Sistemi cristallini 1
|
|
|
- Isabella Sole
- 9 anni fa
- Visualizzazioni
Transcript
1 Sistemi cristallini
2 Esercizio Calcolare la densità atomica definita come il rapporto tra il numero di atomi e il volume unitario per ) il litio sapendo che la distanza tra i centri dei primi vicini è R 0 =.0 Å e che cristallizza nel sistema bcc (corpo centrale) e per ) l Au sapendo che R 0 =.88 Å e che cristallizza nel sistema f cc (facce centrate). Definiamo la densità atomica: ρ = N V ) Nel sistema bcc (litio) la distanza tra due primi vicini è pari a metà diagonale del cubo. Quest ultima, indicando con a il lato del cubo, vale a. Per cui: a = R 0 Contiamo il numero di atomi di litio nella cella cubica: 8 atomi sono su un vertice, ognuno di esso è condiviso da 8 celle atomo è al centro della cella Quindi il numero totale di atomi di litio nella cella è: N Li = = da cui la densità atomica del litio risulta: ρ Li = ( R 0 ) =.67 0 Atomi/cm ) Nel sistema fcc (oro) la distanza tra due primi vicini è pari a metà diagonale della faccia del cubo. Quest ultima, indicando con a il lato del cubo, vale a. Per cui: a = R 0 Contiamo il numero di atomi di oro nella cella cubica: 8 atomi sono su un vertice, ognuno di esso è condiviso da 8 celle 6 atomi sono su una faccia, ognuno di esso è condiviso da celle Quindi il numero totale di atomi di oro nella cella è: N Au = = da cui la densità atomica del litio risulta: ρ Au = ( R0 ) = Atomi/cm
3 Esercizio Determinare la spaziatura interatomica di un cristallo di cloruro di sodio (NaCl), sapendo che la densità di NaCl è.6 0 Kg/m ed i pesi atomici di Na e Cl sono rispettivamente e 5.6. La struttura del cloruro di sodio si ottiene associando ad ogni punto del reticolo fcc di passo reticolare a un atomo di Cl (sul punto stesso) e uno di Na traslato di un vettore a (ˆx + ŷ + ẑ) rispetto all atomo di Cl. La struttura che si ottiene è mostrata in FIG. Nell esercizio si chiede la spaziatura interatomica d che è quindi pari a metà costante reticolare: d = a. Se indichiamo con V ed M rispettivamente il volume e la massa della cella cubica, la sua densità si scrive come: ρ = M V. In questo caso si ha: V = (d) e M = n Na p Na + n Cl p Cl, dove n indica il numero di moli e dove ci ricordiamo che il peso atomico indica il peso in grammi di una mole. Per conoscere il numero di moli dobbiamo calcolare il numero di atomi di Na e Cl nella cella: n = N N A dove N A = è il numero di Avogadro. Per il Sodio si ha che: atomi sono su uno spigolo del cubo, ognuno di esso è condiviso da celle atomo è al centro del cubo Il numero di atomi di Sodio è pertanto: N Na = + = Per il Cloro si ha che: 8 atomi sono su un vertice, ognuno di esso è condiviso da 8 celle 6 atomi sono una faccia del cubo, ognuno di esse è condiviso da celle cubiche Il numero di atomi di Cloro è pertanto: N Cl = = Il numero di moli è quindi lo stesso per i due ioni, per cui la massa della cella è data da: M = n Na p Na + n Cl p Cl = N A (p Na + p Cl ) A questo punto possiamo calcolare la densità: ρ = N A (p Na + p Cl ) 8d = (p Na + p Cl ) N A d () da cui: [ (pna + p Cl ) d = ρn A ] = [ Kg.6 0 Kg/m ] =.8 Å ()
4 Esercizio La figura () mostra un reticolo esagonale semplice ( a = b = c, (ab) = 0 ) e la cella primitiva definita dai vettori a, b, c : a = aˆx b = a ˆx + aŷ c = cẑ con ˆx, ŷ e ẑ vettori unitari perpendicolari tra loro.. Determinare i vettori di traslazione primitivi del reticolo reciproco A, B e C. Determinare l angolo compreso tra i vettori del reticolo diretto e quelli del reticolo reciproco. Disegnare la cella primitiva del reticolo reciproco nel piano ˆxŷ e costruire la prima zona di Brillouin Si consiglia di disegnare la cella primitiva del reticolo reciproco facendo uso soprattutto della voce ) che permette di definire la direzione dei vettori A, B e C rispetto a quelli del reticolo diretto. Se si usano attentamente i risultati della voce ) si vede che non c è bisogno di goniometro. Si consiglia di prendere come modulo dei vettori A e B una quantità tre volte più grande di quella del modulo di a e b. Figure : Reticolo esagonale semplice. In blu la cella primitiva.
