ESERCIZI SUI NUMERI COMPLESSI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SUI NUMERI COMPLESSI"

Transcript

1 ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo della potenza e del rapporto tra numeri complessi A tale scopo, dobbiamo esprimere i numeri complessi che compaiono nella formulazione dell esercizio in forma trigonometrica Per cui poniamo : w = + i = ρcos ϕ + isin ϕ) Quindi sostituendo nell espressione data: v = i = rcos θ + isin θ) per la formula di de Moivre) z = w5 [ρcos ϕ + isin ϕ)]5 = v7 [rcos θ + isin θ)] 7 = = ρ5 cos 5ϕ + isin 5ϕ) r 7 cos 7θ + isin 7θ) = = ρ5 [cos 5ϕ 7θ) + isin 5ϕ 7θ)] ) r7 A questo punto per completare l esercizio si devono calcolare i moduli e gli argomenti di w e v ) ) w = + = v = + ) = Per calcolare gli argomenti di w e v si devono risolvere i sistemi: { cos ϕ = sinϕ = ) { cos θ = sinθ = ) il rapporto tra due numeri complessi è un numero complesso che ha per modulo il rapporto dei moduli e per argomento la differenza tra gli argomenti

2 Risolviamo il primo sistema: Gli angoli ϕ [0,] che risolvono la prima equazione sono: ϕ = 5 φ oppure ϕ = 7, mentre la seconda equazione è risolta dai valori ϕ = e ϕ = 5 Il sistema ) ha quindi per soluzione :ϕ = 5 Risolviamo il secondo sistema: Gli angoli θ [0,] che risolvono la prima equazione sono: θ = oppure θ = 7, mentre la seconda equazione è risolta dai valori θ = 5 e θ = 7 Il sistema ) ha quindi per soluzione :θ = 7 Continuiamo lo svolgimento dell esercizio sostituendo nell espressione ) i valori di w, v, θ, ϕ, sopra calcolati: z = ) 7 [cos 5 5 ) 77 + sin 5 5 )] 77 = = [ 5 8 cos 9 ) 5 + isin 9 )] = = [ 8 cos 97 ) + isin 97 )] Si tratta di determinare l argomento principale di z cioè l angolo ξ [0,) tale che :z = σcos ξ + isin ξ) dove σ = z = 8 Per questo osserviamo che 97 = 8 = 8 + = 8 + per cui 97 = 5 + L argomento principale di z è ξ = mentre il modulo di z è σ = z = 8 Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = Procediamo come nell esercizio precedente ponendo: Quindi sostituendo nell espressione data: + i ) i ) w = + i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) per la formula di de Moivre) z = w [ρcos ϕ + isin ϕ)] = v [rcos θ + isin θ)] = = ρ cos ϕ + isin ϕ) r cos θ + isin θ) = = ρ [cos ϕ θ) + isin ϕ θ)] ) r Procedendo come nell esercizio svolto sopra, calcoliamo il moduli e gli argomenti di w e v, in modo da poterli sostituire nella ), ed otteniamo: w = cos + isin ) 5) v = cos 5 + isin 5 ) ) il rapporto tra due numeri complessi è un numero complesso che ha per modulo il rapporto dei moduli e per argomento la differenza tra gli argomenti

3 Sostituiamo in ) : z = [ cos ) 8 + isin )] Osserviamo che = == + = +, quindi L argomento principale di z è : ξ =, mentre il suo modulo è 8 Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = i) i ) Il procedimento è identico a quello degli esercizi già visti sopra w = i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) w = cos 5 + isin 5 ) v = cos 7 + isin 7 ) 7) 8) Applicando le formule viste sopra, in definitiva: Per cui z = e l argomento principale è ξ = 0 z = [cos ) + isin )] = [cos 0 + isin 0] Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i ) i Anche questo esercizio viene risolto in maniera del tutto identica a quella degli esercizi precedenti w = i = ρcos ϕ + isin ϕ) v = i = rcos θ + isin θ) w = cos + isin ) v = cos 7 + isin 7 ) 9) 0) Applicando le formule viste sopra otteniamo: z = 8 [cos ] ) + isin ) Per cui z = 8 e l argomento principale è ξ = Esercizio 5 = 8 [cos + isin ]

