TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE
|
|
|
- Cornelio Leoni
- 9 anni fa
- Visualizzazioni
Transcript
1 FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento: Trovare le soluzioni della disequazione data significa determinare l ascissa dei punti della circonferenza goniometrica le cui ordinate sono maggiori di. Gli angoli x tali che = sono x = 6 + k e x = k, k Z, essendo la funzione seno periodica di periodo. Allora la disequazione data è verificata se 6 + k < x < k, k Z. Esercizio : Risolvere la seguente disequazione sin x + + < 0. Svolgimento: Ponendo y = la disequazione data diventa la cui soluzione è data da y + y + < 0, < y <. Allora la disequazione data equivale a < <. Gli angoli x tali che = sono x = + k, k Z,
2 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA mentre quelli per cui = sono x = k e x = 6 + k, k Z, essendo la funzione seno periodica di periodo. Allora la disequazione data è verificata se 7 + k < x < k, x + k, k Z. Esercizio : Risolvere la seguente disequazione + <. Svolgimento: Tale disequazione è lineare in seno e coseno e si può risolvere utilizzando le formule parametriche = t t, = + t + t x + k, k Z, dove t = tan x. Per poter usare queste formule bisogna imporre che x + k, k Z. Ponendo x = + k, k Z nella disequazione e tenendo conto del fatto che le funzioni seno e coseno sono periodiche di periodo si ha sin + cos = 0 + ( = <, quindi x = + k, k Z, sono soluzioni della disequazione data. Sostituendo nell equazione le formule parametriche si ottiene Facendo il minimo comune multiplo si ha t + t + t + t <. t + t t + t < 0, da cui segue t t + t < 0. Essendo + t > 0, tale disequazione equivale a e quindi a le cui soluzioni sono date da t t < 0, t (t > 0, t < 0 t >.
3 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA Allora si ha La disequazione tan x da cui segue tan x < 0 tan x >. < 0 ha come soluzione + k < x < + k, k Z, + k < x < + k, k Z. Infine la disequazione tan x e quindi se >, è verificata se 4 + k < x < + k, k Z, + k < x < + k, k Z. Tenendo conto del fatto che x = + k, k Z, sono soluzioni, allora la disequazione data è verificata se + k < x < + k, k Z. Esercizio 4: Risolvere la seguente disequazione ( sin x + > 0. Svolgimento: Tale disequazione è omogenea di secondo grado e per risolverla conviene dividere entrambi i membri per cos x : tale passaggio è lecito solo se 0. Se = 0 allora x = + k, k Z. Sostituendo tali valori nella disequazione si ha ( sin ( + k + = + = > 0, ( 0 0 ( ( sin + k cos + k quindi x = + k, k Z, sono soluzioni della disequazione data. Dividendo entrambi i membri della disequazione per cos x > 0 si ottiene ( tan x + tan x > 0. cos ( + k
4 4 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA Ponendo y = tan x tale disequazione diventa ( y + y > 0, le cui soluzioni sono y < y >. Allora si ha tan x < tan x >. La disequazione tan x < è verificata se + k < x < k, k Z, mentre l equazione tan x > ha come soluzioni 4 + k < x < + k, k Z. Quindi, tenendo conto del fatto che x = data risulta verificata se + k, k Z, sono soluzioni, la disequazione 4 + k < x < k, k Z. Esercizio 5: Risolvere la seguente disequazione. Svolgimento: Facendo il minimo comune multiplo la disequazione data diventa che equivale a 0 Poiché 0. x R essendo x R, la disequazione data equivale a > 0,
5 che ha come soluzione CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 5 + k < x < + k, k Z. Esercizi: Risolvere le seguenti disequazioni. >. tan x (tan x < < 5. sin x < > 0 7. < 0 8. < < 9. cos x + < sin x 0. tan x < ( > 0. cos x > tan x < tan x 6. > 0 7. sin 5x + sin 4x > 0 8. > 0 9. cos x <
6 6 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 0. > 0. sin x < 0. < cos x > 0 + > 0 5. cos x < tan x < 0 > 0. + <. sin x <. + > 0. + < 0 4. sin x < 0 5. > 0 6. ( > 0 7. >
7 8. sin x > tan x CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 7 9. sin x > < 4. 0 < cot x 4. + > > 0 tan x tan x < 45. cos 5x + cos 4x tan x + < 47. > 48. sin x < 49. tan x < 50. cos x < < 5. tan x > > cos x 57. < < 0
8 8 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 58. < < ( 59. < cos x + + > 0 6. < 6. cos x cos x + > cos x > 65. tan x 66. < sin x cos x > < < 70. > 0 7. tan x + cot x + ( < 0 7. < cos x cot x < 0 < 77. sin x + + > 0
9 78. 4 sin x > + CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA < 80. tan x < 0 8. > tan x < 0 ( ( < tan x > 85. ( + > cos x > 87. cos 7x > sin x + cos x 89. < sin x 0 9. > 9. 0 < < cos x > <
10 0 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 97. cos x > 98. cos x < ( 99. ( > Esercizio 6: Risolvere la seguente equazione = 0. Svolgimento: Innanzitutto studiamo il segno degli argomenti dei due moduli: 0 se k x + k, k Z < 0 se + k < x < + k, k Z e 0 se k x + k + k x + k, k Z < 0 se + k < x < + k, k Z. Si presentano quattro diversi casi. Caso : k x + k, k Z. L equazione data è equivalente a = 0. ( Poiché = sin x, l equazione si può riscrivere come ( = sin x, le cui soluzioni sono x = x + k x = ( x + k, k Z, e quindi x = 4 + k, k Z. Di queste soluzioni le uniche che verificano la condizione k x + k, k Z, sono date da x = 4 + k, k Z.
11 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA Caso : + k < x + k, k Z. L equazione data è equivalente a e quindi a ( = 0, + = 0. ( Poiché = cos + x, l equazione si può riscrivere come ( cos + x =, che risulta verificata se x = + x + k x = ( + x + k, k Z, e quindi se x = 4 + k, k Z. Di queste soluzioni le uniche che verificano la condizione k Z, sono date da x = 4 + k, k Z. + k x + k, Caso : + k < x + k, k Z. L equazione data si può riscrivere come che equivale a ( = 0. = 0. Tale equazione è stata già risolta nel Caso. Le soluzioni trovate sono x = 4 + k, k Z, e di queste soluzioni le uniche che verificano la condizione + k < x + k, k Z, sono date da x = k, k Z. Caso 4: + k < x + k, k Z. L equazione data si può riscrivere come e quindi come = 0, + = 0,
12 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA che è l equazione studiata nel Caso. Le soluzioni trovate sono x = 4 + k, k Z, e di queste soluzioni le uniche che verificano la condizione + k < x + k, k Z, sono date da x = k, k Z. In conclusione l equazione data ha come soluzioni x = 4 + k x = 4 + k, k Z. Esercizi: Risolvere le seguenti equazioni. = +. = 4 +. = ( = = ( + tan x + 6. = 7. sin x = = 0 9. tan x + = 0 0. cos x sin x =. Esercizi: Risolvere i seguenti sistemi
13 . > 0 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA. + < tan x 0 tan x < 0 > 0 > <. Esercizi: Determinare il dominio delle seguenti funzioni. y = +. y = +. y = 4. y = 5. y = sin x 6. y = + 7. y = 8. y = cos x + 9. y = sin x
14 4 CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA 0. y = tan x + tan x. y =. y = x x cos 4 x cos x. y = + 4. y = 5. y = sin x 6. y = 7. y = 8. y = x tan x + tan x + + cos x + 9. y = y =.
TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos
Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di
Trigonometria parte 5 easy matematica Eliana pagina 5 DISEQUAZIONI GONIOMETRICHE Disequazioni goniometriche elementari: Si definisce disequazione goniometrica elementare un equazione della forma sen
1 EQUAZIONI GONIOMETRICHE
1 EQUAZIONI GONIOMETRICHE Esempio 1 Risolvere senx = Soluzione. La misura dei due angoli positivi, minori di un angolo giro, che soddisfano l equazione data sono: 4 Tutte le soluzioni sono quindi date
Disequazioni goniometriche
Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni
Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA
Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.
ESERCITAZIONE: FUNZIONI GONIOMETRICHE
ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell
Goniometria e Trigonometria
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica
DISEQUAZIONI GONIOMETRICHE
Pagina 5 Disequazioni goniometriche elementari: DISEQUAZIONI GONIOMETRICHE Si definisce disequazione goniometrica elementare ed ha la forma sen < > m dove m è un qualsiasi numero reale poiché sen e cos,
Disequazioni goniometriche
Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:
ANGOLI MAGGIORI DELL ANGOLO RETTO
ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli
EQUAZIONI CON PARAMETRO
Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell
Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA Le disequazioni goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica DISEQUAZIONI GONIOMETRICHE ELEMENTARI definizione Una disequazione di dice goniometrica se contiene
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice
DISEQUAZIONI TRIGONOMETRICHE Francesco Bonaldi e Camillo Enrico
DISEQUAZIONI TRIGONOMETRICHE Francesco Bonaldi e Camillo Enrico Introduzione Si definiscono disequazioni trigonometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche
x dove fx ( ) assume tali valori si dice punto di massimo o di
7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.
RADIANTI E CIRCONFERENZA GONIOMETRICA
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo
Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.
Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAIONI E DISEQUAIONI GONIOMETRICHE Elementari (e riconducibili) Circ. goniometrica Lineari Metodo grafico Angolo aggiunto Form. Parametriche Omogenee Divisione per cos (x) Form. abbassamento di grado
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAIONI E DISEQUAIONI GONIOMETRICHE Elementari Circ. goniometrica Metodo grafico Lineari Metodo grafico Angolo aggiunto Form. Parametriche Omogenee Divisione per cos (x) Form. abbassamento di grado Equazioni
Capitolo 8. - Soluzioni
Capitolo 8. - Soluzioni 8. Basta applicare la formula di passaggio da un sistema di misura all altro. a) π 6 ; b) π; c) π; d) π 8 ; e) π ; f) π; g) 5 π; h) π 5 5 ; i) 8π; j) 8 π; k) 55 8 π; l) ; m) 6 ;
MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO
Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA
Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola
Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Esercizi sulle Disequazioni
Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori
TRIGONOMETRIA Sistemi parametrici (senza figure!)
TRIGONOMETRIA Sistemi parametrici (senza figure!) Un sistema goniometrico parametrico è composto da: Un'equazione goniometrica parametrica, contenente funzioni goniometriche più un parametro reale. L'incognita
trasformazione grafico Cosa si deve fare Esempio goniometrico
trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il
Disequazioni in una incognita. La rappresentazione delle soluzioni
Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
Equazioni goniometriche riconducibili a equazioni elementari
Equazioni goniometriche riconducibili a equazioni elementari Le equazioni non elementari, in cui sono presenti più funzioni goniometriche, si riconducono a equazioni elementari nel seguente modo: 1. Si
RADIANTI E CIRCONFERENZA GONIOMETRICA
Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF IV Lezione TRIGONOMETRIA Dr. E. Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo
1 Le equazioni con il valore assoluto
1 Le equazioni con il valore assoluto Si definisce valore assoluto di x IR x = x x 0 x x < 0 In base a tale definizione è possibile risolvere equazioni e disequazioni in cui compaia il valore assoluto
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x
UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.
UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche
COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A
Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle
Ripasso delle matematiche elementari: esercizi proposti
Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............
Equazioni goniometriche risolvibili per confronto di argomenti
Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare
Funzioni elementari: funzioni trigonometriche 1 / 17
Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza
Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi
Equazioni e disequazioni goniometriche Guida alla risoluzione di esercizi Valori noti per seno e eno per angoli particolari α α Funzioni goniometriche espresse tramite una di esse α α tan α ctg α ± α tanα
Derivata di una funzione
Derivata di una funzione Prof. E. Modica http://www.galois.it [email protected] Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la
Manuale di Matematica 1 teoria ed esercizi svolti
Manuale di Matematica 1 teoria ed esercizi svolti Dott. Alessio Mangoni Laurea in Fisica, Dipartimento di Fisica UNIPG [email protected] I edizione, Aprile 2014 c 2014 Alessio Mangoni.
GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)
GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante
ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori
Equazioni goniometriche
Appunti di Matematica Equazioni goniometriche a) Consideriamo un equazione elementare : Equazioni goniometriche elementari sen Le soluzioni saranno: 5 In generale se abbiamo sen con < < avremo: α α Se
log log, inversa: log.
Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A. 14-15) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto
Equazioni e disequazioni polinomiali
Equazioni e disequazioni polinomiali Esercizio. Risolvere la seguente equazione: 3 5 + =. Svolgimento. Poiché il discriminante è positivo esistono due soluzioni distinte. Applicando la formula per le equazioni
LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Esercitazione su: angoli, funzioni e formule goniometriche Indice 1 Goniometriche 1.1 Introduzione.............................. 1. La soluzione
1 Funzioni trigonometriche
1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione
TRIGONOMETRIA E COORDINATE
Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli
Capitolo 8: introduzione alla trigonometria
Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
TRIGONOMETRIA formule goniometriche, parte 2
TRIGONOMETRIA formule goniometriche, parte SAPER FARE:. Conoscendo le funzioni dell'angolo x, trovare il valore delle funzioni goniometriche dell'angolo somma/differenza tra x ed un qualsiasi angolo y,
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
CALCOLO DEGLI INTEGRALI
CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante
ESERCIZI SUI NUMERI COMPLESSI
ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo
1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?
Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi
GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO
Note su GRAFICI DI FUNZINI E TRASFRMAZINI DEL IAN Giulia Fidanza In queste note ci proponiamo di trovare l equazione di una funzione il cui grafico sia ottenuto dal grafico di una funzione nota attraverso
ISTITUTO TECNICO TECNOLOGICO STATALE G.
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.
Funzioni goniometriche
Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione
Prerequisiti di Matematica Trigonometria
Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci [email protected] [email protected] Università di Napoli Parthenope Angoli Un angolo è una porzione di piano
IIS A.Moro Dipartimento di Matematica e Fisica
IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi
APPUNTI DI GONIOMETRIA
APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi
Gli insiemi, la logica
Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Esercizi sulle equazioni logaritmiche
Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica [email protected] EQUAZIONI DI SECONDO GRADO Definizione: Dicesi
Liceo Scientifico Severi Salerno
Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: π sen x = cos x 3 sen x
Esercizi con soluzioni dell esercitazione del 31/10/17
Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare
Trigonometria. Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo
Trigonometria Parte della matematica che si occupa di studiare le relazioni tra i lati e gli angoli di un triangolo I triangoli rettangoli Premessa: ricordiamo le definizioni di seno e coseno di un angolo
Analisi Matematica - Corso A. Soluzioni del test di ingresso
Analisi Matematica - Corso A Soluzioni del test di ingresso con cenni di risoluzione Versione [ 1 ] Versione [ ] 1. E A B D C F. C 3. C 6. C 9. S ( x ) = x + 1 R ( x ) = - x - 1 10. C 11. A 1. B 14. C
SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA
Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone
Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti
Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.
Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.
FUNZIONI TRIGONOMETRICHE
FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r
Equazioni goniometriche
Equazioni goniometriche Premettiamo la definizione di funzione periodica: Una funzione f(x) è periodica di periodo T se si verifica che: f(x± kt) = f(x) con k=0,1,,3,... cioè se la funzione assume lo stesso
Liceo Scientifico Severi Salerno
Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3
