Scienza dei Materiali 1 Esercitazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scienza dei Materiali 1 Esercitazioni"

Transcript

1 Scienza dei Materiali 1 Esercitazioni 2. Cristallografia dei materiali ver. 1.1

2 Reticoli cristallini Reticolo è una griglia tridimensionale di punti possiamo individuare un insieme minimo di punti (cella) che si ripete nel reticolo non tutti gli arrangiamenti sono possibili le celle sono impacchettate per formare il reticolo: : non vi sono spazi vuoti tra le celle! in ogni punto del reticolo posso porre una base costituita da uno o o più atomi

3 Reticoli di Bravais Questo è un possibile reticolo bidimensionale. Sul reticolo è individuata l unità che si ripete! Questo invece NON è un reticolo. Abbiamo i punti, ma essi non sono ordinati e non possiamo individuare un unità che si ripete!

4 Reticoli di Bravais Tutte le strutture qui mostrate hanno il medesimo reticolo di Bravais! cella unitaria

5 Reticoli di Bravais 14 RETICOLI possibili Non vi sono altre possibilità di individuare una cella che si ripeta all infinito nel reticolo senza lasciare dei vuoti. I punti rappresentati in figura sono quelli del reticolo: NON sono atomi! E possibile raggruppare i reticoli basandosi su regole di simmetria: si hanno 7 possibili sistemi cristallini.

6 Sistemi cristallini 7 SISTEMI CRISTALLINI origine convenzionale 0,0,0 c β a γ α b

7 Direzioni e piani atomici E spesso necessario specificare o individuare talune direzioni e piani all interno di una cella cristallina. direzione piano Molte proprietà dei materiali sono direzionali (ad esempio l espansione termica, le proprietà meccaniche) e molti processi sono legati a determinati piani e direzioni cristallografiche all interno del materiale. DIREZIONI e PIANI vengono individuati utilizzando una terna di numeri, gli INDICI DI MILLER

8 Direzioni: indici di Miller Ricordiamo alcune convenzioni per quanto riguarda gli indici di Miller relativi alle direzioni: Non ci sono virgole tra i numeri Valori negativi sono indicati con una barra posta sopra al numero (-2 è indicato come 2) I tre numeri vengono racchiusi tra parentesi quadre [] Esempi di direzioni cristallografiche valide: [123] [100]

9 Direzioni: indici di Miller Semplice ricetta per trovare gli indici di Miller relativi ad UNA DIREZIONE cristallografica (la direzione è nota, ma non i suoi indici di Miller): 1. Prendere la differenza tra le coordinate della punta e quelle della coda del vettore direzione (DATO). Le coordinate sono tutte relative ai parametri di cella a,b,c e quindi variano tra 0 ed Rimuovere le frazioni moltiplicando per il mcm (che è intero) ed eventualmente ridurre ai minimiinteri 3. Racchiudere i tre numeri tra parentesi quadre

10 Direzioni: indici di Miller Gli indici di Miller della direzione [???] di figura si trovano quindi così: coda (origine) x = 0, y = 0, z = 0 z punta x = 1/2, y = 0, z = 1 differenza 1/ indici di Miller [1/2 0 1] [1 0 2] [100] x [???] [111] [110] y

11 Famiglie di direzioni Causa la simmetria del reticoli, esistono direzioni equivalenti (indistinguibili) dal punto di vista cristallografico. Ad esempio le diagonali delle facce sono tutte uguali in un cubo ma non in un parallelepipedo: [101] = [110] [101] [110] cubico tetragonale Per indicare una FAMIGLIA DI DIREZIONI utilizziamo una notazione particolare: [123] direzione (una sola) <123> famiglia di direzioni (ovvero [123], [213], [312], [132], [231]...) In un reticolo CUBICO, direzioni aventi i medesimi indici (indipendentemente da segno ed ordine), sono equivalenti (es. [123] e [312])

12 Piani ed indici di Miller Come per le direzioni cristallografiche, anche per i piani vengono impiegate parentesi di tipo diverso per indicare piani singoli ed intere famiglie (hkl) piano cristallografico (UNO SOLO) {hkl} famiglia di piani cristallografici esempio (hkl), (lhk), (hlk) etc. per i reticoli CUBICI, piani cristallografici aventi i medesimi indici (indipendentemente da ordine e segno), sono equivalenti (es. (020), (002), (200) appartengono tutti alla famiglia {002}) Talvolta per i cristalli esagonali viene utilizzata una notazione a 4 indici (u v t w). Esistono regole per convertire tale notazione in quella a 3 indici.

13 Piani ed indici di Miller Semplice ricetta per trovare gli indici di Miller relativi ad UN PIANO cristallografico: 1. Se il piano passa per l origine, sceglierne uno equivalente oppure spostare l origine 2. Determinare l intersezione del piano con gli assi (in termini dei parametri di cella a, b, c) 3. Prendere il reciproco dei valori trovati (ricordare di porre 1/8 = 0) z (111) 4. Trovare mcm e ridurre i tre numeri agli interi più piccoli possibile (opzionale) y 5. Racchiudere tra parentesi () x Le regole per piani e direzioni sono quindi DIVERSE tra loro!!!!! Notare che in una cella CUBICA (e SOLO in quella) la direzione [hkl] è perpendicolare al piano (hkl)

14 Piani ed indici di Miller Piani tra i più comuni per una cella cubica e relativa indicizzazione. z z (001) (111) (011) z y y y x z x x z z (201) (212) (100) y y y x x x

15 Cella cubica semplice Ho un atomo in ogni punto del reticolo La cella contiene complessivamente 1 atomo a = 2r 0

16 Cella cubica bcc Ho un atomo in ogni punto del reticolo: la cella contiene complessivamente 2 atomi 3a = 4r 0 a v3a a v2a a v2a

17 Cella cubica fcc Ho un atomo in ogni punto del reticolo: la cella contiene complessivamente 4 atomi 2a = 4r 0 a v2a a

18 Packing factor: fcc All interno di una cella cubica a facce centrate abbiamo 4 atomi. In genere, gli atomi vengono considerati sferici (ho quindi 4 sfere) Volume totale di materia V a (occupato dalle sfere) 4r 4 16 Va = 4 π r = π r a 0

19 Packing factor: fcc Le sfere, però non occupano tutto il volume della cella, ma solo una frazione di esso Volume totale cella V c V = a c 0 3 (lato cella al cubo) 4r a 0 Ricordando che a = 2rv2 0 otteniamo: ( ) 3 3 V = 2r 2 = 16r 2 c

20 Packing factor: fcc Il fattore di impacchettamento (packing factor, PF) è il rapporto tra il volume occupato dagli atomi in una cella cristallina ed il volume totale della cella. Il PF indica quindi come lo spazio è utilizzato (più alto è, migliore è l occupazione dello spazio nella cella) Nel nostro caso (fcc): PF fcc 16 3 π r Va 3 π = = = = 0.74 V c 3 16r 2 3 2

21 Densità di linea Più definizioni per densità di linea e densità planare. La densità di linea è la frazione della linea che, lungo una determinata direzione, passa attraverso gli atomi. Densità di linea lungo la direzione (100) in un cristallo fcc L D = L C /L L L C = 2r L L = a in un fcc densità di linea frazione di linea che attraversa gli atomi lunghezza totale linea a 0 = 2rv2 L D = 2r/(2rv2) = 0.71

22 Densità planare La densità di planare è la frazione di area di un determinato piano cristallografico occupata dagli atomi (il piano deve passare per il centro degli atomi) Densità nel piano (110) in un cristallo fcc A B C A B C D E F F D E Calcolare l area del piano Calcolare area dei cerchi nel piano

23 Densità planare A B C D E F Area occupata da atomi, A c : ¼ cerchio per gli atomi A,C,D,F ½ cerchio per gli atomi B, E A c = 2 cerchi = 2πr 2 Area totale del piano, A p : Densità planare risultante AC = 4 r AD = 2 r v 2 A p = AC AD = (4r)(2rv2) = 8r 2 v2 2 Ac 2π r PD = = = A 2 8r 2 p 0.56

24 ESERCIZI

25 Ex 2.1. Indici di Miller Indicare le direzioni [112], [111] e [222] Svolgimento 1/2 1/2

26 Ex 2.1. Indici di Miller Viene qui fornita una cella cubica sulla quale poter testare le nozioni acquisite

27 Ex 2.2. Dimensione cella Calcolare dimensione della cella, fattore di impaccamento e densità per il ferro bcc (ferrite) ed fcc (austenite). Il raggio atomico del ferro è di 124 pm ed il suo peso atomico 55.8 g/mol. Svolgimento Dati: r Fe = 124 pm AW Fe = 55.8 g/mol Unità di misura molto usata in cristallografia è Å (Ångström) pari a m La diffusione è abbastanza evidente se si pensa che parametri di cella e raggi atomici sono di questo ordine di grandezza. Ricordare però che questa unità di misura è solo TOLLERATA: è più corretto usare multipli o sottomultipli del sistema SI (di solito: nm = 10-9 m, pm = m).

