Equazioni parametriche goniometriche
|
|
|
- Michele Casati
- 9 anni fa
- Visualizzazioni
Transcript
1 Equazioni parametriche goniometriche Discutere un equazione parametrica significa stabilire, al variare del parametro, il numero di soluzioni dell equazione soddisfacenti le limitazioni assegnate all incognita. Se con x indichiamo tale angolo incognito, le limitazioni saranno, di solito, di uno dei seguenti tipi: α < x < β; α x β; α x < β; α < x β Vediamo come si discute un equazione parametrica di 2 grado avente per incognita una funzione goniometrica f(x): a[f(x)] 2 + bf(x) + c = 0 dove i coefficienti a, b, c sono tutti, o in parte, dipendenti da un parametro reale e dove f(x) può essere una delle seguenti quattro funzioni: senx; cosx; tgx; cotgx. La discussione consiste nello stabilire, al variare del parametro, il numero delle soluzioni soddisfacenti le limitazioni assegnate, che supponiamo siano, ad esempio, α < x < β. La discussione viene però effettuata considerando come incognita non x, ma f(x) e quindi occorre tradurre le limitazioni per l angolo x in limitazioni per la funzione goniometrica dell angolo stesso. Bisognerà quindi ricordare che, ad esempio per gli angoli acuti, le funzioni seno e tangente crescono al crescere dell angolo, mentre coseno e cotangente decrescono al crescere dell angolo. Pertanto le condizioni α < x < β, se e sono archi aventi gli estremi nel primo quadrante, equivalgono alle seguenti: senα < senx < senβ ; cosβ < cosx < cosα ; tgα < tgx < tgβ ; cotgβ < cotgx < cotgα. Se invece gli estremi di e cadono in quadranti diversi, occorrerà fare molta attenzione alle variazioni delle diverse funzioni, ricorrendo eventualmente alla circonferenza goniometrica. Dopo aver tradotto le limitazioni per l incognita x in limitazioni della funzione goniometrica incognita, l equazione parametrica si discute con il metodo della parabola fissa o con il metodo del parametro isolato. 1. Metodo del parametro isolato (Fascio improprio e circonferenza). Si discutono con questo metodo le equazioni lineari in seno e coseno a cui sono associati dei fasci impropri; sono quindi equazioni del tipo: asinx + bcosx = f(k), dove i coefficienti a e b sono numeri reali che non dipendono da k e f(x) è una qualsiasi funzione del parametro k. Occorre trasformare questa equazione in quella di un fascio (in questo caso improprio, dato che il parametro compare solo nel termine noto) di rette, vale a dire tutte rette parallele ad una retta base detta generatrice. Si opera in questo modo: a) si pone cosx=x e sinx=y; b) si associa l equazione della circonferenza goniometrica o prima relazione fondamentale della goniometria X 2 + Y 2 = 1 ; c) si considerano le limitazioni sull incognita che diventano limitazioni sulle funzioni senx e cosx. Si deve risolvere, pertanto, il seguente sistema misto parametrico:
2 asinx + bcosx = f(k) { sinx 2 + cosx 2 = 1 o altre eventualità. α < x < β Tale sistema diviene, con le posizioni indicate sopra: Esempio. ay + bx = f(k) { X 2 + Y 2 = 1. α < x < β sinx + cosx + k 1 = 0 Si debba discutere il seguente sistema misto parametrico: { 0 < x < 2 π 3. Esso sinx 2 + cosx 2 = 1 X + Y + k 1 = 0 diventa, con le posizioni di cui sopra: { X 2 + Y 2 = 1, vale a dire le intersezioni tra il 0 < x < 2 π 3 fascio improprio X+Y=1-k e l arco di circonferenza goniometrica compreso tra 0 e 120 (detto arco utile di discussione). Il fascio è costituito da infinite rette parallele ad una generatrice (retta base) che si ottiene ponendo il termine noto uguale a zero nell equazione dello stesso fascio. Nel nostro caso la generatrice è X+Y=0, cioè la bisettrice del 2 e 4 quadrante. Occorre ora trovare l intersezione tra queste rette e l arco di circonferenza che sottende un angolo di 120. Gli estremi dell arco sono i punti A(1,0) e B( 1, ). Come si vede (fig. 1), ogni retta del fascio può intersecare quest arco una volta oppure due. Si avranno tre posizioni limite: passaggio per B, passaggio per A e posizione di tangenza. Se la retta si trova tra quella per A e quella per B si ha una sola intersezione; se la retta è intermedia tra la retta per A e la tangente si hanno due intersezioni; se la retta è al di fuori di questi intervalli non interseca mai l arco in questione. Vediamo allora fra quali valori del parametro (che chiameremo capisaldi) si ha tale intersezione. Le posizioni limite, al di fuori delle quali la retta non interseca l arco utile sono due: Passaggio per A(1,0): 1+0=1-k, da cui segue che ka=0; Passaggio per B( 1, 3 ): = 1 k, da cui segue che k B = 3 3 ; 2 Condizione di tangenza. Usiamo il metodo della distanza, imponendo che la retta X+Y+k- 1=0 disti r=1 dal centro della circonferenza, O(0,0). Si ottiene, ricordando la formula della distanza punto-retta: 1 = k 1, cioè k 1 = 2. Elevando al quadrato si ottiene: (k- 2 1) 2 =2, da cui k 2-2k-1=0, equazione che fornisce le soluzioni k = 1 ± 2.Ora dobbiamo fare attenzione a comprendere quale dei due valori di k fa al caso nostro, dal momento che l equazione ci ha dato due valori, e quindi esistono due tangenti. Queste hanno equazioni: X + Y = 1 (1 ± 2 ) t 1 : y = x + 2, t 2 : y = x 2. Dal disegno ci si può accorgere che la seconda interseca l arco utile nel settore che ci interessa, quindi si conclude che k T = 1 2. Per concludere, allora, diremo che il nostro sistema (o meglio il nostro problema, dato che il sistema misto parametrico discende sempre da un problema) ammette:
3 Due soluzioni per k [1 2, 0[ ; Una soluzione per k [0, ]. Y B k = 1 2 O A(1,0) x k=0 k=1 k = 3 3 2
4 2. Metodo del parametro isolato (fascio proprio e circonferenza) Rientrano in questo caso le equazioni lineari in seno e coseno, a cui sono associati dei fasci propri, quindi equazioni del tipo a(k)sinx + b(k)cosx + c(k) = 0, dove i coefficienti a, b e c dipendono dal parametro k (o almeno lo è uno tra a e b). Il procedimento è lo stesso del numero precedente, con la differenza che occorre studiare il fascio proprio, trovandone le generatrici ed il centro. Poi tutto segue come prima
5
6
7 3. Metodo della parabola fissa. Equazioni quadratiche Rientrano in tale gruppo le equazioni quadratiche in una sola funzione, in dipendenza da un parametro. Esempio: cos 2 x kcosx + 2k + 1 = 0. Occorre sempre trasformare questa equazione in quella di un fascio di rette (proprio o improprio), che si deve accoppiare con l equazione della parabola fondamentale y = x 2, per mezzo della posizione, in questo caso: cosx = t; t 2 = y. L equazione diventa allora: t 2 y = t kt + 2k + 1 = 0 { 2 y kt + 2k + 1 = 0. Come si può vedere, dobbiamo intersecare un fascio di rette con la parabola fondamentale, o con un arco di essa, a seconda delle limitazioni fissate all incognita.
8
TRIGONOMETRIA Sistemi parametrici (senza figure!)
TRIGONOMETRIA Sistemi parametrici (senza figure!) Un sistema goniometrico parametrico è composto da: Un'equazione goniometrica parametrica, contenente funzioni goniometriche più un parametro reale. L'incognita
EQUAZIONI CON PARAMETRO
Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell
Equazioni goniometriche riconducibili a equazioni elementari
Equazioni goniometriche riconducibili a equazioni elementari Le equazioni non elementari, in cui sono presenti più funzioni goniometriche, si riconducono a equazioni elementari nel seguente modo: 1. Si
Banca Dati Finale Senza Risposte
Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori
Problemi con discussione grafica
Problemi con discussione grafica Un problema con discussione grafica consiste nel determinare le intersezioni tra un fascio di rette (proprio o improprio) e una particolare funzione che viene assegnata
Disequazioni goniometriche
Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni
DERIVATE E LORO APPLICAZIONE
DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x
GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)
GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante
Teoria in sintesi 10. Teoria in sintesi 14
Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche
AMERICHE PROBLEMA 1
www.matefilia.it AMERICHE 16 - PROBLEMA 1 Considerata la funzione G: R R è così definita: svolgi le richieste che seguono. 1) x G(x) = e t sen (t)dt Discuti campo di esistenza, continuità e derivabilità
Matema&ca. GONIOMETRIA Le formule goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca GONIOMETRIA Le formule goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LE FUNZIONI GONIOMETRICHE DI ANGOLI ASSOCIATI definizione Sono detti angoli associati a un angolo α quegli
Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2
0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la
DISCUSSIONE DI PROBLEMI GEOMETRICI RISOLTI PER VIA TRIGONOMETRICA
DISCUSSIONE DI PROLEMI GEOMETRICI RISOLTI PER VI TRIGONOMETRIC Problema n 1 Detto il punto medio del segmento C = 4r, nello stesso semipiano disegnare la semicirconferenza di diametro ed il triangolo isoscele
Trigonometria 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (4/3) π radianti? A) 240 B) 245 C) 230 D) 120 5453 La tangentoide è la
ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE
ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente
RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO
RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO 1 La circonferenza. 2 La parabola. 3 L ellisse. L iperbole. 5 Le coniche. 6 Equazione generale di una conica. 7 Calcolo delle principali caratteristiche
La circonferenza nel piano cartesiano
6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la
FUNZIONI GONIOMETRICHE
FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza
Equazioni goniometriche riconducibili a quelle elementari
Equazioni goniometriche riconducibili a quelle elementari In questa dispensa vengono presentati diversi esempi di equazioni goniometriche riconducibili a quelle elementari. Dopo qualche esempio di equazioni
ANALISI B alcuni esercizi proposti
ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la
L algebra lineare nello studio delle coniche
L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.
Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo
Analisi Matematica - Corso A. Soluzioni del test di ingresso
Analisi Matematica - Corso A Soluzioni del test di ingresso con cenni di risoluzione Versione [ 1 ] Versione [ ] 1. E A B D C F. C 3. C 6. C 9. S ( x ) = x + 1 R ( x ) = - x - 1 10. C 11. A 1. B 14. C
Capitolo 8: introduzione alla trigonometria
Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0
ISTITUTO TECNICO TECNOLOGICO STATALE G.
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.
Liceo Scientifico Severi Salerno
Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3
Goniometria e Trigonometria
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica
f(x) = sin cos α = k2 2 k
28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza
SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e
Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE IIIC. Insegnante Pellegrino Innocenza. Disciplina MATEMATICA
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a. s. 2016-2017 CLASSE IIIC Insegnante Pellegrino Innocenza Disciplina MATEMATICA PROGRAMMA SVOLTO Equazioni e disequazioni algebriche Ripasso di equazioni
FUNZIONI TRIGONOMETRICHE
FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r
Formule Utili Analisi Matematica per Informatici a.a
Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore [email protected]).
MATEMATICA COMPLEMENTI DI MATEMATICA
ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.
QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE
EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli
( 1 ) AB:A B =BC:B C =CA:C A
Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)
2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:
SENO, COSENO E TANGENTE DI UN ANGOLO
Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un
Goniometria Domande, Risposte & Esercizi
Goniometria Domande, Risposte & Esercizi Angoli e Archi. Dare la definizione di grado sessagesimale (DMS). Il grado sessagesimale si definisce come la 36ª parte di un angolo giro. Esso viene indicato con
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
X = x + 1. X = x + 1
CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y
Liceo Scientifico Statale A.Einstein
Liceo Scientifico Statale A.Einstein A.S. 2010/11 Classe 3^B Programma di matematica Libro di testo adottato : Dodero-Baroncini-Manfredi «Lineamenti di matematica» moduli A-B-C Insegnante : Alessandra
Coordinate cartesiane e coordinate omogenee
Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),
Le coniche retta generatrice
Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono
Anno Scolastico:
LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Carlo Sintini, Problemi di maturità, 1950 Luglio, matematicamente.it Luglio 1950, primo problema
Luglio 1950, primo problema Risolvere un trapezio isoscele convesso avente le diagonali perpendicolari ai lati obliqui, sapendo che la somma dei quadrati delle misure dei suoi lati è m e la lunghezza di
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
1 Funzioni trigonometriche
1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione
y = [Sol. y 2x = 4x Verifica n.1
Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:
Note di geometria analitica nel piano
Note di geometria analitica nel piano e-mail: [email protected] Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................
Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.
Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:
Lezione 6 Richiami di Geometria Analitica
1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata
ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it ORDINAMENTO 2005 - SESSIONE SUPPLETIVA QUESITO 1 È dato un trapezio rettangolo, in cui le bisettrici degli angoli adiacenti al lato obliquo si intersecano in un punto del lato perpendicolare
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14
Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore
ANGOLI ASSOCIATI. Considerando sempre valida l uguaglianza tra i triangoli OPH e ORK si ricava quanto segue: 1) Angoli complementari.
ANGLI ASSCIATI Considerando sempre valida l uguaglianza tra i triangoli H e K si ricava quanto segue: ) Angoli complementari K H K = H sen = (9 ) cos K = H cos(9 ) = sen (9 ) = c ) Angoli che differiscono
Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018
Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni
Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione
Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0
P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k
Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,
Goniometria per il TOL - Guida e formulario
Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi
Svolgimento degli esercizi sulla circonferenza
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 1 ottobre 011 Svolgimento degli esercizi sulla circonferenza Esercizio 1. La circonferenza ha centro in C 4 ), 7, 7 ) e raggio + 7 57
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
Funzioni elementari: funzioni trigonometriche 1 / 17
Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza
Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9
Macerata 4 marzo 015 classe M COMPITO DI RECUPERO ASSENTI Problema 1 y = k x + 5k x 4 + k E dato il fascio di parabole di equazione ( ) ( ). SI ha quindi la concavità rivolta k = si ha la parabola degenere
Appunti sulla circonferenza
1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano
Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.
Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto
Gli insiemi, la logica
Gli insiemi, la logica 1 Dato l insieme A = {x N : x < 5}, quale delle seguenti affermazioni è falsa: (a) 1 A (b) 5 / A (c) 2 A (d) A (e) {1, } A 2 Sono dati gli insiemi A = {, 5, 7, 9} e B = {5, 7} Quali
PNI SESSIONE SUPPLETIVA QUESITO 1
www.matefilia.it PNI - SESSIONE SUPPLETIVA QUESITO Si sa che certi uccelli, durante la migrazione, volano ad un altezza media di 6 metri. Un ornitologa osserva uno stormo di questi volatili, mentre si