5 ) Calcoliamo i prodotti: b c = ac (,, 0) () c a = ac (0,, 0) () a b = a (0, 0, ) (5) V = a b c = a c (6) Da cui: A = B = π a (,, 0) π a (0,, 0) C = π c (0, 0, ) ) Indichiamo con α l angolo tra il vettore A e a. Possiamo scrivere: Poichè A b = 0 e A c = 0, risulta A b e A c. A a = A a cosα (7) ( ) π π = (a) cosα (8) a ( ) α = arcos = 0 (9) Quindi il vettore A forma un angolo di 0 con il vettore a e un angolo di 90 con gli altri due vettori della base diretta b e c. Procediamo nello stesso modo per gli altri due vettori B e C: Poichè B a = 0 e B c = 0, risulta B a e B c. B b = B b cosβ (0) ( ) π (a ) π = a cosβ () ( ) β = arcos = 0 () C e c sono paralleli: C c. C c = C c cosγ () ( ) π π = (c) cosγ () c γ = arcos () = 0 (5) Poichè C a = 0 e C b = 0, risulta C a e C b. 5
6 ) 6
7 Esercizio Si consideri una struttura bcc ed il piano cristallino (0) mostrato in figura. Si assuma che gli atomi siano rappresentabili come sfere dure di massimo raggio possibile affinchè si tocchino ma non si compenetrino. Se la costante reticolare vale a = 5 Å, calcolare la densità superficiale di atomi sul piano (0). c a a b a a Figure : Piano cristallino (0). Cinque sfere sono tagliate a metà dal piano (0). La sezione è mostrata in figura. Gli atomi a a Figure : Sezione del piano cristallino (0) per un bcc. (cerchi) sui vertici sono condivisi da quattro piani cristallini equivalenti, per cui ognuno di essi contribuisce con un / della loro area al piano. L atomo centrale invece appartiene solamente al piano cristallino considerato, per cui contribuità con tutta la sua area. Pertanto: 7
8 Il numero di atomi sul piano è + = La densità superficiale σ degli atomi è data da: σ = # di atomi sul piano area del piano (6) Quindi: σ = (a)( a = (5 0 8 ) = atomi/cm (7) La densità superficiale di atomi è funzione del particolare piano cristallino nel reticolo e in generale varia da un piano cristallino ad un altro. 8
9 Esercizio 5 In figura () è mostrata la cella unitaria convenzionale del diamante. Determina (a) il numero di atomi ai vertici, (b) il numero di atomi al centro di una faccia, (c) il numero di atomi interni alla cella unitaria. Se la costante reticolare del silicio è 5. Å, calcola la densità degli atomi di silicio. a Figure : Cella unitaria convenzionale del diamante. Il reticolo del diamante consiste in due reticoli f cc compenetranti, traslati lungo la direzione della diagonale del cubo di un quarto della sua lunghezza. Questa struttura può essere anche vista come un reticolo fcc con base formata da due atomi uguali in 0 e in a (ˆx + ŷ + ẑ) (a è il lato del cubo). La cella unitaria convenzionale (quella mostrata in figura) contiene: atomi ai vertici: 8 atomi al centro di una faccia: 6 atomi interni: Se si considera che un atomo al vertice contribuisce per 8 e uno sulla superficie per, la cella unitaria del diamante contiene un totale di = 8 atomi. La densità sarà: ρ = 8 a = 8 (5. Å) = 5 0 Atomi/cm (8) 9
10 Esercizio 6 Il GaAs ha struttura zincoblenda con costante reticolare uguale a 5.65 Å(fig. 5). Scrivere le coordinate degli atomi di Ga e As all interno della cella unitaria ponendo il cubo nella porzione di piano a coordinate positive con un vertice sull origine degli assi. Determinare poi a) il numero di atomi di Ga e di As per cm ; b) la distanza minima tra un atomo di Ga e uno di As; c) la distanza minima tra dui atomi di As e tra due atomi di Ga. Ga As a Figure 5: Cella unitaria convenzionale della struttura zincoblenda. Il reticolo della zincoblenda ha la stessa struttura del reticolo del diamante, cioè è un fcc a cui però si associa una base costituita da due atomi differenti: un atomo di As in 0 e uno di Ga in a (ˆx + ŷ + ẑ) (a è il lato del cubo). Coordinate degli atomi di Gallio: ( a Coordinate degli atomi di Arsenio: ) ( ; a ) ( ; a ) ( ; a ) base inferiore a (0 0 0) a ( 0 0) a (0 0) a ( 0) a ( piano intermedio a ( 0 ) a ( ) a ( ) a ( ) 0 base superiore a (0 0 ) a ( 0 ) a (0 ) a ( ) a ( Ga: atomi (tutti interni alla cella) As: = 6 atomi ( sui vertici, sulle facce) ρ Ga = ρ As = (9) 0) (0) () ) () (5.65 Å) =. 0 Atomi/cm () 0
11 La distanza minima tra Ga e As è pari alla distanza tra primi vicini nel diamante. ( d Ga As = ( ) + ( ) + ) = () ( d Ga Ga = ( ) + ) = ( d As As = ( ) + ) = dove ovviamente le distanze Ga-Ga e As-As sono uguali perchè la scelta di utilizzare come base un atomo di As in 0 e uno di Ga in a (ˆx + ŷ + ẑ) è del tutto analoga a quella di scegliere come base del reticolo un atomo di Ga in 0 e uno di As in a (ˆx + ŷ + ẑ). (5) (6)
12 Esercizio 7 Una certa sostanza ha due strutture cristalline stabili separate da una transizione di fase cristallina. La fase α ha la struttura del diamante con una cella unitaria cubica il cui lato misura 6.9 Å. La fase β presenta una struttura tetragonale a corpo centrato (bct) mostrata in figura (6) e parametri di cella a = 5.8 Åe c =.8 Å. Si calcoli la densità (g/cm ) di ciascuna delle due fasi. Il peso atomico della sostanza è 8.7. Per la fase α (diamante): numero di atomi sui vertici: numero di atomi sulle facce: numeri di atomi interni: in totale ci sono quindi 8 atomi. 8 8 = 6 = Calcoliamo il numero di moli e la massa per la cella unitaria: n = 8 N A m = np = 8p N A (7) dove p è il peso atomico e N A il numero di Avogadro. La densità è quindi data da: ρ = m V = 8p N A a = g (6.9Å) = 5.77 g/cm (8) Figure 6: Cella unitaria del reticolo bct.
13 Per la fase β (bct): numero di atomi sui vertici: numeri di atomi interni: 8 8 = in totale ci sono quindi atomi. Per questa fase si trova quindi: n = N A m = np = p N A (9) da cui la densità risulta: ρ = m V = p N A a c = 8.7 g (5.8Å) (.8Å) =.6 g/cm (0)
14 Esercizio 8 Mostrare che la porzione massima di volume disponibile che può essere riempita da sfere rigide disposte sui nodi dei reticoli indicati è nel caso sc del 5%, nel caso bcc del 68% e nel caso fcc del 7%. La frazione massima del volume della cella cristallina che può essere occupata dagli atomi viene detta packingf actor ed è una proprietà del reticolo. ) Pensiamo di disporre una sfera rigida su ogni nodo reticolare della cella cubica semplice, otteniamo così 8 sfere, ma solo un ottavo del volume di ciascuna di queste sfere è effettivamente contenuto nella cella. Se indichiamo con R il raggio di queste sfere, il volume totale che occupano all interno della cella cubica è dunque: V occ = 8 8 πr = πr () Affinchè due sfere prime vicine si tocchino ma non si compenetrino, il massimo raggio R max deve essere pari a metà distanza tra primi vicini (che dipende dal reticolo). Nel caso del cubo semplice la distanza tra primi vicini è pari alla costante reticolare a (il lato del cubo) da cui otteniamo: R max = a/. p.f.(sc) = V occ V cella = πr max a = π ( ) a a = π 5% () 6 ) Nella cella cubica a corpo centrato ci sono atomi totali e il raggio massimo è uguale ad un quarto della diagonale del cubo: R max = a. p.f.(bcc) = πr max a = a = π 68% () 8 ( ) π a ) Nella cella cubica a facce centrate ci sono atomi totali e il raggio massimo è uguale ad un quarto della diagonale di una faccia del cubo: R max = p.f.(bcc) = πr max a = a. ) a ( π a = π 7% ()
15 Esercizio 9 Determinare il reticolo reciproco del reticolo cubico a facce centrate f cc. Per un reticolo infinito tridimensionale definito dai suoi vettori primitivi (a, b, c) esiste un algoritmo semplice che permette di ricavare i vettori primitivi (A, B, C) dello spazio reciproco: A = π b c a b c B = π c a a b c C = π a b a b c Per il reticolo cubico f cc prendiamo come base nello spazio diretto: a = a (j + k) = a (0,, ) (5) b = a (k + i) = a (, 0, ) (6) c = a (i + j) = a (,, 0) (7) Calcoliamo i prodotti: Da cui: b c = a c a = a a b = a V = a b c = a (,, ) (8) (,, ) (9) (,, ) (0) () A = π a B = π a C = π a (,, ) (,, ) (,, ) Notate che i vettori primitivi del reticolo reciproco di un fcc formano la base di un reticolo bcc, cioè un reticolo fcc ha come reticolo reciproco un bcc. Calcolate il reciproco di un bcc... 5
16 Esercizio 0 Assumendo che tutti gli atomi siano sfere dure la cui superficie sia in contatto con la superficie dell atomo primo vicino, determinare il packing f actor della cella unitaria del diamante. La distanza tra i primi vicini nel diamante è un quarto della diagonale del cubo (cella unitaria): d nn = Il raggio massimo delle sfere dure sarà: + + = a () R max = d nn = 8 a () Nella cella ci sono 8 atomi (vedi es. precedente), per cui si ha che il packingfactor è: p.f. = 8 π ( 8 a ) a = π % () 6 6
Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata
Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata A.A. 05/06 Indice Esercizio Esercizio Esercizio 6 Esercizio 9 Esercizio 5 Esercizio 6 Esercizio 7 Esercizio 8 6 Esercizio
Sistemi cristallini - Soluzioni degli esercizi
Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 06/07 Sistemi cristallini Esercizio.........................................
Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata
Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico
Scienza dei Materiali 1 Esercitazioni
Scienza dei Materiali 1 Esercitazioni 2. Cristallografia dei materiali ver. 1.1 Reticoli cristallini Reticolo è una griglia tridimensionale di punti possiamo individuare un insieme minimo di punti (cella)
Compito di Scienza dei Materiali 16 Aprile 2010
Compito di Scienza dei Materiali 16 Aprile 2010 1. Si abbia una lega a base di Au e Cu, costituita da una soluzione solida FCC di tipo sostituzionale ed ordinata: gli atomi di oro sono situati ai vertici
Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata
Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di
Fisica dello Stato Solido
Fisica dello Stato Solido Lezione n.1 Strutture Cristalline Mara Bruzzi Corso di Laurea Specialistica Ingegneria Elettronica a.a.07-08 Scaricabile al sito: http://www.de.unifi.it/fisica/bruzzi/bruzzi_dida_fss.html
Esercizi sui Solidi. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre)
Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Solidi Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1 Che composto
Struttura e geometria cristallina
Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura
Posizioni Atomiche nelle Celle Unitarie Cubiche
Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y
TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA- Appello scritto
TCNOOGI DI MTRII CHIMIC PPICT- ppello scritto 0-6-05 sercizio.. Si abbia un materiale su cui agisce lo sforzo 00 MPa: calcolare lo sforzo di taglio risolto sul piano inclinato a 45 e la deformazione di
Esercitazione struttura
Esercitazione struttura 1/5. DENSITÀ DI VOLUME Per un elemento, avente peso atomico 106.400, sono stati misurati il suo raggio atomico (r0.176 nm) e la sua densità (ρ1.2 10 4 kg/m ). Verificare se la cella
Descrizione di un reticolo cristallino
Descrizione di un reticolo cristallino Descrizione di un reticolo cristallino Definizione di reticolo cristallino ( o reticolo di Bravais in onore di Auguste Bravais): insieme dei vettori R=n1 a 1+ n a
Scienza dei Materiali 1 Esercitazioni
Scienza dei Materiali 1 Esercitazioni 3. Difetti reticolari ver. 1.4 Condizioni per diffrazione In base alla struttura cristallina possiamo prevedere quali riflessi nello spettro di diffrazione saranno
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2016/2017_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica
Diffrazione di Raggi X
Diffrazione di Raggi X 1. Laue, Friedrich, Knipping (Monaco, 1912): diffrazione da reticolo tridimensionale 2. Ewald (Tesi di dottorato, Monaco, 1913): costruzione del reticolo reciproco 3. Bragg and Bragg
Elementi di cristallografia
Elementi di cristallografia STRUTTURE CRISTALLINE METALLICHE Struttura cubica a corpo centrato Esempi: Cr, Mo, α-fe STRUTTURE CRISTALLINE METALLICHE Struttura cubica a facce centrate Esempi: Cu, Al,
Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano
A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Reticolo Cristallino: insieme di punti detti nodi separati da intervalli a, b, e c (reticolo di ripetizione)
Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza?
Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza? Fisicamente è impossibile contare gli atomi contenuti in una data quantita di sostanza. E impossibile
Strutture cristalline e difetti
Strutture cristalline e difetti STRUTTURE CRISTALLINE METALLICHE Struttura cubica a corpo centrato Esempi: Cr, Mo, a-fe STRUTTURE CRISTALLINE METALLICHE Struttura cubica a facce centrate Esempi: Cu, Al,
APPUNTI DELLE LEZIONI DI. Scienza e Tecnologia dei Materiali
APPUNTI DELLE LEZIONI DI Scienza e Tecnologia dei Materiali Anno Accademico 2017/2018 dott. Francesca Romana Lamastra ufficio c/o Dip. Scienze e Tecnologie Chimiche (edifici Sogene) Settore E1 E-mail:
Reticoli e struttura dei cristalli
Reticoli e struttura dei cristalli Struttura cristallina=reticolo+base Reticolo Base Reticolo di Bravais: 1) Reticolo infinito di punti discreti le cui posizioni sono descritte da R = n 1 a 1 + n 2 a 2
La mole e la massa molare
La mole e la massa molare Un concetto strettamente correlato al peso relativo e fondamentale in chimica per i calcoli quantitativi è quello di mole. La mole è l unità di misura di una delle sette grandezze
Corso di Mineralogia
Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2017/2018_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
Fisica dello Stato Solido
Corso di Fisica dello Stato Solido A.A. 2001/2002 Prof. Andrea Di Cicco INFM, Dipartimento di Fisica, via Madonna delle Carceri 62032 Camerino (MC), Italy http://www.unicam.it, http://gnxas.unicam.it LaTeX
Soluzione Esercizio 4.1
Soluzione Esercizio 4.1 a) Numeri di atomi per cella unitaria Nel sistema cubico semplice (CS) si hanno 8 atomi per ogni spigolo, ma la porzione all interno della cella unitaria è uguale ad un 1/8. In
Grandezze e unità di misura
Grandezze e unità di misura La misura di una grandezza è costituita da un valore numerico e un appropriata unità di misura Esiste un sistema metrico denominato Sistema Internazionale di Unità (SI) basato
Fisica della Materia Condensata
Fisica della Materia Condensata Prof. Paola Gallo Soluzioni della prova di esame del II appello - 13 Febbraio 2017 Esercizio 1 Considerare un cristallo con reticolo monoclino semplice con base monoatomica.
SOLIDI. 10/05/2007 Chimica e Scienza e Tecnologia dei Materiali Elettrici L6 1
SOLIDI Stato di aggregazione della materia caratterizzato da forma e volume proprio; gli atomi (ioni, molecole) si trovano in posizioni fisse e molto spesso ordinate nello spazio: Solido amorfo: ordine
Scienza e Tecnologia dei Materiali - Esercizio 4.1
Scienza e Tecnologia dei Materiali - Esercizio 4.1 Indicare o calcolare per le celle elementare cubico semplice (CS), cubico a corpo centrato (CCC), cubico a facce centrate (CFC) e esagonale compatto (EC)
Le unità fondamentali SI
ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere
Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015
Esercizi di Stechiometria dei composti mercoledì 9 dicembre 2015 Il cloro ha due isotopi stabili contenenti rispettivamente 18 e 20 neutroni. Utilizzando la tavola periodica degli elementi, scrivere i
Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati
Diffusione dei raggi X da parte di un elettrone
Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un
POLIEDRI IN CRISTALLOGRAFIA
POLIEDRI IN CRISTALLOGRAFIA L'universo è composto di materia, ovviamente. E la materia è composta di particelle: elettroni, neutroni e protoni. Dunque l'intero universo è composto di particelle. Ora, di
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
Applicazioni del Teorema di Gauss
Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un
GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)
GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
Geometria analitica pagina 1 di 5
Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche
ESERCIZI PRECORSO DI MATEMATICA
ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Il tipo di legame chimico influenza in maniera fondamentale le caratteristiche macroscopiche del materiale.
Il tipo di legame chimico influenza in maniera fondamentale le caratteristiche macroscopiche del materiale. 1 Nei materiali si distinguono cinque tipi di legame. Nei ceramici solo tre sono importanti:
Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue
1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare
Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb
Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine
1 Distanza di un punto da una retta (nel piano)
Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di
Materiale didattico: dispense fornite durante il corso
Struttura e Proprietà dei Materiali 6 crediti lezioni frontali+ 3 crediti di laboratorio Richiami di cristallochimica Reticolo reciproco Diffrazione di raggi X e di Neutroni Produzione Raggi X (Tubi, Sincrotroni)
2 HCl. H 2 + Cl 2 ATOMI E MOLECOLE. Ipotesi di Dalton
Ipotesi di Dalton ATOMI E MOLECOLE 1.! Un elemento è formato da particelle indivisibili chiamate atomi. 2.! Gli atomi di uno specifico elemento hanno proprietà identiche. 3.! Gli atomi si combinano secondo
La Cristallografia. 1: la traslazione
La Cristallografia 1: la traslazione Spiega: Perché i cristalli hanno le facce Come le chiamiamo Come si dividono le celle elementari (e i cristalli macroscopici) La traslazione Reticolo unidimensionale
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
LA GEOMETRIA DELLO SPAZIO
LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei
GARA MATEMATICA CITTÀ DI PADOVA. 26 marzo 2011 SOLUZIONI
26 a GARA MATEMATICA CITTÀ DI PADOVA 26 marzo 2011 SOLUZIONI 1.- Affinché le soluzioni siano numeri interi è necessario che il discriminante dell equazione sia un quadrato perfetto ( in questo caso la
P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k
Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,
8 Simulazione di prova d Esame di Stato
8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale
CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1
www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla
CRISTALLOCHIMICA. La cristallochimica è la disciplina che studia le correlazioni tra la struttura cristallina e la composizione chimica dei minerali
CRISTALLOCHIMICA La cristallochimica è la disciplina che studia le correlazioni tra la struttura cristallina e la composizione chimica dei minerali L atomo H orbitali Livelli energetici Lo ione Lo ione