28 Ex 2.2. Dimensione cella Il ferro assume strutture cristalline diverse in intervalli di temperatura diversi. In particolare la sua struttura è bcc a temperatura ambiente ed fcc a temperature al di sopra dei 1000 C circa Parametro di cella nel caso bcc (atomi si toccano lungo la diagonale principale del cubo): 4 4r = 3a a= r a bcc = 286 pm 3 Parametro di cella nel caso fcc (atomi si toccano lungo la diagonale della faccia del cubo): 4 4r = 2a a= r a 2 fcc = 351 pm La cella cristalline del ferro fcc è più grande di quella del ferro bcc. Non sono stati considerati effetti di espansione termica

29 Ex 2.2. Dimensione cella Nei due casi valutiamo ora il fattore di impaccamento. Sappiamo già in anticipo che la struttura fcc (assieme ad hcp) sono quelle ad impaccamento maggiore PF bcc volumeatomi 2 πr 2 πr 3 3 π 3 = = = = = 3 3 volume cella a 4 8 bcc r PF fcc πr πr volume atomi 3 3 π 2 = = = = = volume cella a 4 6 fcc r 2 Ricordiamo che i due valori sono indipendenti dalla dimensione della cella. Nella cella fcc lo spazio è meglio utilizzato!

30 Ex 2.2. Dimensione cella Calcoliamo ora la densità del ferro bcc ed fcc. La densità è calcolata come massa rispetto al volume. w atomo, Fe AWFe = [ g/ at] = N [ g/ mol] [ at/ mol] Il peso della cella è determinato da quanti atomi essa contiene: w w ρ = V Conosciamo già il volume di una cella cristallina, dobbiamo solo valutare quanto essa pesi. Sappiamo quanto pesa una mole di atomi di ferro (peso atomico), quindi possiamo calcolare quanto pesa un singolo atomo: cella, bcc = 2watomo, Fe cella, fcc atomo, Fe w = 4w La cella fcc pesa più di quella bcc (occupo meglio lo spazio )!

31 Ex 2.2. Dimensione cella La densità nei due casi è quindi calcolabile come: ρ = bcc w cellabcc, 3 abcc ρ = fcc w cella, fcc 3 a fcc Ovviamente, il volume di cella può essere valutato anche conoscendo il volume di un atomo e sfruttando il concetto di packing factor. Notare che, pur avendo una cella più grande, il ferro fcc è più denso! Risultato: ρ bcc = 7.89 kg/dm 3 ρ fcc = 8.57 kg/dm 3

32 Ex 2.3. Raggio atomico Determinare parametro di cella e raggio atomico del piombo (fcc) conoscendone la densità (11.4g/cm 3 ) ed il peso atomico (207 g/mol) Svolgimento Dati: ρ Pb = 11.4 g/cm 3 AW Pb = 207 g/mol Parliamo di un metallo e la cella è fcc quindi ci aspettiamo 4 at/cella. Dalla definizione di densità, invertendo il ragionamento fatto nel problema precedente, possiamo ricavare il volume di cella. Una cella infatti pesa: AWPb [ g/ mol] wcella, Pb = 4watomo, Pb = 4 [ g/ cella] = [ at/ cella] N [ at / mol ] Utilizziamo ora la definizione di densità per calcolare il volume

33 Ex 2.3. Raggio atomico ρ Pb w = V = V w cella, Pb cella, Pb cella, Pb cella, Pb ρpb Noto il volume di cella (cubo), lo spigolo (parametro di cella) è immediatamente calcolato: V = a a = V 3 3 cella, Pb Pb Pb cella, Pb Siccome il Pb è un metallo e la cella è fcc, gli atomi si toccano lungo la diagonale delle facce del cubo e quindi il raggio atomico è: 2 4r = 2a r = a 4 Pb Pb Pb Pb Risultato: a Pb = 494 pm r Pb = 175 pm

34 Ex 2.4. Tipo di cella Un materiale a struttura cubica con densità di g/cm 3, ha massa atomica di g/mol e parametro di cella di pm. Se vi è un solo atomo per punto del reticolo, quale struttura ha il materiale? Svolgimento Dati: ρ= g/cm 3 AW Pb = g/mol a 0 = pm 1 atomo per punto di reticolo Guardando nella tavola periodica otteniamo immediatamente la soluzione (parliamo di K che in genere cristallizza con cella bcc). Cerchiamo però una via alternativa che ci dia sicurezza di questo. Utilizziamo ancora la definizione di densità per valutare il peso di una cella ρ w cella = wcella = ρ Vcella a 3 0

35 Ex 2.4. Tipo di cella Sfruttiamo ora il fatto che abbiamo una sola specie atomica presente (1 punto di reticolo per atomo!). Valutiamo il peso di un atomo: AW watomo = N e calcoliamo quindi il numero di atomi presenti in una cella, dividendo il peso di una cella per il peso di un atomo! N at w ρ a N cella = = w atomo 3 0 AW Dai dati forniti otteniamo N at = 2 e perciò la cella è bcc Risultato: N at = 2 cella bcc

36 FINE

Posizioni Atomiche nelle Celle Unitarie Cubiche

Posizioni Atomiche nelle Celle Unitarie Cubiche Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y

Dettagli

Struttura e geometria cristallina

Struttura e geometria cristallina Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura

Dettagli

Sistemi cristallini 1

Sistemi cristallini 1 Sistemi cristallini Esercizio Calcolare la densità atomica definita come il rapporto tra il numero di atomi e il volume unitario per ) il litio sapendo che la distanza tra i centri dei primi vicini è R

Dettagli

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata A.A. 05/06 Indice Esercizio Esercizio Esercizio 6 Esercizio 9 Esercizio 5 Esercizio 6 Esercizio 7 Esercizio 8 6 Esercizio

Dettagli

Sistemi cristallini - Soluzioni degli esercizi

Sistemi cristallini - Soluzioni degli esercizi Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 06/07 Sistemi cristallini Esercizio.........................................

Dettagli

INDICE CAPITOLO 1 CAPITOLO 1

INDICE CAPITOLO 1 CAPITOLO 1 INDICE CAPITOLO. Cristalli.. Tipici piani reticolari di un cristallo cubico.2. Reticoli... Reticolo quadrato bidimensionale..2. Reticolo cubico semplice.. Celle unitarie... Primo esempio di arrangiamenti

Dettagli

Esercitazione struttura

Esercitazione struttura Esercitazione struttura 1/5. DENSITÀ DI VOLUME Per un elemento, avente peso atomico 106.400, sono stati misurati il suo raggio atomico (r0.176 nm) e la sua densità (ρ1.2 10 4 kg/m ). Verificare se la cella

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 3. Difetti reticolari ver. 1.4 Condizioni per diffrazione In base alla struttura cristallina possiamo prevedere quali riflessi nello spettro di diffrazione saranno

Dettagli

Elementi di cristallografia

Elementi di cristallografia Elementi di cristallografia STRUTTURE CRISTALLINE METALLICHE Struttura cubica a corpo centrato Esempi: Cr, Mo, α-fe STRUTTURE CRISTALLINE METALLICHE Struttura cubica a facce centrate Esempi: Cu, Al,

Dettagli

Semplici cristalli elementari: grafite

Semplici cristalli elementari: grafite Semplici cristalli elementari: grafite Il precursore del grafene è un cristallo a strati (layered), molto anisotropo, con legami forti nel piano, deboli fra piano e piano. E descritto da un reticolo esagonale:

Dettagli

Compito di Scienza dei Materiali 16 Aprile 2010

Compito di Scienza dei Materiali 16 Aprile 2010 Compito di Scienza dei Materiali 16 Aprile 2010 1. Si abbia una lega a base di Au e Cu, costituita da una soluzione solida FCC di tipo sostituzionale ed ordinata: gli atomi di oro sono situati ai vertici

Dettagli

Scienza e Tecnologia dei Materiali - Esercizio 4.1

Scienza e Tecnologia dei Materiali - Esercizio 4.1 Scienza e Tecnologia dei Materiali - Esercizio 4.1 Indicare o calcolare per le celle elementare cubico semplice (CS), cubico a corpo centrato (CCC), cubico a facce centrate (CFC) e esagonale compatto (EC)

Dettagli

= ( ), =0.65 FCA= = 0.74 FCA=

= ( ), =0.65 FCA= = 0.74 FCA= Soluzioni 1) Li: 1s 2 2s 1 ([He ]2s 1 ) ; Mg: 1S 2 2S 2 2P 6 3S 2 ( [Ne]3S 2 ); C: 1S 2 2S 2 2P 2 ( [He]2S 2 2P 2 ); O: 1S 2 2S 2 2P 4 ( [He]2S 2 2P 4 ) Cl: 1S 2 2S 2 2P 6 3S 2 3P 5 ( [Ne]3S 2 3P 5 ) Ar:

Dettagli

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 2: I cristalli Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it D. Ielmini Elettronica dello Stato Solido 02 2 Outline Definizione del problema Struttura

Dettagli

1. Quali sono i piani compatti della struttura CFC e della struttura EC?

1. Quali sono i piani compatti della struttura CFC e della struttura EC? ESERCIZIO 2.1 Per il comportamento tecnologico dei materiali sono molto importanti i piani compatti e le linee compatte nelle strutture cristalline. Utilizzando gli indici di Miller rispondere ai seguenti

Dettagli

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico

Dettagli

E possibile definire gli indici delle facce di un cristallo come un rapporto di rapporti parametrici.

E possibile definire gli indici delle facce di un cristallo come un rapporto di rapporti parametrici. INDICIZZAZIONE DELLE FACCE E possibile definire gli indici delle facce di un cristallo come un rapporto di rapporti parametrici. Essi saranno una terna di numeri (h,k,l) primi fra loro (generalmente piccoli).

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

Strutture cristalline e difetti

Strutture cristalline e difetti Strutture cristalline e difetti STRUTTURE CRISTALLINE METALLICHE Struttura cubica a corpo centrato Esempi: Cr, Mo, a-fe STRUTTURE CRISTALLINE METALLICHE Struttura cubica a facce centrate Esempi: Cu, Al,

Dettagli

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 2: I cristalli Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Definizione del problema Struttura cristallina Diffrazione Conclusioni D.

Dettagli

La Cristallografia. 1: la traslazione

La Cristallografia. 1: la traslazione La Cristallografia 1: la traslazione Spiega: Perché i cristalli hanno le facce Come le chiamiamo Come si dividono le celle elementari (e i cristalli macroscopici) La traslazione Reticolo unidimensionale

Dettagli

Corso di Mineralogia

Corso di Mineralogia Corso di Mineralogia Scienze Geologiche A.A. 2016 / 2017 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2016/2017_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica

Dettagli

SOLIDI. 10/05/2007 Chimica e Scienza e Tecnologia dei Materiali Elettrici L6 1

SOLIDI. 10/05/2007 Chimica e Scienza e Tecnologia dei Materiali Elettrici L6 1 SOLIDI Stato di aggregazione della materia caratterizzato da forma e volume proprio; gli atomi (ioni, molecole) si trovano in posizioni fisse e molto spesso ordinate nello spazio: Solido amorfo: ordine

Dettagli

Scritto Appello II, Materia Condensata. AA 2017/2018

Scritto Appello II, Materia Condensata. AA 2017/2018 Scritto Appello II, Materia Condensata. AA 017/018 19/0/018 Coloro che hanno superato il primo esonero dovranno svolgere gli esercizi 3 e 4 in un tempo massimo di due ore (il punteggio sarà riportato in

Dettagli

Fononi e calori reticolari - Soluzioni degli esercizi

Fononi e calori reticolari - Soluzioni degli esercizi Fononi e calori reticolari - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Fononi e calori reticolari Esercizio

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Fisica dello Stato Solido Lezione n.1 Strutture Cristalline Mara Bruzzi Corso di Laurea Specialistica Ingegneria Elettronica a.a.07-08 Scaricabile al sito: http://www.de.unifi.it/fisica/bruzzi/bruzzi_dida_fss.html

Dettagli

Reticoli, basi e strutture cristalline in 1D

Reticoli, basi e strutture cristalline in 1D Reticoli, basi e strutture cristalline in 1D a a vettore primitivo del reticolo diretto (o di Bravais) R = na n=1,2,. vettori principali del reticolo diretto di Bravais, unidimensionale e di parametro

Dettagli

Scienza dei Materiali 1 TEST 1

Scienza dei Materiali 1 TEST 1 Scienza dei Materiali 1 TEST 1 Esercizio 1 Viene eseguita una misura di diffrazione su un provino di plutonio bcc con dei raggi X di lunghezza d onda λ = 7.93 pm. Il picco relativo al piano 321 viene misurato

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 1. Introduzione ver. 1.1 Errori più comuni Errori di concetto Non si è capito il problema Errori di memoria Non si ricorda la formula Errori di precisione/accuratezza

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali Esercitazioni 4. Diffusione allo stato solido ver..4 Proprietà dei logaritmi Nei problemi relativi alla diffusione si fa spesso ricorso ai logaritmi naturali. E bene ricordarne alcune

Dettagli

Corso di Mineralogia

Corso di Mineralogia Corso di Mineralogia Scienze Geologiche A.A. 2017 / 2018 Elementi di cristallografia strutturale (pdf # 06) (2) - Mineralogia 2017/2018_cristallografia CRISTALLOGRAFIA STRUTTURALE Cristallografia morfologica

Dettagli

Scritto Appello IV, Materia Condensata. AA 2017/2018

Scritto Appello IV, Materia Condensata. AA 2017/2018 Scritto Appello IV, Materia Condensata AA 017/018 17/07/018 1 Esercizio 1 Un metallo monovalente cristallizza nella struttura cubica a corpo centrato La densità degli elettroni del metallo è n el = 65

Dettagli

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Simmetrie Cristallografiche A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Reticolo Cristallino: insieme di punti detti nodi separati da intervalli a, b, e c (reticolo di ripetizione)

Dettagli

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia La Scienza dei Materiali Start Introduzione Modalità Esame Legami e strutture Struttura e proprietà Metalli Leganti Ceramici

Dettagli

Soluzione Esercizio 4.1

Soluzione Esercizio 4.1 Soluzione Esercizio 4.1 a) Numeri di atomi per cella unitaria Nel sistema cubico semplice (CS) si hanno 8 atomi per ogni spigolo, ma la porzione all interno della cella unitaria è uguale ad un 1/8. In

Dettagli

Scienza dei Materiali VO TEST 2

Scienza dei Materiali VO TEST 2 Scienza dei Materiali VO TEST Esercizio 1 Completare il diagramma di fase binario di figura individuando i composti stechiometrici ed i punti invarianti. Indicare inoltre, per ogni zona, le fasi presenti.

Dettagli

Esercizi sui Solidi. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre)

Esercizi sui Solidi. Insegnamento di Chimica Generale CCS CHI e MAT. A.A. 2015/2016 (I Semestre) Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sui Solidi Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio 1 Che composto

Dettagli

Materiale didattico: dispense fornite durante il corso

Materiale didattico: dispense fornite durante il corso Struttura e Proprietà dei Materiali 6 crediti lezioni frontali+ 3 crediti di laboratorio Richiami di cristallochimica Reticolo reciproco Diffrazione di raggi X e di Neutroni Produzione Raggi X (Tubi, Sincrotroni)

Dettagli

LA SIMMETRIA NEI CRISTALLI. Cristallo di berillo varietà acquamarina su quarzo

LA SIMMETRIA NEI CRISTALLI. Cristallo di berillo varietà acquamarina su quarzo LA SIMMETRIA NEI CRISTALLI Cristallo di berillo varietà acquamarina su quarzo Simmetria La simmetria di una figura, o di un sistema molecolare o cristallino, etc. (bidimensionale o tridimensionale) è l

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 17. Compositi ver. 1.1 ESERCIZI Ex 17.1 Regola delle miscele Un carburo cementato impiegato per un utensile da taglio contiene il 75wt% WC, 15wt% TiC, 5wt% TaC, 5wt%

Dettagli

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene Esercizi svolti Esercizio 1. Dati i punti: A(1, 1, 0), B( 1, 1, 4), C(1, 1, 3), D(2, 2, 8) dello spazio R 3 a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

Dettagli

Reticoli di Bravais e sistemi cristallini

Reticoli di Bravais e sistemi cristallini Reticoli di Bravais e sistemi cristallini Come in 2D, anche in 3D si individuano un motivo, che si ripete in modo periodico nello spazio e un reticolo (disposizione di punti, ciscuno che possiede lo stesso

Dettagli

STRUTTURA DEI SOLIDI

STRUTTURA DEI SOLIDI STRUTTURA DEI SOLIDI I solidi possono essere classificati in funzione della regolarità con cui gli atomi o gli ioni si dispongono nello spazio. Un materiale è detto cristallino se caratterizzato da configuarazioni

Dettagli

TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA- Appello scritto

TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA- Appello scritto TCNOOGI DI MTRII CHIMIC PPICT- ppello scritto 0-6-05 sercizio.. Si abbia un materiale su cui agisce lo sforzo 00 MPa: calcolare lo sforzo di taglio risolto sul piano inclinato a 45 e la deformazione di

Dettagli

APPUNTI DELLE LEZIONI DI. Scienza e Tecnologia dei Materiali

APPUNTI DELLE LEZIONI DI. Scienza e Tecnologia dei Materiali APPUNTI DELLE LEZIONI DI Scienza e Tecnologia dei Materiali Anno Accademico 2017/2018 dott. Francesca Romana Lamastra ufficio c/o Dip. Scienze e Tecnologie Chimiche (edifici Sogene) Settore E1 E-mail:

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza?

Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza? Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza? Fisicamente è impossibile contare gli atomi contenuti in una data quantita di sostanza. E impossibile

Dettagli

Tipologie di materiali

Tipologie di materiali Tipologie di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Struttura La struttura fisica dei materiali dipende dalla disposizione degli

Dettagli

Il tipo di legame chimico influenza in maniera fondamentale le caratteristiche macroscopiche del materiale.

Il tipo di legame chimico influenza in maniera fondamentale le caratteristiche macroscopiche del materiale. Il tipo di legame chimico influenza in maniera fondamentale le caratteristiche macroscopiche del materiale. 1 Nei materiali si distinguono cinque tipi di legame. Nei ceramici solo tre sono importanti:

Dettagli

Descrizione di un reticolo cristallino

Descrizione di un reticolo cristallino Descrizione di un reticolo cristallino Descrizione di un reticolo cristallino Definizione di reticolo cristallino ( o reticolo di Bravais in onore di Auguste Bravais): insieme dei vettori R=n1 a 1+ n a

Dettagli

Lo stato solido. Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri. amorfi. cristallini

Lo stato solido. Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri. amorfi. cristallini Lo stato solido Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri Solidi amorfi cristallini Cella elementare: la più piccola porzione del reticolo cristallino che ne possiede

Dettagli

Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015

Esercizi di. Stechiometria dei composti. mercoledì 9 dicembre 2015 Esercizi di Stechiometria dei composti mercoledì 9 dicembre 2015 Il cloro ha due isotopi stabili contenenti rispettivamente 18 e 20 neutroni. Utilizzando la tavola periodica degli elementi, scrivere i

Dettagli

Materiali metallici comuni sono policristallini!

Materiali metallici comuni sono policristallini! Materiali metallici Materiali metallici comuni sono policristallini! Sistemi cristallini e Reticoli di Bravais Legame metallico (a) Materiali metallici puri (a) cubica a facce centrate (CFC) Cu, Ni, Ag,

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Ripasso di matematica. Enrico Degiuli Classe terza

Ripasso di matematica. Enrico Degiuli Classe terza Ripasso di matematica Enrico Degiuli Classe terza Somma con i numeri relativi 1 3 =? 7 + 10 =? 8 + 3 =? 13 15 =? Regola: immaginare di partire dal primo numero e di spostarsi lungo la retta orientata in

Dettagli

STRUTTURA E GEOMETRIA CRISTALLINA

STRUTTURA E GEOMETRIA CRISTALLINA STRUTTURA E GEOMETRIA CRISTALLINA La struttura fisica dei materiali solidi dipende dalla disposizione degli atomi, ioni o molecole che compongono il solido e dalle forze che li legano fra loro. Quando

Dettagli

Elementi di strutturistica cristallina III

Elementi di strutturistica cristallina III Chimica fisica superiore Modulo 1 Elementi di strutturistica cristallina III Sergio Brutti Reticoli tri-dimensionali Consideriamo nuovamente i 14 reticoli di Bravais Basi cristalline Analogamente che al

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

TECNOLOGIA DEI MATERIALI e CHIMICA APPLICATA (I parte)

TECNOLOGIA DEI MATERIALI e CHIMICA APPLICATA (I parte) Università di Roma Tor Vergata Facoltà di Ingegneria TECNOLOGIA DEI MATERIALI e CHIMICA APPLICATA (I parte) Prof. G. Montesperelli Struttura dei materiali Legami, reticoli cristallini e difetti, Indici

Dettagli

Indici di Miller nei sistemi Trigonali ed Esagonali

Indici di Miller nei sistemi Trigonali ed Esagonali Indici di Miller nei sistemi Trigonali ed Esagonali -a 1 ( 100) (0 10) a 3 c (001) ( 100) -a 2 (0 10) c ( 110) a 2 -a 2 ( 110) -a 1 ( 110) (1 10) (100) (010) a 1 (100) (001) -c (010) -a 3 a 2 a 1 Una croce

Dettagli

proprietà: comportamento del materiale in determinate condizioni, quindi possibilità di prevedere e progettare

proprietà: comportamento del materiale in determinate condizioni, quindi possibilità di prevedere e progettare La struttura dei materiali definizioni e classificazioni Chi è lo scienziato dei materiali? un conoscitore della natura dei materiali e quindi di: struttura: concetto vago perché molte definizioni sono

Dettagli

I materiali metallici sono perfetti?

I materiali metallici sono perfetti? I materiali metallici sono perfetti? Difetti nei solidi cristallini (a) difetti di punto (b) difetti di linea o 1-D (c) difetti di superficie o 2-D (a) Difetti di punto (1) vacanze(posizioni reticolari

Dettagli

Diffrazione da reticolo.

Diffrazione da reticolo. Reticolo della presente reciproco. opera. Diffrazione da reticolo. 1 Reticolo reciproco Sistema reticolare: periodico > ogni grandezza fisica sarà periodica con stesso periodo. Ogni grandezza Enrico Silva

Dettagli

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Il reticolo reciproco Zone di Brillouin in

Dettagli

I CRISTALLI DI PIRITE. Gilberto Bini Università degli Studi di Milano Trieste, 19 gennaio 2018

I CRISTALLI DI PIRITE. Gilberto Bini Università degli Studi di Milano Trieste, 19 gennaio 2018 I CRISTALLI DI PIRITE Gilberto Bini Università degli Studi di Milano Trieste, 19 gennaio 2018 L UNICA REALTÀ Non solo la matematica è reale, ma è l unica realtà. Beh, l universo è composto di materia ovviamente.

Dettagli

POLIEDRI IN CRISTALLOGRAFIA

POLIEDRI IN CRISTALLOGRAFIA POLIEDRI IN CRISTALLOGRAFIA L'universo è composto di materia, ovviamente. E la materia è composta di particelle: elettroni, neutroni e protoni. Dunque l'intero universo è composto di particelle. Ora, di

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x.

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x. Macerata 6 febbraio 05 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: x y x y + + + 4 = 0 Per la presenza del

Dettagli

FASE. Diversi stati fisici della materia e forme alternative di un medesimo stato fisico.

FASE. Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. FASE Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. Esempi di fase sono il ghiaccio e l acqua liquida. Il diamante e la grafite sono due fasi del carbonio allo stato

Dettagli

Geometria analitica pagina 1 di 5

Geometria analitica pagina 1 di 5 Geometria analitica pagina 1 di 5 GEOMETRIA LINEARE NEL PIANO È fissato nel piano un sistema di coordinate cartesiane ortogonali monometriche Oxy. 01. Scrivere due diverse rappresentazioni parametriche

Dettagli

DEFINIZIONE DI MINERALE

DEFINIZIONE DI MINERALE DEFINIZIONE DI MINERALE - Corpo solido naturale - Stato Solido Cristallino - Amorfo - Atomi dispos> in modo ordinato e periodico - Anisotropia Isotropia - Legge Costanza angoli diedri (Romè de l Isle,

Dettagli

FISICA DELLO STATO SOLIDO

FISICA DELLO STATO SOLIDO 1 UNIVERSITA DEL SALENTO FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI LAUREA MAGISTRALE IN FISICA Anno Accademico 2014-2015 FISICA DELLO STATO SOLIDO NOTE DEL CORSO TENUTO DAL PROF. CECILIA PENNETTA

Dettagli

Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni

Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it D. Ielmini Elettronica dello Stato Solido 10 2 Outline

Dettagli

Introduzione alla Fisica dello Stato Solido

Introduzione alla Fisica dello Stato Solido Introduzione alla Fisica dello Stato Solido Docente: Paolo Giannozzi, e-mail: paolo.giannozzi@uniud.it Stanza L1-1-BE ai Rizzi, Tel.: 0432-558216 Ricevimento ufficiale Venerdì 10:30-12:30 Orario: Me 17-19,

Dettagli

Geminazione. Un elemento di simmetria non presente nel gruppo puntuale mette in relazione due cristalli diversi. e z. s m. n i

Geminazione. Un elemento di simmetria non presente nel gruppo puntuale mette in relazione due cristalli diversi. e z. s m. n i Geminazione Un elemento di simmetria non presente nel gruppo puntuale mette in relazione due cristalli diversi m m m n Pia i od e ion z i s po m co Tipi di geminati Angoli rientranti (010) Sono segnati

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

Grandezze e unità di misura

Grandezze e unità di misura Grandezze e unità di misura La misura di una grandezza è costituita da un valore numerico e un appropriata unità di misura Esiste un sistema metrico denominato Sistema Internazionale di Unità (SI) basato

Dettagli

Maturità Scientifica 2017 Sessione Ordinaria

Maturità Scientifica 2017 Sessione Ordinaria PROBLEMA Studiamo la funzione f con il profilo della pedana. dom f = f f e + e = con per verificare che il suo grafico è compatibile e + e = = Si tratta di una funzione pari il cui grafico è simmetrico

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 6. Elasticità ver. 1.3 Sforzo e deformazione Sia dato un provino di lunghezza l avente area della sezione A, sottoposto ad una forza di trazione F. A causa di questa

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Interazione dei raggi X con la materia

Interazione dei raggi X con la materia Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Le unità fondamentali SI

Le unità fondamentali SI ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra

Dettagli

Le unità fondamentali SI. Corrente elettrica

Le unità fondamentali SI. Corrente elettrica ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere

Dettagli

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero

Dettagli

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione

Modellistica dei Manipolatori Industriali 01BTT Esame del 23/11/2001 Soluzione Modellistica dei Manipolatori Industriali 1BTT Esame del 23/11/21 Soluzione 1 Sistemi di riferimento e cinematica di posizione In Figura 1 il manipolatore è stato ridisegnato per mettere in evidenza variabili

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli