-10 1 Alcune delle figure presenti nel testo sono state tratte
La composizione di isometrie
La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano
Simmetrie nei Poliedri Regolari
Simmetrie nei Poliedri Regolari Francesca Benanti Dipartimento di Matematica ed Informatica Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo Tel: 09123891105 Email: [email protected]
Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece
Studiare una trasformazione geometrica significa prendere in esame i cambiamenti che ha prodotto nella figura trasformata e ciò che invece ha lasciato inalterato. Si chiama trasformazione geometrica un
Cristallografia morfologica
Cristallografia morfologica Nei minerali (definiti spesso cristalli) si osserva che, generalmente, gli atomi sono distribuiti in modo discontinuo e periodico. In modo discontinuo, perché dove finisce il
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO
ISTITUTO SAN GABRIELE CLASSI 4 S - 4 SA PROF. ANDREA PUGLIESE GEOMETRIA EUCLIDEA NELLO SPAZIO GEOMETRIA NELLO SPAZIO Gli enti fondamentali sono punto, retta, piano, e spazio. Con le lettere maiuscole (A,B,C,...)
Tecniche della diffrazione
Appunti del corso Tecniche della diffrazione Corso di Laurea Triennale in Chimica Anno accademico 2015-16 Francobollo Gran Bretagna - (1969) Royal Institute of Chemistry - Cella elementare di NaCl Francobollo
Materiali metallici. Materiali ceramici Materiali polimerici
Materiali metallici Materiali ceramici Materiali polimerici Materiali ceramici Materiali inorganici non metallici Ceramici cristallini Distribuzione regolare e ripetitiva di una unità strutturale di base
Posizioni Atomiche nelle Celle Unitarie Cubiche
Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y
Cristalli fotonici e loro applicazioni
Dipartimento di fisica A. Volta, Università degli studi di Pavia 8 maggio 2009 solidi cristallini = reticolo + base Figura: alcuni reticoli di Bravais 3D con 3 vettori primitivi a,b,c; Figura: alcuni reticoli
