EQUAZIONI CON PARAMETRO
|
|
|
- Maria Teresa Grillo
- 9 anni fa
- Visualizzazioni
Transcript
1 Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell intervallo considerato (detto parametro) si determini una corrispondenza biunivoca, tale corrispondenza determinerà le soluzioni dell equazione stessa. Le equazioni parametriche goniometriche possono essere di vario tipo: Equazioni elementari: sin x = < x < 6 associamo all equazione data l identità sin x + cos x = e poniamo sin x = Y e cos x = X avremo per x = sin = cos = A(;) per x = 6 otteniamo quindi sin = cos = ; 6 6 Y = X + Y = x Y < < < < La prima equazione rappresenta un fascio di rette parallele all asse x; la seconda equazione rappresenta l equazione della circonferenza goniometrica; le limitazioni determinano sulla circonferenza stessa l arco di estremi A aventi coordinate A( ; ) e ; rappresentando graficamente avremo: y κ = 4 κ = A x Sostituendo alla prima equazione del sistema le coordinate di A e di otterremo: per A( ; ) = cioè =
2 Trigonometria parte 4 easy matematica Eliana pagina 9 per ; = cioè = 4 Quindi come si vede anche dalla figura l unica soluzione che otterremo sarà per: ; 4 Equazioni lineari in seno e coseno: sen x + cos x + = < x < associamo all equazione data l identità sin x + cos x = e poniamo sin x = Y e cos x = X per trovare i punti A e che determinano un arco sulla circonferenza goniometrica consideriamo i valori assunti da cos x e sen x negli estremi della limitazione < x < per x = sin = cos = A(;) per x = sin = cos = ( ; ) otteniamo quindi Y + X + = X + Y = < X < < Y < La prima equazione rappresenta un fascio di rette, la seconda rappresenta una circonferenza goniometrica, le limitazioni determinano nella circonferenza stessa l arco A avente coordinate A ( ; ) e ( ;). Rappresentato graficamente avremo: Sostituendo all equazione con il parametro le coordinate di A e otterremo: A ; + + = cioè = per per ; + + = cioè = Sapendo che tra le parallele vi è anche la tangente, imponendone lacondizione, mediante la distanza di un punto da una retta avremo:
3 Trigonometria parte 4 easy matematica Eliana pagina 4 d ( P,r) ax + by + c = a + b P ; e la retta Y + X + =, avremo: considerando il punto d P, r = = = = + per vedere dov è verificata la tangente = sostituendo i due valori di κ all equazione iniziale, otterremo: per = + si avrà Y + X + + = Y + X + = Y = X per = si avrà Y + X + = Y + X = Y = X per = non esistono soluzioni per = soluzioni per < < soluzioni per = nessuna soluzione per < nessuna soluzione per cui si hanno soluzioni x ; EQUAZIONI DI GRADO IN CUI COMPARE UNA SOLA FUNZIONE GONIOMETRICA cos x + cos x + κ = < x < Sostituendo alla funzione goniometrica cosx = X si avrà X + X + = < x < Avremo cos = cos = e quindi
4 Trigonometria parte 4 easy matematica Eliana pagina 4 X + X + = < X < dalla limitazione otteniamo le ascisse dei punti A e che delimitano l arco A di ascissa e di ascissa. Ponendo Y = X avremo il sistema: Y = X Y + X + = < X < la prima equazione rappresenta una parabola con vertice nell origine degli assi, la seconda un fascio di rette proprio. Considerando la seconda equazione, bisogna trovarne le generatrici, raccogliendo otteniamo: Y + X + = = Y = ; Y = = X + = ; X = dunque il centro del fascio avrà coordinate C ( ;) Ricordando che le ascisse dei punti A e sono rispettivamente e. Per trovare le rispettive ordinate consideriamola prima equazione A 4 ; ( ; ) Rappresentando graficamente il sistema e i punti A e dell arco avremo: C y Y = X i punti avranno coordinate A x C ( ; ) A ; 4 ( ; ) Imponendo ora al fascio il passaggio per A e otterremo i valori che assume quando passa per questi punti. Dunque:
5 Trigonometria parte 4 easy matematica Eliana pagina 4 considerando la retta: Y + X + = ed il punto A ; avremo: = = = 7 = 7 = = considerando la retta: Y X ; avremo: + + = = = + + = ed il punto per < l equazione non avrà soluzioni, non passando dentro l arco per = l equazione non avrà soluzione per 7 < < l equazione avrà una sola soluzione 7 per > l equazione non avrà soluzione, non passando dentro l arco 7 per = l equazione non avrà soluzione perché 7 è escluso. EQUAZIONI OMOGENEE O RICONDUCIILI AD OMOGENEE DI GRADO IN sen x E cosx + = < x < 4 Esprimendo sen x sen x cos x sen x in funzione di x mediante le note formule di bisezione, avremo: cos x + cos x sen x = cos x = essendo inoltre sen x cos x = sen x avremo < x < < x < 4 l equazione diviene: cos x sen x + = cos x + sen x 5 + = Si ha il sistema:
6 Trigonometria parte 4 easy matematica Eliana pagina 4 cos x + sen x 5 + = < x < Associando l identità sen x + cos x = e ponendo cos x = Y e senx = Y avremo cos = sin = cos = sin = il sistema assumerà la forma X + Y 5 + = X + Y = < X < ; < Y < la prima equazione rappresenta un fascio proprio di rette, la seconda la circonferenza A ; ; goniometrica, le limitazioni determinano su di essa l arco A, aventi estremi ( ; ) Considerando la seconda equazione, bisogna trovarne le generatrici, raccogliendo otteniamo: X 5 + Y + = per = X 5 = ; X = 5 per = Y + = ; Y = dunque il centro del fascio avrà coordinate: C( 5; ) Rappresentando graficamente il sistema i punti A e dell arco da prendere in considerazione avremo: κ = κ = 5 κ = 7 κ = + 7 A Imponendo ora al fascio il passaggio per A e per otterremo i valori che assume quando passa per questi punti, dunque: considerando la retta: X 5Y A ; si avrà: = = 4 = + = ed il punto
7 Trigonometria parte 4 easy matematica Eliana pagina 44 considerando la retta: x 5y + = ed il punto ( ) ; otteniamo: = 5 = 5 = Imponendo alla medesima retta la condizione di tangenza mediante la distanza di un punto da una retta avremo: ax + by + c d ( P; r) = a + b P ; e la retta x + y 5 + =, otteniamo: considerando il punto ( 5 ) d P; r = = + 5 = = = = 7 = 8 = 7 e quindi: ± 7 = Osservando la figura si deducono le seguenti soluzioni: per 5 < l equazione avrà una sola soluzione per 5 < 7 l equazione avrà due soluzioni 5 per = l equazione non ammette soluzioni
Risolvere la seguente disequazione significa determinare gli archi aventi estremo di ordinata 1 maggiore di
Trigonometria parte 5 easy matematica Eliana pagina 5 DISEQUAZIONI GONIOMETRICHE Disequazioni goniometriche elementari: Si definisce disequazione goniometrica elementare un equazione della forma sen
DISEQUAZIONI GONIOMETRICHE
Pagina 5 Disequazioni goniometriche elementari: DISEQUAZIONI GONIOMETRICHE Si definisce disequazione goniometrica elementare ed ha la forma sen < > m dove m è un qualsiasi numero reale poiché sen e cos,
SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA
Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone
Equazioni parametriche goniometriche
Equazioni parametriche goniometriche Discutere un equazione parametrica significa stabilire, al variare del parametro, il numero di soluzioni dell equazione soddisfacenti le limitazioni assegnate all incognita.
TRIGONOMETRIA Sistemi parametrici (senza figure!)
TRIGONOMETRIA Sistemi parametrici (senza figure!) Un sistema goniometrico parametrico è composto da: Un'equazione goniometrica parametrica, contenente funzioni goniometriche più un parametro reale. L'incognita
TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE
FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe IIID ESERCIZI ESTIVI 01/1 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
y = [Sol. y 2x = 4x Verifica n.1
Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:
1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti.
1. Le due rette y = 3x + 5 e y + 3x = 1 a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 2. L equazione x 2 = x + 2 a) ha per soluzioni x = 1 e x = 2 b) ha per soluzioni
Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema
Luglio 1950, primo problema Risolvere un trapezio isoscele convesso avente le diagonali perpendicolari ai lati obliqui, sapendo che la somma dei quadrati delle misure dei suoi lati è m e la lunghezza di
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
LA PARABOLA E LA SUA EQUAZIONE
LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da
Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema
Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla
SFERA ) Stabilire la mutua posizione delle sfere seguenti: S 1 : x 2 + y 2 + z 2 4x + 2y + 4z = 0 e
SFERA 14.01.2009 10) Studiare la mutua posizione delle sfere: S 1 : x 2 + y 2 + z 2 + 10x 2y 18z + 82 = 0 e S 2 : x 2 + y 2 + z 2 + 2x + 2y 10z + 26 = 0 C 1 = ( 5, 1, 9) R 1 = 5 C 2 = ( 1, 1, 5) R 2 =
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice
CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA
CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento
ESERCIZI PRECORSO DI MATEMATICA
ESERCIZI PRECORSO DI MATEMATICA EQUAZIONI 1. cot( 10 ) 3. tan 3 3. cos( 45 ) +1 0 4. sin sin 5. tan( 180 ) tan( 3) 6. 5 cos 4sin cos 7. 3sin 3 cos 0 8. 3 cos + sin 3 0 9. sin3 sin( 45 + ) 10. 6sin 13sin
Equazioni goniometriche
Appunti di Matematica Equazioni goniometriche a) Consideriamo un equazione elementare : Equazioni goniometriche elementari sen Le soluzioni saranno: 5 In generale se abbiamo sen con < < avremo: α α Se
ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori
Liceo G.B. Vico Corsico
Liceo G.B. Vico Corsico Programma svolto durante l anno scolastico 018-19 Classe: 3C Materia: MATEMATICA Insegnante: Cristina Bovati Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
CLASSE 3^ A LICEO SCIENTIFICO 25 Febbraio 2015 Geometria analitica: la parabola (recupero per assenti)
CLASSE ^ A LICEO SCIENTIFICO 5 Febbraio 05 Geometria analitica: la parabola (recupero per assenti). Dopo aver determinato l equazione della parabola, con asse parallelo all asse y, passante per i punti
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono
Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico
www.matematicamente.it Compito sulla circonferenza 1 Compito in classe del 29/01/2013 LA CIRCONFERENZA per il Liceo Scientifico 1. Determina e rappresenta graficamente l equazione della circonferenza di
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )
Macerata 6 marzo 0 classe M COMPITO DI MATEMATICA SOLUZIONE QUESITO Considera il fascio di parabole di equazione: a) Trova eventuali punti base. y = k x + x + P ( 0;) Le curve sostegno del fascio sono
TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos
Liceo Scientifico Statale A.Einstein
Liceo Scientifico Statale A.Einstein A.S. 2010/11 Classe 3^B Programma di matematica Libro di testo adottato : Dodero-Baroncini-Manfredi «Lineamenti di matematica» moduli A-B-C Insegnante : Alessandra
Esercizio 8: Siano dati l equazione della parabola e i due punti e.
Esercizio 8: Siano dati l equazione della parabola e i due punti e. tracciare dal punto A le tangenti r ed s alla parabola ottenendo i punti di contatto P e Q; tracciare dal punto B le tangenti t ed u
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Disequazioni goniometriche
Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni
Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni
Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
RADIANTI E CIRCONFERENZA GONIOMETRICA
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica [email protected] RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA
1. MODULO 1: RICHIAMI DI CALCOLO LETTERALE La scomposizione di polinomi e le operazioni con le frazioni algebriche 2. MODULO 2: LE EQUAZIONI Istituto di Istruzione Secondaria Superiore Statale Classe 1
1 EQUAZIONI GONIOMETRICHE
1 EQUAZIONI GONIOMETRICHE Esempio 1 Risolvere senx = Soluzione. La misura dei due angoli positivi, minori di un angolo giro, che soddisfano l equazione data sono: 4 Tutte le soluzioni sono quindi date
Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati
Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA Le disequazioni goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica DISEQUAZIONI GONIOMETRICHE ELEMENTARI definizione Una disequazione di dice goniometrica se contiene
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).
04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti
Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018
Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni
Esercizi svolti sulla parabola
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice
Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.
Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull
Verifica del 8 febbraio 2018
Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si
PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA
DISCUSSIONE DI PROLEMI GEOMETRICI RISOLTI PER VI TRIGONOMETRIC Problema n 1 Detto il punto medio del segmento C = 4r, nello stesso semipiano disegnare la semicirconferenza di diametro ed il triangolo isoscele
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y
Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.
Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto
La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.
Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0
COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A
Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle
ISTITUTO TECNICO TECNOLOGICO STATALE G.
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
LA CIRCONFERENZA. Ricaviamola. Tutti i punti P che stanno sulla circonferenza hanno la proprietà comune che
LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Si ottiene tagliando un cono con un piano perpendicolare al suo asse. La distanza fra ognuno
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
Parabole (per studenti del biennio)
Parabole (per studenti del biennio) - - - 5 - - Equazione della parabola con vertice in O(0,0) : = a 5 - - - Equazione della parabola con vertice in V( 0,0) : = a 0 - - - 5 - Equazione della parabola con
1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).
. Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò
Geometria BAER Canale I Esercizi 10
Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r
Equazioni goniometriche riconducibili a quelle elementari
Equazioni goniometriche riconducibili a quelle elementari In questa dispensa vengono presentati diversi esempi di equazioni goniometriche riconducibili a quelle elementari. Dopo qualche esempio di equazioni
Compito di matematica Classe III ASA 12 febbraio 2015
Compito di matematica Classe III ASA 1 febbraio 015 1. Scrivere l equazione delle funzioni il cui grafico è rappresentato nella seguente figura: [Un quadretto = 1] Prima funzione Per x 4 l arco di parabola
Disequazioni goniometriche
Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:
Soluzione verifica scritta dell 8/10/2013
Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
Compito di matematica Classe III ASA 23 aprile 2015
Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9
Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE
Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono
Carlo Sintini, Problemi di maturità, 1942 Luglio, matematicamente.it Luglio 1942 Primo problema. AD > BC AB = l AC = kl (con k > 0) EM = 2 LM EM = DC
Luglio 194 Primo problema Nel trapezio ABCD di basi AD, BC (con AD > BC), le lunghezze del lato obliquo AB e della diagonale AC sono rispettivamente l e kl. Si sa inoltre che detto E il punto d incontro
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
Equazioni goniometriche elementari
Equazioni goniometriche elementari In questa dispensa vengono esaminate le equazioni goniometriche elementari; ad esse si riconducono molti tipi di equazioni goniometriche. A partire da esempi, viene illustrato
Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA
Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.