4 Risolvere la seguente equazione nel campo complesso: z z = 0 Svolgimento Per risolvere l equazione poniamo:z = x + iy Sostituendo si ha x + iy) x iy = 0 x y + xyi x ) + y = 0 ) Tenendo presente che un numero complesso è zero se e solo se sono zero la sua parte reale e la sua parte immaginaria, da ) otteniamo il sistema x y x ) + y = 0 x Da questo otteniamo x = 0 y 9 + y = 0 x x ) = 0 Ovvero x = 0 y + = 9 + y x x = 0 Il primo sistema non ha soluzioni, mentre il secondo sistema equivale ai seguenti x 0 x < 0 x x = 0 x + x = 0 Il primo sistema non ha soluzioni mentre il secondo ha x =, x = La soluzione dell equazione data è: z =, z = Esercizio Risolvere la seguente equazione nel campo complesso: Svolgimento z z = z Osserviamo che una soluzione è z = 0 Cerchiamo le soluzioni z 0 Possiamo dividere per z ed otteniamo z z = Eguagliamo il modulo del primo membro a quello del secondo: z 5 = onde z = 5 Tenuto conto di questo e scomponendo l espressione dell equazione data: z z = = z z = z = 5 ) = 5

5 Le soluzioni dell equazione data sono dunque z = 0 e z = 5 Esercizio 7 Risolvere la seguente equazione nel campo complesso: z + = z Svolgimento Per risolvere l equazione poniamo:z = x + iy Sostituendo si ha x + iy + = x iy) x + ) + y = x y xyi x + ) + y + x + y + xyi = 0 ) Tenendo presente che un numero complesso è zero se e solo se sono zero la sua parte reale e la sua parte immaginaria, da ) otteniamo il sistema x + ) + y = x y x Da questo otteniamo x = 0 + y = y x + = x Il primo sistema non ha soluzioni, mentre il secondo sistema equivale ai seguenti x + 0 x + < 0 x + = x x = x Il secondo sistema non ha soluzioni mentre il primo ha x, = ± La soluzione dell equazione data è: z, = ± Esercizio 8 Risolvere la seguente equazione nel campo complesso: Svolgimento z z = z Osserviamo che z = 0 è una soluzione Cerchiamo le soluzioni z 0 Dividendo per z entrambi i membri dell equazione z = z Scriviamo in forma trigonometrica ed applichiamo la formula per il calcolo delle radici ennesime di un numero complesso ottenendo le altre soluzioni dell equazione data = {cos + isin } 5

6 { [ ) )] z cos + k + isin + k } k = 0,,, Onde Esercizio 9 z = + i, z = + i, z = i, z = i Determinare le coppie z,w) C che risolvono il seguente sistema: w z + i = 0 z z z w = 0 Svolgimento Il sistema dato equivale ai seguenti: w z = + i z z z w = 0 w z = + i = i z z z z z w = 0 w z = i z z z i ) = 0 Poiché z = 0 non può essere soluzione della prima equazione, possiamo dividere la seconda per z ottenendo z = i Questa viene risolta calcolando le radici quarte nel campo complesso del secondo membro A tale scopo scriviamo questo numero in forma trigonometrica nel modo seguente: i = cos + i sin ) Le radici quarte sono quindi i = { ) ) } cos + k + i sin + k, k = 0,,, Le soluzioni z sono: z 0 = + i ), z = + i), z = i ), z = i) Da cui

7 z 0 = i ), z = i), z = + i ), z = + i) Dalla prima equazione del terzo sistema otteniamo w : w 0 = i [ i = cos + i sin ] cos ) ) + i sin = = cos 5 + i sin 5 ) w = i i = = [ cos + i sin ] = w = i + i = = cos 8 + i sin 8 ) = i ) ; [ cos + i sin ] cos 7 + i sin 7 = ) + i cos + i sin ) cos ) ) + i sin = = ) + i ; w = i = cos + i + i sin ) cos + i sin = = cos 7 + i sin 7 ) = ) i ; In definitiva le soluzioni sono date dalle coppie: )) + i ), i ; i ), )) + i ; + i), i), ; ) ) + i ; i )) Esercizio 0 Determinare le coppie z,w) C che risolvono il sistema: z w = w z = 0 Svolgimento Il sistema dato equivale al seguente z w = z = w ovvero w w + = 0 z = w 7

8 La prima equazione del sistema è un equazione biquadratica che si risolve ponendo u = w, e quindi u u+ = 0, che ha soluzioni u, = ± i Determiniamo le soluzioni dell equazione u = w calcolando le radici quadrate di u, A tale scopo passiamo alla forma trigonometrica: u = + i = cos + i sin u = i = cos 5 + i sin 5 Applicando a questi numeri la formula per il calcolo delle radici di un numero complesso, otteniamo rispettivamente w = cos + i sin w = cos 7 + i sin 7 Da cui, mediante la formula di De Moivre: z = w = cos i sin z = w = cos 7 i sin 7 In definitiva le soluzioni del sistema sono: e e w = cos 5 + i sin 5 w = cos + i sin z = w = cos 5 i sin 5 z = w = cos i sin z ;w ) = z ;w ) = z ;w ) = z ;w ) = + + i; ) + i, ) i; i, ) i; + i, i; ) i 8

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7.

z = i 4 2i 3. a)z = (1 + i) 6 e b)w = i 17. 4) Scrivere in forma trigonometrica i seguenti numeri complessi: a)8 b)6i c)( cos( π 3 ) i sin(π 3 ))7. NUMERI COMPLESSI Esercizi svolti. 1 Calcolare la parte reale e la parte immaginaria di z = i i. Determinare il valore assoluto e il coniugato di az = 1 + i 6 e bw = i 17. Scrivere in forma cartesiana i

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE

NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE NUMERI COMPLESSI ED EQUAZIONI ALGEBRICHE. Esercizi Esercizio. Scrivere la forma algebrica, la forma trigonometrica e quella esponenziale dei seguenti numeri complessi: z = + i, z = (cos( π ) + i sin(π

Dettagli

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI

OPERAZIONI FONDAMENTALI CON I NUMERI COMPLESSI I Numeri Complessi L'esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali IR non sempre sono possibili. x 2 + 1 = 0? log (-10)? log -2 3? (-1) ½? Allo scopo

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3

I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3 I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

1. Scrivere in forma algebrica il seguente numero complesso:

1. Scrivere in forma algebrica il seguente numero complesso: TERZA LEZIONE (8/10/009) Argomenti trattati: NUMERI COMPLESSI - rappresentazione algebrica e trigonometrica, soluzioni di disequazioni, Formule di De Moivre, radici n esime, equazioni. 1 Esercizi svolti

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Numeri complessi. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Numeri complessi Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) I numeri complessi Analisi Matematica 1 1 / 34 Introduzione L introduzione dei numeri complessi

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi.

Risoluzione di ax 2 +bx+c = 0 quando a, b, c sono numeri complessi. LeLing14: Ancora numeri complessi e polinomi Ārgomenti svolti: Risoluzione di ax + bx + c = 0 quando a, b, c sono numeri complessi La equazione di Eulero: e i θ = cos(θ) + i sin(θ) La equazione x n = a,

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Esercizi svolti sui iti Esercizio. Calcolare sin(). Soluzione. Moltiplichiamo e dividiamo per : sin() sin() sin() a questo punto, ponendo y, dato che otteniamo y sin y y sin() y sin y y. Esercizi svolti

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

Soluzioni degli esercizi sulle equazioni alle differenze lineari

Soluzioni degli esercizi sulle equazioni alle differenze lineari Soluzioni degli esercizi sulle equazioni alle differenze lineari Bernardi Mauro Sapienza, University of Rome MEMOTEF Department April, 7th 2013 Mauro Bernardi (MEMOTEF) Soluzioni degli esercizi sulle equazioni

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Equazioni goniometriche riconducibili a equazioni elementari

Equazioni goniometriche riconducibili a equazioni elementari Equazioni goniometriche riconducibili a equazioni elementari Le equazioni non elementari, in cui sono presenti più funzioni goniometriche, si riconducono a equazioni elementari nel seguente modo: 1. Si

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i,

Esercizi svolti. 1 Numeri complessi. 1.1 Forma cartesiana. Esercizio 1.1 Dato il numero complesso. z = 4 3 4i, Numeri complessi Esercizi svolti 1 Numeri complessi 1.1 Forma cartesiana Esercizio 1.1 Dato il numero complesso z = 4 3 4i, a) determinare la parte reale x di z: x = Re z, b) determinare la parte immaginaria

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Equazioni goniometriche risolvibili per confronto di argomenti

Equazioni goniometriche risolvibili per confronto di argomenti Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer.

A titolo di esempio proponiamo la risoluzione del sistema sia con il metodo della matrice inversa sia con il metodo di Cramer. ) Trovare le soluzioni del seguente sistema lineare: x+ y+ z = 3x y + z = 0 x + 5y 4z = 5 Osserviamo in primo luogo che il sistema dato è un sistema quadrato di tre equazioni in tre incognite, precisamente

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Equazioni di grado superiore al secondo

Equazioni di grado superiore al secondo Equazioni di grado superiore al secondo 5 51 L equazione di terzo grado, un po di storia Trovare un numero il cui cubo, insieme con due suoi quadrati e dieci volte il numero stesso, dia come somma 0 Il

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli